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Abstract: -  Area coverage is a type of path planning that is concerned with finding a pattern of
movement that will result in coverage of all parts of an area. Most area coverage planning algo-
rithms assume that the robot can maintain a track over the ground that will result in full coverage
in obstacle free areas.  This is easily done if the robot can be precisely controlled or has sufficient
sensor capability to know the relationship of its current track to its previous one, but simple
legged robots usually lack both of these attributes. A means of learning the optimal cycle of turns
and straights to produce a full coverage track could greatly improve efficiency.  In addition, a
system of learning could compensate for the lack of calibration in robot turning systems.  In this
paper, we introduce a method for learning turn cycles that will produce the tracks required for
area coverage.  The learning is done using a cyclic genetic algorithm (a form of evolutionary
computation designed to learn cycles of behavior). Tests of the simulated robot’s dead reckoning
capabilities with the learned cycles show that using CGAs is an effective means of learning for
area coverage.
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1  Introduction
Path planning is an important aspect of robot
navigation.  It is the formation of the set of
moves that the robot will take to transport it
from a starting point/configuration to a goal
point/configuration. Area coverage is a type of
path planning that is concerned with the cov-
erage of an area.  Some applications are mine
sweeping, search and rescue, haul inspection,
painting, and vacuuming.  The robot’s sensors
/manipulators are assumed to have a certain
width of effectiveness and the area is de-
scribed as having defined boundaries and pos-
sibly some obstacles.  The path planned is
supposed to ensure that the area covered by
the robot’s sensors compared to the total area
within the defined boundaries is equal to the
desired coverage.  In most cases, the desired
coverage is 100%, but due to the decreasing
effectiveness of sensors as the distance in-
creases from the robot, this exact percentage is

seldom attained.  The desired coverage is
therefore often described in some other way
such as separation of paths or attainment of
fixed blocks of space distributed throughout
the area.

Previous research in the area of coverage
path planning concentrates primarily on cov-
ering a specified area while contending with
obstacle avoidance.  Zelinsky et al. [8] used an
extension to a path planning methodology,
which divided the area into cells that were
marked with the distance to the goal to form a
cell to cell path through the area. Choset and
Pignon [1] divided the area into obstacle free
sub-areas (they called cells) and found an ex-
haustive path through the adjacency graph rep-
resenting these cells.  Within each cell the
back-and-forth boustrophedic motions (Figure
1) were used to assure coverage.  Ollis and
Stentz [4] used vision to control the lines in
their boustrophedic motions to do automated



harvesting. Hofner and Schmidt [3] used tem-
plates appropriate for the type of robot to de-
termine the best path within areas that Choset
would call cells. Robot dead reckoning was
supplemented by an extensive use of land-
marks sensed by ultrasonic sensors to maintain
the desired track.  Hert at el. [2] proposed a
method for sea floor coverage by an autono-
mous underwater vehicle, which used an on-
line planar algorithm and sensors to explore
areas with arbitrary shape.

Common to all of these works is either pre-
cise control of the robot or some navigational
means of making continual corrections to its
movement.  These assets are not always avail-
able.  Legged robots, especially inexpensive
ones with minimal sensors and precision of
movement, cannot be positioned perfectly
with exact headings.  What is often taken for
granted in these papers, a capability to per-
form perfect back-and-forth boustrophedic
motions (Figure 1), is not easily done by these
legged robots.  The exact time and rate of turn
cannot be specified.  In addition, often what is
considered a straight gait results in a small
drift to one side or the other due to perform-
ance differences from one side to the other of
the robot.  The best straight may actually be
what is programmed in as a minimal turn.
Efficiency is also a factor.  The most efficient
path to cover the area given depends greatly
on the capabilities of the robot.  If it can effi-
ciently rotate or turn sharply, its best strategy
may be to do a ladder pattern (boustrophedic
with square turns).  If tight turns cost in effi-
ciency, it may be better to make large sweeps
with some coverage overlap or to buttonhook
the ladder turns, keeping the rungs about the
same.

