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ABSTRACT 
Punctuated anytime learning (PAL) is a system that can be used for evolving cooperative teams of agents. 
PAL applied to evolving multiple populations is a kind of cooperative coevolutionary algorithm (CCEA). 
Here we compare PAL to a canonical genetic algorithm (GA) on a widley used GA benchmarking 
optimization function called the Rosenbrock function. The Rosenbrock function was chosen for 
experimentation because it is a highly non-linear function and difficult to optimize. Results are shown from a 
variety of experiments with different dimensionalities of the Rosenbrock function. These findings are 
discussed in the context of evolving binary controllers for mutli-agent cooperative teams of robots. 
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1. INTRODUCTION 
In recent years there has been much interest in studying teams of robots. One major reason for this focus is 
their wide range of potential applications. Multi-agent teams can be used for a variety of tasks including 
search and rescue missions and toxic waste cleanup. Teams of cooperative agents have great potential to 
accomplish goals that single agents cannot complete alone. 

A design issue facing any practitioner when organizing teams of agents is the question of whether or not 
specialization of roles is beneficial for solving a particular problem. If every member of a team uses identical 
controllers the team is said to be homogeneous. There are many problem domains in which a single set of 
behaviors is sufficient for a team of agents to accomplish the goal. When members of a team have unique 
control systems, the team is said to be heterogeneous. We choose to focus on methods that produce 
heterogeneous teams because a team exhibiting specialized behaviors can often find more appropriate 
solutions to complex tasks. 

One system devised for producing heterogeneous teams of agents is the cooperative coevolutionary 
algorithm (CCEA) [1]. The standard genetic algorithm initializes a pool of candidate solutions in the form of 
random bit-strings and probabilistically applies mutation and recombination operators to drive the parallel 
search. However, a CCEA operates by decomposing the solution into two or more coevolving populations. 
 We have developed a particular implementation of CCEA that uses punctuated anytime learning (PAL). 
Our research has established PAL’s ability to evolve heterogeneous teams of agents for non-trivial tasks while 
reducing computation time [2]. In this paper, we compare our PAL system to a standard GA on a commonly 
used benchmarking test function to show the advantage of using PAL for evolving complex multi-agent 
coordination strategies. We will start by discussing some previous work germane to our research followed by 
a detailed description of the PAL method. We will then outline our experiments and discuss the results. We 
will then finish with our conclusions and plans for future research. 
 

2 PREVIOUS WORK 
Many different methods have been used to learn the control and coordination of cooperative teams of agents. 
Our research focuses on evolutionary approaches to learning cooperative behaviors. We specifically explore 
cooperative coevolutionary approaches to evolving teams of agents. We have developed a particular 
coevolution system that is a based on a traditional evolutionary algorithm (EA). Our primary interest in this 
work is to compare our coevolutionary method against a standard genetic algorithm. To serve as a base of 
comparison we use a common benchmarking function for evolutionary algorithms. 

One example of learning to control a heterogeneous team is the work done by Luke and Spector [3]. In this 
research, they use an EA to evolve team members using a single population. In this model, a single member of 



the population contains the perspective team members. In order to test their methodology, they used a 
simulated predator/prey scenario that was designed to be an abstraction of the African Serengeti. In this 
research a team of four agents represented as “lions” cooperate to capture a fifth agent representing a 
“gazelle”. This method of evolving all of the team members in a single population is the method to which we 
will compare our method. 

The cooperative coevolutionary algorithm, (CCEA) was originally proposed by Potter and De Jong [1]. 
This coevolutionary technique is very similar to ours. The main feature of the CCEA is that each member of 
the team is evolved in a separate population. The CCEA method uses the best individual found during the 
previous generation of training from each population to evaluate any perspective team member. Potter and De 
Jong also experimented with increasing the number of collaborators used to evaluate an individual. In their 
investigation, they tested both the best individual and another random collaborator from its own population. 
Potter, Meeden, and Schultz applied this system to a robot shepherding task [4]. The problem involved 
multiple shepherding agents controlled by neural networks to coordinate to herd sheep into a corral. Wiegand, 
Liles, and De Jong, examined pertinent issues to coevolution when increasing the number of collaborators at 
trial time [5]. One of their conclusions was that the most important factor in the success of coevolution is the 
number of partners used to test the candidate solution. This fact may seem rather intuitive but it highlights a 
central issue in coevolution. While the number of collaborators tested increases linearly, the number of 
evaluations expended increases exponentially. 

