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ABSTRACT

Inherent in robot control and behavior is cyclicity.  Sequences of actions
taken by the robot tend to repeat.  This is no more apparent than in the
locomotion of hexapod robots.  The movement of the separate legs must
be coordinated in such a way that smooth forward motion will result.  The
individual legs each have their own cyclic nature and the combination of
leg movements forms a cycle of over all movement.   In primitive robots,
with simple controllers that require a string of activations for locomotion,
an appropriate cycle of these activations needs to be provided.  The
problem is further complicated by the robot’s uniqueness and
accompanying variance of leg capabilities.  In previous work we
introduced Cyclic Genetic Algorithms which have successfully been used
to generate gaits for actual hexapod robots.  In this paper, we extend on
that work by showing that the CGA can adapt to disabilities in the robot
and adjust the gait accordingly.
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INTRODUCTION

Autonomous legged robots can be very useful in performing tasks in hazardous
environments where the terrain precludes the effective use of wheels.  Control of these
robots can be difficult.   The use of learning algorithms capable of adjusting to the
intricacies of the robot’s capabilities can be of significant use in development and can add
the adaptability required to let the robot maintain autonomy.

Locomotion is an important part of legged robot control.   The capabilities of the
separate legs, such as rate and range of movement, must be accounted for when developing
a gait.  Changes in leg capabilities further complicate the situation as the controller tries to
maintain a viable gait for continuous locomotion.

The complication of this task suggests that some form of Evolutionary Computation
would be appropriate.  Randall Beer and John Gallagher used genetic algorithms to
develop a neural net to control a simulated cockroach [1] and showed that it was capable of
controlling an actual hexapod robot [2].  This technique was successful for the robots used,
which had relatively complex controllers.  Small inexpensive robots that require a
repeatable sequence of activations for control need to be able to generate gaits using



minimal a priori knowledge of tripod gaits.  Graham Spencer [3] used genetic
programming and minimal a priori knowledge to evolve programs that could produce
gaits.  Although the programs learned were capable of producing gaits with sustained
forward movement, they did not result in the optimal tripod gait.  In addition, his tests were
done only on simulations and not on an actual robot.

In previous work, we developed [4] Cyclic Genetic Algorithms (CGAs), which generate
gaits using minimal a priori knowledge.  It has been shown that the use of CGAs can be an
effective means of gait generation for hexapod robot simulations.  They can, with only low-
level primitives, produce reasonable gaits in minimal time.  Their output requires little in
intermediate controller complexity, as it is a sequence of these primitives, which can be fed
directly into the robot.  In addition, the applicability of these algorithms has been tested on
an actual robot [5].  A model for simulation was produced based on the measured
capabilities of the ServoBot robot.  This model was trained with the CGA and the evolved
gaits were transferred to the actual semi-autonomous robot.  They were found to be tripod
(considered optimal for speed) in nature and comparable to the best designed by human
engineers.

An important next step is to ensure that the CGA is adaptable to changes in the
capabilities of the robot and that it can develop gaits for even the most severely disabled
robots (legs missing).  In this paper, we test the CGA’s ability in this regard by doing two
types of test.  In one, we slowly disable one or two legs by restricting their horizontal
movement (leaving the vertical enabled).  In the other, we completely disable one or two
legs by making their horizontal movement zero.  Tests are done starting with the healthy
population where a tripod gait is being produced and with new random populations where
the CGA must evolve the gait from scratch.  The results confirm the adaptability of the
algorithm on simulations and on the actual hexapod robot.

ROBOT AND MODEL

The robot used was the ServoBot, which is a small, inexpensive hexapod robot that was
developed for individual robot and colony experimentation.  Control is transmitted through
a cable connected to a Sparc workstation. Once the sequence of activations is transmitted,
the cable can be disconnected allowing autonomous movement. The control sequence
consists of a list of activations, which the on-board controller will continually repeat.  Each
activation controls the instantaneous movement of the 12 servo actuators.   For example: an
activation of 001000000000 results in the lifting of the left front leg; 000001000000 results
in the pulling back of the second right leg.  001001000000 would activate both at the same
time.  Activations are held active by the controller for 100 msec.  A repeated sequence of
these activations can be evolved by a CGA so that the robot walks forward.

The model (Figure 1) was a data structure that holds the essential information needed to
determine the state of the legs and the subsequent movement calculated from the control
activation input. Fields for each leg were included to store the leg's capabilities and current
position.  To determine each leg's resting vertical position, the robot was placed on a level
surface.  Legs touching the ground were at position 0; all others were relative to where
their 0 position would be if they were on the ground.  All future references to each leg's
vertical position were relative to this initial 0 position. Each leg's horizontal position was
measured relative to its at rest full forward position.



Figure 1:  Model Data Structure

Measurements to fill the position fields were taken by activating each control
individually and recording the leg’s maximum throw.  An average rate per activation was
calculated for horizontal and vertical movement by dividing the maximum throw by the
minimum number  of activations required to attain it.

CYCLIC GENETIC ALGORITHMS

Cyclic Genetic Algorithms [4] solve the problem of evolving repetitive behavior that
requires continual cycles of sequential actions.  They are based on Genetic Algorithms,
which were introduced by John Holland [6], and use the standard selection, crossover and
mutation operators.  They differ in that the CGA chromosome has a cycle of genes that can
accommodate the cyclic nature of gaits.  In addition, the genes can represent tasks that
must be completed in a predetermined segment of time.  For our purposes the tasks to be
completed are a sequence of activations to the robot that will result in a reasonable gait.

