
EVOLVING NEURAL NETWORK CONTROLLERS TO
PRODUCE LEG CYCLES FOR GAIT GENERATION

GARY B. PARKER and ZHIYI LI
Computer Science, Connecticut College, New London, CT 06320
 parker@conncoll.edu and zli@conncoll.edu

ABSTRACT

The generation of gaits for hexapod locomotion controllers can be divided
into two main parts: the cyclic action of a single leg (leg cycles) and the
coordination of all legs to combine individual leg cycles to produce for-
ward movement. In this paper, we use a genetic algorithm (GA) to evolve
the structure of an artificial neural network (NN) that produces leg cycles
in a hexapod robot. The movement of the robot’s leg is controlled by a
horizontal servo and vertical servo. The servos are controlled by a NN that
generates a cycle of pulses. With minimal restrictions on the structure of
the NN a GA is used to find the parameters of neurons and the connections
between them. The pulse sequences generated by the evolved NNs re-
sulted in leg cycles that produced efficient forward movement.

KEYWORDS: genetic, learning, neural network, robot, hexapod, control

INTRODUCTION

Because movement and exploration of the environment is fundamental to many other be-
haviors of an autonomous robot, the design of locomotion is important. In the animal
world, the six-legged insect is a successful model that shows great robustness, fitness,
and flexibility to variations in the environment and its load. It is difficult to simulate the
biological leg movement coordinating system because the biological neural system
structure is much more sophisticated than what we can reasonably model using mechani-
cal and electronic devices. Nevertheless, researchers have developed artificial hexapod
walking controllers with various levels of complexity and capability. The generation of
gaits for these controllers can be divided into two main parts: the cyclic action of a single
leg, which we will call a leg cycle in this paper, and the coordination of all legs to com-
bine individual leg cycles to effective forward movement. Generating smooth leg cycles
is critical and fundamental for generating successful gaits for a robot.

Previous research works on the control of hexapod leg movement are illuminating.
Beer and Gallagher used Genetic Algorithms (GA) to develop neural network (NN) con-
trollers for a hexapod [1]. The controller had foot, backward swing, and forward swing
motor neurons; two internal unspecified neurons and a single angle sensing neuron. The
angle sensing neuron was connected to all 5 of the other neurons and those 5 were fully
connected to each other. The 5 control neurons also had a threshold and time constant pa-
rameter. After an individual leg cycle was learned for a generic leg, six copies of the leg

controller were made. Each of the leg controllers were connected to their neighbor leg
controllers. A GA was used to learn the connection weights between the leg NNs.
Lewis, Fagg, and Solidum used this staged evolution also [2]. In their model, the position
of each of the two leg joints was driven by the state of a neuron. The two neurons con-
trolling the leg were the leg swing neuron and the leg elevation neuron. The two neurons
formed an oscillator, and the oscillators were mapped to a pulse width modulated signal
that controlled the position of the motors. A GA was used to find the parameters of this
two-neuron network. Initially, the NN started at random values but within several cycles
the two neurons fell into an oscillatory pattern, with a phase difference of 90 degrees.
Then a network of these oscillators was evolved by using a GA to coordinate the move-
ments of the different legs. In Parker’s hexapod gait generation, instead of the NN con-
troller approach, a Cyclic Genetic Algorithm (CGA) [3] was used to learn the pulse se-
quences that were needed to control servos on each leg [4]. These pulse sequences, that
took into consideration the peculiarities of the leg’s capabilities, were sent to the servos to
generate leg cycles. After each leg was trained, a GA was applied to produce gaits.

In this paper, the structure of a NN is learned that will control the two servos of a leg
to produce a leg cycle. Compared with the works discussed above, this research has its
own uniqueness described as follows. In the Beer and Gallagher model, the neural con-
troller was designed at a macro level in which the output of neurons represented complete
actions such as forward swing, backward swing and foot-down. The GA was used to find
the appropriate associated weights and thresholds. Our approach is similar to this except
that we have six neurons with two producing control pulses and two sensor inputs mark-
ing horizontal and vertical leg extremes. But the main difference is that the outputs of the
neurons are pulse widths that control the angular positions of each leg servo.