Our method of coevolution has similarities to the CCEA described above. In subsequent sections of the 
paper we describe in greater detail the mechanics of the algorithm. We have applied our method of 
coevolution to a box-pushing task and a predator/prey scenario with good results. From the research presented 
in this paper, we hope to better understand how our method extends to a large number of populations and how 
our method compares to a standard genetic algorithm.  
 

3 Evolutionary Algorithms for Learning Cooperation 
An evolutionary algorithm is essentially a massive parallel search strategy that is loosely based on Darwin’s 
theory of natural selection. In an EA a population of candidate solutions, traditionally represented as binary 
strings, is randomly generated. A particular metric called a fitness function is then used to evaluate all of the 
individuals (bit-strings) in the population. Using this measure of fitness, members of the population are 
stochastically selected to apply genetic operators. Though there exists an abundance of genetic operators, the 
two most commonly used are recombination and mutation. In recombination, two or more individuals are 
selected from the population and sections of each individual’s bit-string are combined to form a new 
individual. A mutation operator is often used after recombination has produced a new individual to 
probabilistically flip a particular bit in the new individual’s bit string. This process of applying genetic 
operators is repeated until a new population of individuals has been created. The process of evaluating a 
population and creating a new population is referred to as a generation of learning. The EA continues this 
process for a set number of generations or until a pre-determined level of fitness is obtained. 

Our punctuated anytime learning (PAL) method of coevolution was originally created to solve very 
difficult cooperative coevolution problems. The algorithm is based on the anytime learning system developed 
by Grefenstette and Ramsey and was later renamed continuous embedded learning [6]. The continuous 
embedded learning architecture is comprised of an onboard learning system, an internal model of the 
environment, and a monitor. The monitor’s purpose is to detect discrepancies between the internal model and 
the external environment. When the monitor detects that a factor in the environment has changed, it updates 
the robot’s internal model.  

Parker developed punctuated anytime learning to strengthen offline genetic algorithms. The basic idea is 
that although an offline genetic algorithm cannot get continuous updates triggered by a monitor component, it 
can update its simulation model at consistently spaced generations of training called punctuated generations. 
PAL updates take the form of running tests on the real robot at these punctuated generations which result in 
periods of accelerated fitness growth. The algorithm then uses this information for fitness biasing or the co-
evolution of model parameters [7]. 

This is very similar to the way our learning system behaves except that the updated information that our 
learning algorithm receives is a more accurate model of the populations that are coevolving. At the punctuated 
generations an alpha individual is selected as the best representative of the nature of its population. Our 
algorithm for alpha selection can be described as follows: 

 



1. For each population select a random sample of S individuals. 
 
2. For each individual in each population, test the individual using the S partner combinations collected 

from all of the other populations.  
 
3. Average the vector of fitness scores resulting from testing the S partner combinations. 
 
4. For each population select the individual with the highest fitness relative to its own population members. 

 
During non-punctuated generations, the alphas selected from the last punctuated generation are used as 
collaborators for evaluating individuals. When we first developed our method, we wanted the most accurate 
alpha individuals as possible so we set the sample size of collaborators used for alpha selection to the size of 
each population [2]. This meant that at each punctuated generation we were testing every single possible 
partner combination. This method was applied to a simple box-pushing task with only two agents. While this 
method worked well for small numbers of populations like two, it was too computationally expensive for 
tasks requiring three or more partners. For example, if there was a task requiring 4 populations with 100 
individuals in each population, a single round of alpha selection would incur 1004 or 100,000,000 evaluations. 
This level of computation is unacceptable. We reasoned we could still get an accurate estimate of a population 
by sampling less than an exhaustive search of partner combinations (Parker and Blumenthal 2002b). To get a 
clearer picture of how the PAL with sampling method compares to the original PAL method, it is helpful to 
see Equation 1. For a task requiring P populations, of I individuals each, and a sample size of S, the number of 
evaluation for alpha selection becomes: 
 