The chromosome structure used for evolution was made up of four parts (Figure 2).  The
coordinators affected individual legs.  The back-down coordinator ensured the leg was
down if moving back.  The up-forward ensured that the leg was moving forward if it was
up.  A 12-bit number was used to represent the coordinators as there were two possible per
leg.  The inhibitors prevented designated pairs of legs from being moved back or forward
at the same time.  A single 15-bit number represented the inhibitors. Each bit position
corresponded to a specific pair of legs (15 possible).  If the bit was 1 it did not allow both
legs to move up at the same time even if the activation commanded it.  The lower
numbered leg could move while the higher numbered leg was inhibited.

The start-section was the part of the chromosome that held the activations that were
executed only once.  The purpose of this section was to allow the robot to transition from a
standing state to a state that was part of the gait cycle.  The iterative-section was repeated
as many times as desired.  This section was designed to form a sequence of instructions
that when repeated would result in sustained cyclic behavior.  The start-section was made
up of a single gene and the iterative-section was made up of 12 genes.

The genes had 2 parts (Figure 2). The activations part was a 12-bit number that
contained the encoding required to activate two possible primitives per leg.  One controlled
whether the servo moved the leg up or down, the other controlled whether the servo moved
the leg back or forward.  The moves part was an 8-bit number that designated the number
of times to repeat the activations part.   This moves part was what gave the CGA the ability
to vary the length of the sequence of primitives being sent to the robot in each cycle.

Model data structure fields for each leg:
current up -- current vertical position of leg
max up -- position off ground when full up
max down -- position off ground when full down
current back -- current horizontal position of leg
max back -- position relative to full forward when full back

Fields applicable to all legs:
rate up/down -- rate of vertical movement when actuator excited/relaxed
rate back/forward -- rate of horizontal movement when actuator excited/relaxed



Figure 2:  Cyclic Genetic Algorithm Chromosome and Gene Breakdown

The conversion from chromosome to a set of primitive commands went as follows:
1.  i_act = apply inhibitors to each activation.
2.  ci_act = apply coordinators to each i_act.
3.  Write the ci_act from the start-section moves number of times.
4.  Write a marker separating the start and iterative sections.
5.  Write each ci_act from the iterative-section moves number of times.

The result was a list of primitive activations separated by a marker that could be put in a
file.  The robot control program ran through the list of primitives before the marker on
startup sending each activation for 100 msec. The list of primitives following the marker
was repeated a specified number of iterations.  Again each activation was in effect for 100
msec.

Genetic Operators

Pairs of individuals were stochastically selected for reproduction.  Their probability for
selection was determined by the individual’s fitness.  It was computed one activation at a
time by summing the fitness of individual activations as each is applied to the current state
of the simulation.  Due to the ServoBot’s speed of movement, it was considered viable to
maintain balance using dynamic stability.  Meaning that the model was considered to be
marginally balanced even though there were insufficient legs on the ground to maintain
static stability.

Two types of crossover were used.  Chromosome crossover was performed at two points
between the genes in the iterative section resulting in section swaps between the two
cycles.  Gene-by-gene crossover allowed corresponding genes to swap encoded
information. Crosses could happen between the individual members of the list or within the
bits of the specific numbers in the list.  This was done in both the start and iterative
sections.



Mutation also had two operators, each of which had minimal probability of occurrence.
Gene-replace deleted the old gene (moves and activations) and replaced it with an entirely
new one.  Gene-mutate changed only one bit in the gene.

An additional genetic operator called the Gene-by-gene evaluator was also used.  This
operator would randomly pick one or two individuals from the population and increase or
decrease all their moves by one or evaluate the individual one gene at a time.  It removed
genes that were significantly worse than preceding genes and reduced the moves of genes
that had productive activations initially but dropped in effectiveness after some repetitions.
It also moved genes with a moves number of 0 to the end so that the active genes were
always at the start of the iterative section.  The result of this operator was to clean up the
chromosomes and speed up the elimination of poor activations.

RESULTS

Tests were done on pre-trained and random start populations of 64 individuals to determine
if they could adapt to reduced capabilities in one or two legs.  The one leg experiments,
shown in Figure 3, were done using a disabled leg 0 (right front).  The “No Leg 0”  pair of
columns shows the model fitnesses before and after 1000 generations of training.  The
“Fully Capable”  pair of columns shows the model fitnesses before and after 500
generations of training where an optimal tripod gait is produced.  Subsequent pairs of
columns show the result of reducing the leg capability to the specified percentage.  From
“Fully Capable”  to “0%”  the column pairs show the result of an incremental decrease in
the capability of leg 0.
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Figure 3: CGA Responses to Leg 0 Disabilities     
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The  “Before”   column  shows  the  model’s  fitness  immediately after the decrease and the
“After”  column shows it after 500 generations of additional training.  In each case, the
CGA compensates for the loss and improves the gait.   Figure 4 shows the two legs
experiments, which were done using disabled legs 2 and 3 (center legs).  The generations
used were the same as for Figure 3.

Tests on the actual robot confirmed the viability of the produced gaits.  Figure 5 shows
the distances (in centimeters) traveled by the robot in 30 sec.  The Leg0 25% was a surprise
as the model predicted that it would be better.  The model shortened the stride sufficiently
to equal the reduced capability of leg 0.  The model could operate efficiently with this
reduced stride, but the robot couldn’ t.   Alterations of the model will be required to take
this into account.  NoLeg23 developed a dynamic gait using alternative outside legs.  Legs
0 and 5 repositioned while legs 1 and 4 provided power; this was very successful on the
actual robot.

Figure 5: Centimeters Traveled by ServoBot in 30 seconds

These results indicate that the Cyclic Genetic Algorithm is an effective means of
producing and maintaining gaits for actual robots.  Further research will continue to pursue
the viability of CGAs in solving the cyclic control problems of robots.
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