In Lewis, Fagg, and Solidum’s work, they specifically defined the controller of each
leg as a simple two-neuron oscillator that generated outputs that were mapped into pulse
widths and then sent to servos. The GA was used to learn the weights and thresholds. In
the work presented in this paper, the total neural structure will evolve, including the con-
nections, associated weights, and neuron thresholds. We expect that the GA will generate
a proper NN that will produce an optimal leg cycle. In addition, this work differs from
these works in that the leg cycle learned is for a specific leg taking into account its par-
ticular capabilities.

In Parker’s CGA work, the leg cycle pulse sequence for the servos of a specific leg is
learned as a cycle of instructions. In this paper, it will be generated as the output of the
leg controller NN found by a GA. The resultant NN controller will be implemented
within a BASIC Stamp II (sold by Parallex, Inc.). And the output of the NN will be sent
to the servos to control the movement of a leg.

SERVOBOT

The robot used is ServBot [4], which is a simple six-legged robot with two degrees of
freedom per leg. Each leg has two servos that provide vertical and horizontal movements.
The servo takes as input a pulse sent from the leg controller (a Basic STAMP II) that will
direct it to be set to a specific angular position. The pulse should be repeated every 25ms
for the servo to maintain a constant position. The duration of the pulse determines the po-
sition. Pulse widths from 0 to 3000 µs cover the full range of angular positions for each
servo. These pulses can be converted into leg positions for both the vertical and hori-
zontal servos. Figure 1 shows the relationship between pulse widths and the position

they determine for a particular leg. These are measured capabilities of a robot’s specific
leg. The Neuron Output column will be explained in the next section. The Pulse Width
column shows several possible pulse widths that can control the servo. The X and Y po-
sitions show the resultant leg position due to the movement of the horizontal and vertical
servos associated with each pulse width. We define the full forward position as the 0 for
X, the full downward position as 0 for Y. A pulse with a width of 600µs sent to the hori-
zontal servo will drive it to an angle that will result in the leg moving back 16mm meas-
ured at the foot. The same pulse sent to the vertical servo will result in the leg lifting the
foot to 8mm off the ground.

Neuron Output Pulse Width (µs) X-Position (mm) Y-Position (mm)
 0 0 0 0
 1 200 1 0
 2 400 7 3
 3 600 16 8
 4 800 28 14
 5 1000 41 21
 6 1200 52 28
 7 1400 63 34
 8 1600 71 39
 9 1800 75 43
10 2000 77 45
11 2200 76 48
12 2400 73 49
13 2600 73 49
14 2800 73 49
15 3000 73 49

Figure 1: The neuron output with its corresponding pulse width and the associated X (horizontal
servo) and Y (vertical servo) positions.

If the difference between two consecutive pulses is too much, the servo cannot move the
leg fast enough to reach the desired position indicated in Figure 1. As a result, it will
move the leg at the fastest speed it is capable of (through experimentation, it was found
that this fastest speed will result in a maximum leg movement of 5mm in one pulse).
For example, if the original pulses are (0, 0), corresponding to (horizontal servo, vertical
servo), putting the leg at x, y position (0, 0) and the next pulses sent are (600, 0), the as-
sociated position should be (16, 0). However, because this exceeds the servo’s capability,
the leg will only move to (5, 0).

THE NEURAL NETWORK CONTROLLER

In order to make the two servos for a leg work together and generate appropriate pulse
sequences, a NN model was used. The structure of this NN, including the thresholds of
neurons and associated connection weights, was learned by a GA. The resultant NN will
be implemented within a BASIC Stamp II. The neurons with their thresholds and con-
nections are represented by variables and a program will simulate the stimulation and
firing of the neurons. The output of the neural controller will be sent to the servos every
25ms. In future work, there will be 7 such neural controllers, one for each leg and one as
a coordinator, and they will be connected by their input and output pins. Through further
evolution, the leg controllers will coordinate with each other and generate gaits.

Since the NN will eventually be implemented within a BASIC Stamp II, the limita-

tions of the chip, such as memory and integer range, forces us to make restrictions on the
components of the neural model. A description of the NN follows:

1. The coordinator controller will send a signal to all of the leg controllers every 25ms
(we refer to this as an iteration). Upon receipt of this signal, internal computations using
actual external connections and internal connections will be computed and the new inter-
nal values will be set as external signals are sent. Two of these external signals from each
controller will go to the leg’s servos to control their angular position and subsequently set
the linear positions of the leg.