       P*(I*SP-1)      (1) 
 
If there are 4 populations with 100 individuals each and a sample size of 2 a single round of alpha selection 
would expend 3,200 comparisons. Looking back at our original PAL method we have reduced the number of 
computations for alpha selection from 100,000,000 to only 3,200. In this example PAL with sampling has 
reduced the number of computations by a factor of 31,250 times. After discovering the effectiveness of our 
new method for saving computation time, we tested several sample sizes on our box-pushing problem to 
establish their properties [8]. In order to prove PAL’s capacity to learn challenging coordination problems we 
applied our new sampling method to two different predator/prey problem domains with success  [9]. 
 

4 THE ROSENBROCK FUNCTION 
The purpose of this paper is to compare our coevolution method PAL to a standard GA on a benchmarking 
function. The function we chose for comparison is the Rosenbrock function. The Rosenbrock function has 
been frequently used to test the performance of a GA as part of the De Jong test suite [10]. We believe 
Rosenbrock to be an excellent benchmarking function because it has been extensively studied across GA 
literature and has even been used to test the strength of CCEAs [1]. The Rosenbrock function is presented as 
Equation 2. The Rosenbrock function is traditionally defined in terms of a two variable function optimization 
problem. However to grant flexibility in our experiments we wanted to test the function with a wider range of 
dimensionalities. To accomplish this we created our own N dimensional extension. Our N dimensional 
extension of the Rosenbrock function is shown as Equation 3.  
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The Rosenbrock function has a global minimum of 0. This minimum is reached when all input variables are 
1.0. The traditional initialization range for a Rosenbrock function variable is between -2.048 and 2.048. We 
selected the Rosenbrock function because it is a difficult function to optimize. The characteristic of the 
Rosenbrock function that presents difficulty is the high level of variable interaction or epistasis present in the 



function. The level of epistasis between variables becomes clear when Equation 2 is expanded out in Equation 
4.  
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Examining the terms in Equation 4, it is clear that the function is not linearly separable meaning that the 
algorithm cannot independently optimize terms in the equation, instead it must capture the variable 
interactions to minimize the function. To get a feel for the difficulty of the Rosenbrock function it is helpful 
to look at examples of its local minimums in Table 1.  
 

Inputs (0,0) (0,1) (1,1) (-1,1) 

Output 1 101 0 4 
Table 1: A set of sample input and resulting output values for the Rosenbrock function. Notice how the 
functions local minimum draw the search away from the global minimum. 
 
The Rosebrock function has several deep local minimums which become substantially deeper when 
considered in more than two dimensions. It is very easy for algorithms to get stuck in the deep local minimum 
of (0,0). The Rosenbrock function tends to lead searches away from the global minimum because the input 
(0,0) gives a good fitness of 1 but the input of (0,1) gives a large fitness of 101. The same is true for the local 
minimum of (-1,1) which gives a good  fitness value of  4. 
 

5 IMPLEMENATATION OF THE GA AND PAL 
The implementations of both the GA and the PAL were meant to share as many similarities as possible in 
order to make a fair comparison. Both algorithms used binary representations with a genotype to phenotype 
mapping over 16 bits. It should be noted that we are aware that an evolutionary strategy with real valued 
representation is a more effective search, indeed GAs are not function optimizers [11]. Our primary concern is 
to have a fair comparison between the two algorithms instead of focusing on the best representation to solve 
the problem. Our primary goal is to test the relative strengths of the two algorithms for evolving binary robot 
controllers. 