A means of learning the optimal cycle of
turns and straights could greatly improve the
efficiency of area coverage within cells.  In
addition, a system of learning could compen-
sate for the lack of calibration in robot turning
systems.  In this paper, we introduce a method
for learning turn cycles that will produce the
tracks required for area coverage.  The learn-
ing is done using a cyclic genetic algorithm (a
form of evolutionary computation designed to
learn cycles of behavior).  Previous work has
shown that CGAs can effectively learn gait

cycles for legged robots [5,6].  The turn cycles
learned for the coverage problem are com-
posed of these gait cycles.  Tests of the simu-
lated robot’s dead reckoning capabilities with
the learned cycles show that using CGAs is an
effective means of learning for area coverage.

Fig. 1: Back-and-Forth Boustrophedic Motion

2  The Robot Simulation

2.1 ServoBot
The simulation was modeled after the Servo-
Bot, a small, inexpensive hexapod robot with a
BASIC Stamp II controller.  The controller is
capable of holding a normal gait, affecters that
can produce a turn from this gait, and a se-
quence of commands that indicate what af-
fecters should be invoked.

2.2 Gait Cycles
The normal gait is made up of a control se-
quence, which is a list of activations that the
on-board controller will continually repeat.
Each activation controls the instantaneous
movement of the 12 servo actuators. The acti-
vation can be thought of as 6 pairs of actua-
tions.  Each pair is for a single leg with the
first bit of the pair being that leg’s vertical ac-
tivation and the second being that leg’s hori-
zontal activation. The legs are numbered 0 to 5
with 0,2,4 being on the right from front to
back and 1,3,5 being the left legs from front to
back. A signal of 1 moves the leg back if it is a
horizontal servo and up if it is a vertical servo.
A signal of 0 moves it in the opposite direc-
tion.  For example: an activation of
001000000000 results in the lifting of the left



front leg; 000001000000 results in the pulling
back of the second right leg. 001001000000
would activate both at the same time. This set
of input activations is held active by the con-
troller for one servomotor pulse (approxi-
mately 25 msec).

A repeated sequence of these activations
can be evolved by a cyclic genetic algorithm
(Section 3) to produce an optimal gait for a
specific SevroBot [7]; the gait generated for
our test was a tripod gait (Figure 2).  The tri-
pod gait is where legs 0, 3, & 4 alternate with
legs 1, 2, & 5 in providing the thrust for for-
ward movement.  While one set of legs is pro-
viding thrust, the other set is repositioning for
its next thrust.  In the case of our robot, the
entire cycle lasted for 58 activations with each
set providing 29 activations of thrust.
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Fig. 2:  Tripod Gait.   The solid lines show
legs that are on the ground and producing
thrust.  The dashed lines show legs that are
repositioning for the next thrust by initially
lifting and then lowering again while the leg is
moving forward.  Legs 0, 3, & 4 alternate with
legs 1, 2, & 5 in providing thrust.

2.3 Production of Turns in Gait Cycles
Differing degrees of turn were provided in the
gait cycles through the use of affecters.  These
affecters could interrupt activations to the
thrust actuators for either the left or right side
of the robot.  Since the normal gait consisted
of a sequence of 29 pulses of thrust to move
the leg from the full front to full back position,
anything less than 29 would result in some
dragging of the legs on that side.  For exam-
ple: a right side affecter of 7 would allow only
14 (2 x 7) thrusts on the right side while
keeping 29 on the left.  The result would be
that the left side would move further than the
right resulting in a right turn.  Affecters from 0
to 15 were possible.  A one bit indicator speci-
fied if the affecter was right or left.  A 4 bit

number indicated the strength of the effect.  0
meant that side would get no thrust producing
a maximum turn.  15 will not effect the normal
gait so the result should be a straight track.

Each gait cycle, made up of 58 activations,
was assigned an affecter, which resulted in a
turn throughout that cycle. For consistency,
each gait cycle started with legs 0, 3, & 4 full
forward and legs 1, 2, & 5 full back; all the
legs were on the ground.  As the gait cycle
started legs 0, 3, & 4 would provide the thrust
as legs 1, 2, & 5 would start to lift and move
forward to reposition for their thrust after 29
activations.  A single gait cycle was defined as
being complete when the legs returned to their
starting positions (in this case, after 58 activa-
tions).