2. Each leg controller will have 6 neurons that are fully connected to each other and
connected to the possible external connections. External connections are actual through
wiring between pins and internal connections are simulated through variables holding the
output.

3. Each neuron has two thresholds: threshold-low and threshold-high. During each it-
eration the NN changes its state, each neuron will accumulate the effects of those that are
connected with it and of the sensors. This is called the accumulation value. The output of
a neuron in each iteration is determined by its accumulation value and its two thresholds.
The maximum output for a neuron is 15 and the minimum value is 0. If the accumulation
of a neuron is smaller than threshold-low, it will fire a 0. If the accumulation of a neuron
is bigger than threshold-high, it will fire a 15. If the accumulation of a neuron is between
the two, a linear function will transform it to a value between 0 and 15 that will be fired
(Figure 2).

O = 15*(A-T1)/(T2-T1)
O: output of a neuron
A: accumulation of a neuron
T1: the lower threshold
T2: the higher threshold

Figure 2: The linear function determining the output of a neuron.

In case threshold-high is smaller than threshold-low, the neuron will fire 15 when the ac-
cumulation is larger than threshold-low and fire 0 when the accumulation is smaller than
threshold-low. The selection of the 0-15 range is to allow efficient storage in the BASIC
Stamp II. With this range, we can use a nibble (4bits) to represent the output from a neu-
ron.

4. Due to memory limitations within a BASIC Stamp II, the number of neurons is
limited to six (Neuron-0 to Neuron-5). Six should be sufficient for the GA to evolve
freely. It is not know what role each neuron will play in the controlling process and there
is no concern with whether a neuron is useful or not, just that enough neurons are made
available to solve the problem. Each neuron’s connections with other neurons and asso-
ciated weights are left for the GA to find. It is possible that some neurons will not be
used in the final result. The connection weights are within the range [-15, 15]. If it is 0,
there is no connection in between; if it is positive, the effect from the source to target
neuron is positive; if it is negative, the effect from the source to target neuron is negative.

5. There are two sensors. Sensor-1 monitors horizontal extreme positions and sensor-2
monitors vertical extreme positions. When the leg hits its full backward position, sensor-1
will fire 15 and keeps firing it until the leg hits its full forward position, where the sensor
starts to fire 0. When the leg hits its highest position, sensor-2 will fire 15 until the leg
hits its lowest position where the sensor starts to fire 0. The sensors are connected to all

of the neurons. The weights, which are also within the range [-15, 15], are left to the GA
to find.

6. The NN will start at an initial state (defined by the GA) and then it will run for 500
iterations, i.e. it will change its state 500 times. Each iteration is started by a signal from
the coordinator controller (the 7th BASIC Stamp II). The signal will be sent every 25ms.
After the NN gets this signal, it will evaluate itself according to its present state and cal-
culate what the next neuron values should be.

7. For each iteration, outputs from Neuron-0 and Neuron-1, which is within the range
[0, 15], will be mapped to associated pulse widths [0, 3000] by multiplying it by 200µs
and send to the two servos to control the movement of the leg.

GENETIC ALGORITHM

A GA was used to find the structure, including the thresholds of neurons and associated
connection weight, of the NN controller.

Chromosome

The individual chromosome used was a series of numbers that describe the NN controller.
It is described in Figure 3. Each individual in the population was evaluated as the neural
structure it represents.

 ((n0 t01 t02 w00 w01 w02 w03 w04 w05 ws10 ws20)
(n1 t11 t12 w10 w11 w12 w13 w14 w15 ws11 ws21)
(n2 t21 t22 w20 w21 w22 w23 w24 w25 ws12 ws22)
(n3 t31 t32 w30 w31 w32 w33 w34 w35 ws13 ws23)
(n4 t41 t42 w40 w41 w42 w43 w44 w45 ws14 ws24)
(n5 t51 t52 w50 w51 w52 w53 w54 w55 ws15 ws25))

ni: the original value of the ith neuron. [0, 15]
ti1: the lower threshold of the ith neuron [-400, 400]
ti2: the higher threshold of the ith neuron [-400, 400]
wij: the connection weight from the ith neuron to the jth neuron [-15, 15]
ws1i: the connection weight from sensor-1 to the ith neuron [-15, 15]
ws2i: the connection weight from sensor-2 to the ith neuron [-15, 15]

Figure3: A chromosome representing a neural network.