The major difference in the implementation of the GA and PAL is the encoding of their respective 
chromosomes. In the implementation of the GA all perspective solutions are represented in a single 
population. Each chromosome in the GA’s population contains all N variable inputs to the Rosenbrock 
function. The implementation of PAL is quite different. In this case, each function input variable has its own 
population. Figure 1 illustrates this fundamental difference using an example of a two variable function input 
with a population size of five. 

Aside from the difference in representation, both algorithms share the same parameters. Both 
implementations have a population size of 100 individuals, use single point crossover, bit-flip mutation, 
roulette wheel parent selection, with an elitist strategy where the best individual from each population is  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Shown above are the different implementations of the GA and PAL shown with a population size of 
five. 
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automatically placed with the offspring. The probability of mutation is one out of sixteen corresponding to 1/L 
where L is the number of bits in the genotype. Additionally, the PAL method uses a sample size of two and 
selects new alphas every other generation. 
 

6 RESULTS 
In our experimentation we wanted to try a range of dimensionalities to determine the strength of the PAL 
method  compared to the standard GA.  We decided to test the two algorithms on a two, five, and ten variable 
Rosenbrock function. Figure 2 shows a best-so-far plot of the performance of these two algorithms. In Figure 
2, the y-axis represents the fitness of the best-so-far and the x-axis shows the number of evaluations incurred. 
Each data series is averaged over 10 independent tests of each algorithm. The dashed line is the plot for the 
standard GA and the solid line is the plot for the PAL algorithm. 

One of the most noticeable differences between the two algorithms is their starting points at evaluation 
zero. The PAL algorithm invariably starts at a much worse fitness. This is explained by the fact that PAL 
begins by testing the random samples for alpha selection. In this process at evaluation zero, there is an 
overwhelming probability that a poorly fit collaborator will be chosen causing a very poor fitness average. 
From examining Figure 2, it is clear that for a two variable minimization the standard GA outperforms PAL, 
though by evaluation 5,000 PAL reaches the same level of fitness. This is a fairly easy problem to solve and 
the GA must only sequence 32 bits. 

What happens when the GA has to sequence a larger number of bits in order to minimize the function? 
Figure 3 shows the two algorithms on a five dimensional extension of the Rosenbrock function. It is easy to 
see that the PAL algorithm quickly passes the GA’s fitness level. It follows that the GA would have greater 
difficulty in sequencing five variables than two variables.
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 Figure 2: Two best-so-far plots showing the comparison between the standard GA (dashed line) 
and the PAL method (solid line) for minimizing the two variable Rosenbrock function. Each line is 
the average of 10 independent test runs. 
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Figure 3: A best-so-far plot comparison of a five variable Rosenbrock minimization problem. The dashed line 
represents the GA’s performance and the solid line shows PAL’s  performance. 
 
In the case of the two variable Rosenbrock function the GA needed to sequence only 32 bits, but it must now 
sequence a string containing 5 variables of 16 bits each giving a total of 80 bits. The graph shown in Figure 4 
reinforces the point that as the number of input variables increases it increasingly stifles the GA’s 
performance. In this case the GA has to sequence 160 bits. Figure 4 plot lines are each averaged over 10 
independent test runs of the algorithm. Although the point x = 0 can not be shown in Figure 4, the GA starts 
with an average fitness value of 786.55 and PAL starts with a much worse fitness of 1979.73. 

Examining Figures 2, 3, and 4 give a clear picture of a trend developing in the data.  The trend shows that 
as the number of dimensions of the Rosenbrock function increases so PAL’s relative advantage over the GA. 
One quality that should be noted is that when the PAL method is run out for a large number of evaluations it 
usually forges ahead until the global minimum is reached. Up to this point in the discussion we have merely 
presented the graphs and spoke in vague terms about which algorithm performs “better”. The term “better” is 
very subjective and it would be helpful to discuss the graphs based on a specific criteria. We will define two 
different criteria by which to measure the algorithms performance. One way to measure two algorithms’ 
performances is to evaluate their relative performances given a fixed budget of evaluations. Using this criteria, 
the question becomes “Given a fixed budged of evaluations to spend, which algorithm will give a more 
accurate solution?” A second standard for comparing multiple algorithms’ performances is a race to a 
particular solution quality. Using this measure of performance the question becomes “Which algorithm can 
reach a solution quality in fewer evaluations?” Although the distinction between these two questions may 
seem subtle, they are two entirely different questions. 