2.4 Cycles of Gait Cycles
The controller can be programmed to make the
turns specified in an input sequence by appli-
cation of the affecters to produce the corre-
sponding gait cycle.  The input sequence in-
cludes the turn direction, turn strength (affec-
ter), and the number of times to repeat that
gait cycle.  Up to nine changes in gait cycles
can be used with up to 63 repetitions of that
gait cycle. The effective result was to produce
cycles of gait cycles that could be used to de-
fine a desired path over the ground. A cycle of
sub-cycles results in a single cyclic behavior.

3  Cyclic Genetic Algorithms
Cyclic genetic algorithms were developed to
allow for the representation of a cycle of ac-
tions in the chromosome [5,6]. They differ
from the standard GA in that the chromosome
can be thought of as a circle with up to two
tails (Figure 3) and the genes can represent
subtasks that are to be completed in a prede-
termined segment of time. The tails of the
CGA chromosome allow for transitional pro-
cedures before and/or after the cycle, if re-
quired. In our area coverage experiments, we
used only the cyclic portion since the start po-
sition was known and the search tactic was to
be applicable for any duration. The CGA
genes can be one of several possibilities. They



can be as simple as primitive subtasks (activa-
tions) or they can be as complicated as cyclic
sub-chromosomes that can be trained sepa-
rately by a CGA. For the area coverage prob-
lem the genes represented a set of gait cycles
that were to be sustained for one cycle each.
The trained chromosome contained the cycle
of these gait cycles that was continually re-
peated by our robot’s controller to produce a
path that was to efficiently cover the desig-
nated area.

Fig. 3: CGA Chromosome with three genes in
the start section (before the cycle), nine genes
in the cyclic section, and two genes in the tail
section (after the cycle).

A number of variations are possible in the
character of CGA chromosomes, including
fixed and variable lengths, constraint en-
forcement sub-segments, and so forth.  For the
area coverage problem, a fixed length chromo-
some with no constraints was used.

3.1  Area Coverage Chromosome
The controller program has a provision for
nine changing gait cycles in the search cycle.
Each gait cycle takes 5 bits to identify and the
repetitions of each gait cycle can be from 0 to
63.  The CGA chromosome used directly re-
sembles the required input to the controller.
Each chromosome is made up of nine genes
and each gene of the chromosome is made up
of 2 parts (a 5 bit number and a 6 bit number).
The scheme representation of the chromosome

is shown in Figure 4.  The first number in each
pair represents the gait cycle while the second
represents the number of times to repeat that
gait cycle.

((GS1  R1)  (GS2  R2)  (GS3 R3)  (GS4  R4)  (GS5  R5)
(GS6  R6)  (GS7  R7)  (GS8  R8)  (GS9 R9))

Fig. 4:  Area Coverage Chromosome

3.2  Genetic Operators
Selection probability was determined by the
individual’s fitness.  This fitness was calcu-
lated by counting the number of mines de-
tected (mine blocks covered by robot’s path)
after it had completed a specified number of
gait cycles.  Counting, which was not done
until the search path was completed, began by
rows from the bottom of the area.  As soon as
a mine block was missed no more rows were
counted, although the mines from the partial
row were counted.  For the fitnesses calculated
during training, mines visited more than once
were not counted, although they did count for
row completions.  This was to discourage
paths that were wasting time re-searching cov-
ered area.  Once a fitness was calculated for
each individual in the population, pairs were
stochastically selected for reproduction.

Crossover was accomplished by randomly
picking corresponding spots in the two se-
lected parents.  Since the area coverage chro-
mosomes represented cycles, which could be
considered a circle, crossover was performed
at two points. The effect was to swap sections
within the circle. An alternate type of cross-
over was a gene-by-gene crossover that per-
forms crossover in each of the corresponding
genes of the two chromosomes. Crosses could
happen between the individual members of the
list or within the bits of the specific numbers
in the list.

Two types of mutation were possible (ran-
domly selected) after each recombination. In
one, each gene had a random chance of being
replaced by a new random gene. In the other,
each part of the gene had a random chance of
having one of its bits flipped.