Training

The software package GENESIS5.0 [5] was used for training. Five individual tests were
conducted using different starting populations. A population of 80 chromosomes was
randomly generated. Each chromosome represented a NN structure. The NN ran 500 it-
erations and thus generated a sequence of 500 pulses for each of the two servos. The two
sequences were evaluated with a fitness assigned. Fitnesses consisted of three factors:
forward movement, number of times raising the leg, and drag generated. Forward move-
ment was calculated by the movement generated when the leg was on the ground. The
number of times the leg was raised and lowered was penalized because it wasted energy
and reduced the effect of the forward movement generated. The drag generated was a
penalty due to a leg staying on the ground with its full backward position, which would
just cause drag.

RESULTS

Figure 4 shows the results of single leg training done on one of the robot’s legs. All 5
trials are shown. As can be seen, in all cases the fitness increases quickly at the begin-
ning. After 60 generations cycles develop, but they were typically shorter strides than
what would be considered optimal. Since these short cycles were effective in producing
forward movement and since minor changes at this point result in lower fitnesses, the GA
would get stuck in these local maxima. However, in two of the cases the GA continued to
improve and produced better cycles with longer strides.

�

�����

� ���

� ���

�����

� �����

� �����

��� ���

� � � �	� � �
� ��� � ����� � � � �����
��
�

���������������������

� !
"#
$$

Figure 4. Single leg training of the five distinct populations. The fitness of the best individual at
every 20 generations of training is shown.

Figure 5 shows a graphic representation of the best NN structure learned. It produced a
sequence of pulses to the servos that resulted in a near optimal leg cycle. At the begin-
ning, with the leg being full forward and full down, this controller moves the leg back
while keeping it on the ground. This continues for 15 pulses until the leg arrives at the
full backward position. At that point, the controller goes into a cycle of 22 pulses, which
produces a continual leg cycle.

CONCLUSION

Using a GA to evolve a NN controller that generates appropriate pulses is an effective
approach to produce leg cycles for the ServoBot. By allowing the GA to learn the struc-
ture, the resultant NN controller will be better suited for the task, plus leave the system
with enough flexibility to adapt to changing situations. In future work, after each leg is

evolved to its proper leg cycle, the NN controllers will be implemented within BASIC
Stamp II controllers and connected to each other by wires between the I/O pins of the mi-
croprocessor. We expect to use a GA to find the proper connection weights by which the
legs will be coordinated and a gait cycle generated.

The lines are positive weights. The dotted lines are negative weights.
The widths of arrows represent their magnitude.
The output from N0 goes to the horizontal servo.
The output from N1 goes to the vertical servo.
The short arrows without sources are connections from sensor 1 (horizontal sensor).
The long arrows without sources are connections from sensor 2 (vertical sensor).

Figure 5. A graphic representation of a best individual neural network.

REFERENCES

1. Beer, R. D., and Gallagher, J. C. "Evolving Dynamic Neural Networks for Adaptive Behavior." Adap-
tive Behavior, 1 (1992) 91-122.

2. Lewis, M. A., Fagg, A. H., and Solidum A. "Genetic Programming Approach to the Construction of a
Neural Network for Control of a Walking Robot" 1992 IEEE International Conference on Robotics
and Automation, (1992) 2618-23.

3. Parker, G. and Rawlins, G. “Cyclic Genetic Algorithms for the Locomotion of Hexapod Robots.”
Proceedings of the World Automation Congress (WAC’96), Volume 3, Robotic and Manufacturing Sys-
tems. (1996), 617-622.

4. Parker, G. "Evolving Leg Cycles to Produce Hexapod Gaits." Proceedings of the World Automation
Congress (WAC’00), Volume 10, Robotic and Manufacturing Systems (2000) 250-255.

5. Grefenstette, J. J. GENESIS5.0 Copyright © 1990.

 N0
-186
 125

 N1
167
388

 N2
104

 N3
173

 N4
 88
274

 N5
-79