In order to effectively use these two measures of performance it is necessary to predetermine either a 
budget of evaluations or a particular solution quality. The key to equitably applying these metrics is to 
predetermine these values before running experiments, because assigning these values “post facto” puts the 
researcher in an ethical bind. Since we have no evaluation budget or time to a solution quality concerns we 
choose to discuss the application of these metrics in the most general terms. 

Examining Figure 2 it should be obvious that the GA performs better from both the evaluation budget and 
time to solution quality perspectives. The answers to these questions become much less clear when 



considering the five and ten dimensional extensions of the Rosenbrock function. If the practitioner has a small 
budget of evaluations, the GA will always be a better choice. As we have discussed in earlier sections the 
challenge of working with PAL or any other CCEA is balancing the tradeoff between accuracy and 
computation time. Using the ten variable function input as an example, after only the first generation of 
training the PAL algorithm has incurred 512,000 evaluations compared to the GA which has only made 100 
comparisons. Therefore, when trying to get a good solution with a smaller evaluation budget, the GA will 
most likely be the best option. When considering the time to solution quality question the answer is a little less 
predictable. The choice of algorithms for fastest to reach a solution quality is entirely dependent upon the 
desired accuracy of the solution. Taking the ten variable Rosenbrock comparison as an example, if a 
practitioner wants a solution below a fitness of 40 then they would choose PAL to optimize the function. On 
the other hand if a practitioner only needs a solution of quality better than 70, they would elect to use the 
canonical GA. 
 

7 CONCLUSIONS 
This paper shows a comparison between a typical GA and our PAL method on a commonly used 
benchmarking function. We chose to use the Rosenbrock function as our basis of comparison because it is 
historically used to compare the performance of GAs and has been used to benchmark CCEAs such as PAL. 
The heart of our comparison is to determine how the algorithms would perform in the context of evolving 
binary robot controllers for team coordination. We set the parameters for each algorithm to be almost 
identical so that our comparison would be as fair as possible to both algorithms. We tested both algorithms on 
the Rosenbrock function in two, five, and ten dimensions. We found that in the case of the two variable 
Rosenbrock function, the GA performs better than the PAL method. Alternatively, the PAL algorithm 
eventually reaches a better level of fitness than the GA on the five and ten variable inputs. We define two 
measures of performance based on fitness and evaluations expended. The first question concerns finding the 
most accurate solution given a fixed budget of evaluations. The second question addresses getting a solution 
of predetermined quality in the least number of evaluations. The answers to these two questions depend 
greatly on the particular needs of the practitioner.  
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Figure 4: This is a best-so-far plot comparing the GA with PAL on a ten dimensional Rosenbrock 
minimization problem. The plot shown as a dashed line represents the performance of the GA and the solid 
line represents the performance of the PAL algorithm. The plots show the best fitness attained after a 
particular number of evaluations. 
 



Our study was not only meant to address optimization of the Rosenbrock function. We are using the 
Rosenbrock function as an example of a highly non-linear coordination problem. The Rosenbrock function is 
a good example of a difficult problem displaying this property of high levels of epistasis present between 
parts of the solution. In the end we were testing the GA’s ability to sequence a long bit-string represented in a 
single chromosome compared to PAL’s ability to sequence the same number of bits while evolving the 
variables in separate populations. In this paper we show some situations where it is advantageous to use the 
PAL method over a standard GA to evolve team coordination. 

In the future work we hope to expand our knowledge of PAL’s capabilities by applying it to other classes 
of problems. Since we have shown that there are times when it is more efficient to use a standard GA, we 
would like to further our understanding of appropriate applications for our system of coevolution. We also 
hope to compare our PAL method with other existing CCEA methods to understand how our method’s 
performance differs.  
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