Gene-by-gene evaluation, a genetic opera-
tor peculiar to CGAs was used to clean up the
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chromosome by randomly picking one or two
individuals from the population on each set of
trails and examining each gene one at a time.
Genes were evaluated move-by-move by
comparing the previous move fitness to the
present. Fitnesses for this operator were not
computed in the same way as for CGA selec-
tion.  The area covered (assuming a 20 cm
sensor coverage width) within the search area,
not the number of mines detected, was calcu-
lated for each single gait cycle.  This differing
fitness calculation was necessary because it
gave an immediate fitness for each gait cycle.
Since search patterns would sometimes take
several gait cycles before each mine was de-
tected (even if the search was being done in
the most efficient manner), the usefulness of a
single cycle would be difficult to predict using
the normal CGA (mine blocks covered) fitness
calculation.  Judging from this area covered
fitness, genes that performed poorly in their
current position were eliminated and genes
that were good in the execution of their early
repetitions and subsequently dropped in the
later repetitions were modified by reducing
their repetitions. Genes that had zero repeti-
tions were moved out so that only active genes
were at the start of the cyclic section.

Momentarily Elevated Mutation was initi-
ated whenever it was determined that the CGA
had converged prematurely.  This determina-
tion was made by comparing all of the popu-
lation’s individual fitnesses to the fitness of its
best individual.  If over half of the individuals
in the population had a fitness equal to the
best; it was assumed that the CGA was stuck.
At this point, each individual in the population
went through mutation at a rate more than
usual.  CGA training was then continued.
With the assumption that many of the popula-
tion’s individuals were the same, the idea was
to introduce several small changes while re-
taining important sub-solutions within the
population.  Although high mutation can be
very disruptive to each individual, with
enough identical individuals the good building
blocks should survive somewhere within the
population.  Continued evolution can use these
to rebuild the original individual, but with the
added chance of generating a superior individ-
ual due to the introduced perturbations.

4  Method
During area coverage the robot is trying to
maximize the area covered in minimal time.
For our area coverage problem we wanted the
robot to fully search, starting from a specific
point, an area of specific width (180 cm). The
area width was purposely small to force more
turns during training. The area to be searched
had no bound on one side since the control
program was judged by the area covered in a
set amount of time, plus we wanted to find the
most efficient cycles of behavior required to
do it. The simulated search was for mines that
would be fully contained in the area.  In order
to detect a mine, the robot had to have the en-
tire width of its body (excluding the legs), at
its mid point, within the same 60x60 cm
square as the mine.  For test purposes, 60x60
blocks with mines were placed to completely
fill the area.  The robot's task was to find as
many mines as possible while ensuring that no
mines had been missed. The robot's movement
was not restrained in any way by the environ-
ment; there was no physical constraint requir-
ing it to stay within the mine area.

4.1 Simulated Robot Performance
Training was done to find the best search path
for a specific robot.  The robot's base gait cy-
cle was learned using a CGA that was opti-
mizing for speed.  15 left and 15 right gait cy-
cles were programmed using the affecters de-
scribed in section 2.3.  The effect of each of
these gait cycles was tested on the actual robot
and the results used in a simulation with a
CGA to generate area coverage search paths.

Each gait cycle was tested for rate of turn
by running the robot for 4 cycles while taking
three measurements.  F was the distance in
centimeters that it moved forward.  The F axis
was defined as the heading of the robot before
movement.  T was the distance traveled left or
right.  The T axis was defined as a perpen-
dicular to the F axis.  Left movement resulted
in a negative T, right in a positive T.  ∆H was
a measurement (in degrees) of the change in
heading from the start heading F axis to the
heading after execution of the gait cycles.
Left was negative, right was positive.  After



making these measurements, each was divided
by 4 to attain the average turn rates.  The
sharpest turns, affecters less than 3, resulted in
turns of greater than 90° after 4 gait cycles, so
3 cycles were used in these cases.  Turn rates,
defined using F, T, and ∆H; were stored for
each gait cycle.

4.2 Simulated Environment
The test area (Figure 1) was simulated by an
xy grid where point (0,0) was the lower left
corner.  The lower right corner of the area was
the point (180,0).  The lower boundary was at
y = 0, the left boundary was at x = 0, the right
boundary was at x = 180, and there was no
upper boundary.  Mines were considered to be
in 60×60 square blocks.  The first row had
centers at (30,30), (90,30), and (150,30).  The
second row started at (90,30), etc.  The robot’s
start position was placed at (45,30).  This lo-
cation assured acquisition of the first mine and
put it in a good starting place to acquire the
first row of mines.  Motion was determined by
applying each gait cycle from the chromosome
one at a time.  Using the current xy position
and heading of the robot, a new position was
calculated by applying the forward (F) and
left/right (T) movements stored for that gait
cycle as described in the previous section.
The new heading was an addition of the cur-
rent heading and the gait cycle heading change
(∆H).  The path was not restricted from going
outside of the area and the calculations re-
mained the same if it did.  This allowed, if
appropriate, for the robot to do its turns out of
the area so that it could attempt straight tracks
within the area.

5 Tests
An initial population of 64 individuals, made
up of chromosomes described in section 3.1,
were randomly generated.  Each individual,
representing a cycle of gait cycles that would
form a path, was tested to determine its fitness
after 100 of these gait cycles were executed.
100 gait cycles were enough to ensure that
some turning was required to cover optimal
mines.  It was not, however, enough to force

the formation of a cycle that could provide
continuing full coverage.  Due to this limita-
tion, the required number of gait cycles was
randomly (with a 1 out of 2 probability) in-
creased to 200.  This allowed for faster fitness
computations while using 100 gait cycles, yet
put selection pressure on the population to
evolve individuals capable of performing well
at 200 gait cycles.  The CGA was run for 5000
generations with the best solution (individual
chromosome) saved whenever there was an
increase in fitness (more mines covered in the
allotted time).  Five initially random popula-
tions were each trained using the CGA.  Tests
were done on the individuals saved during
training to record the progress of the best indi-
vidual in solving the area coverage problem.
The average of the best fitnesses for each re-
corded generation from the five populations
was then calculated.

Fig. 5:  Average Fitness of Five Populations
throughout Training

Figure 5 shows the progression of learning as
the CGA evolved solutions to the area cover-
age problem.   As each of the five initial
populations evolved, the learning system held
the best solution for use by the robot's con-
troller.  The average of the fitnesses (mine
blocks covered) of these five solutions (one
for each population) was computed at each
generation.  The points on the graph indicate
the new average fitness whenever this value
changed.  As can be observed, the initial
growth was relatively fast. The area of the
graph where the number of generations is less
than 500 has several points, which indicates
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several fitness increases, and has a steep slope
on the learning curve, which indicates quickly
increasing fitness.  In this area, the CGA was
evolving the basic back-and-forth boustrophe-
dic pattern.

The fitness growth plateaus, however, be-
cause the resultant solution for some of the
populations is close but still needs some small
change.  It could possibly have tighter turns
than required or be slightly out of alignment.
These problems can cause lost efficiency (less
ground covered in tight turns) and/or the
search can eventually drift out of the area.
Small adjustments at this point are required to
get that perfect amount of turn or alignment,
but these small adjustments can also result in
changes that cause major drops in fitness.  The
result is for the individuals in the population to
tend toward the local maximum.  The prob-
ability of a single mutation improving fitness
at this point is very low.  Mutated individuals,
being much less fit, die off almost immedi-
ately.  It is during this time that momentarily
elevated mutation (described in section 3.2)
helps breakup the individuals in the population
in such a way that the CGA can rebuild them.
With all the individuals mutated, they all drop
in fitness, putting them on even ground for
further evolution.  The learning is slow, until
just the right set of mutations is recombined to
get a good solution. Of the five starting popu-
lations, all but one made this final adjustment.

6  Conclusions

The CGA is an effective way of generating the
search path required for area coverage.  This
search path, due to the unbounded nature of
our problem, consisted of a single pattern that
could be continually repeated.  This single
pattern (part of the overall search pattern cy-
cle) was made up of several sub-cycles that
were generated by the ordering of leg activa-
tions by the CGA.  The final search pattern
was a cycle of sub-cycles generated in a hier-
archical fashion by a CGA.  This suggests that
other problems requiring cyclic behavior, even
if recursive, can be handled by hierarchically
applying CGAs.
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