
CYCLIC GENETIC ALGORITHMS
FOR THE LOCOMOTION OF HEXAPOD ROBOTS

GARY B. PARKER and GREGORY J. E. RAWLINS
Department of Computer Science, Indiana University, Bloomington, IN 47405
gaparker@cs.indiana.edu, rawlins@cs.indiana.edu

ABSTRACT

Robotics control problems, such as gait coordination, require sequential
solutions where a series of actions is continually repeated. Genetic
Algorithms that do parameter optimization have not been widely applied to
these cyclic sequential decision problems; although some form of
evolutionary computation would be well suited for the adaptability required.
In this paper we introduce Cyclic Genetic Algorithms, which were
developed precisely for this purpose. The specific problem addressed,
adaptive gait development for hexapod robots, was the impetus for this new
kind of evolutionary computation, but it can be applied to other robotics
domains.

KEYWORDS: genetic, evolutionary, robot, hexapod, gait, control, cyclic

INTRODUCTION

Six legged robots have been developed with varying degrees of capability, complexity, and
expense. Gait establishment has been an issue and in general has been addressed through
the employment of mostly static approaches. Donner [1] authored a special programming
language, Brooks [2] used subsumption architecture, Beer and Gallagher [3] used a neural
net, and Spencer [4] used Genetic Programming. Our goal was to develop a learning
system that used limited "a priori" information, was continually adaptive to robot
capabilities, and could be used to eventually train an actual robot. In addition, we wanted it
to be a quickly converging algorithm suitable for any-time learning [5]. Cyclic Genetic
Algorithms were developed with four variations that were tested and found capable of
producing reasonable gaits. One variation produced the optimal tripod gait and was robust
enough to adapt to significant changes in the capabilities of the robot model.

METHOD

The general approach was to develop a model capable of representing all states of the robot
and use a cyclic genetic algorithm to train this model to walk forward. The robot used in
the formation of our model was the Stiquito II; developed by Mills [6] as an alternative to
the larger, more complex and expensive norm in six legged robots. It was selected due to
its potential for expanded research and its elementary locomotion; which makes it a perfect

platform for learning to walk using low-level primitives. The model was a data structure
that could hold the essential information needed to determine the state of the legs and the
subsequent movement calculated from the signal input. Fields for each leg were included
to store the leg’s capabilities and current position.

CYCLIC GENETIC ALGORITHMS

Some alterations to the general theme for Holland’s genetic algorithms [7] were required to
develop locomotion control. The time factor necessitated some way to represent behavior
over time. The resultant algorithm is referred to as a "cyclic genetic algorithm." In the
CGA the individual is represented by a series of nodes each of which is the individual's
behavior control exhibited over a set segment of time. The nodes (or genes as we call
them) can be of any size as long as the task they are to complete can be done in the
segment provided. In addition, the gene can hold repetition information, telling how many
time segments will be dedicated to that gene.

With a cyclic genetic algorithm there is some portion of its chromosome that is repeated
a number of times. This separates it into two sections: a start section and an iterative
section. The start section is executed once, whereas the iterative section is repeated until
expiration of some parameter or a number of iterations. This type of GA is particularly
useful for training robots where their start stance is unique in that it is only used while at
rest (no motion). The desired effect is that the start section should set up the robot to move
into a continuous cycle where sustained fluid motion can exist. A trailing stop section can
be added to effect a smooth transition back to the at-rest stance.

To optimally take advantage of the cyclic genetic algorithm, the individual must be
represented by a variable length chromosome (list of genes) or a fixed length chromosome
with repetitions encoded in the gene. In the later case, care must be taken to provide
enough genes to allow for the maximum number of signal changes. This will allow the
algorithm to adjust the number of time units in the start and iterative sections to best suit
the fluidity of motion.

For our experiments, we used both fixed and variable length representations. The fixed
ones were faster and easier to work with and control; in addition, they had the required
flexibility, due to the designed repetitions, to gain optimum results.

Genetic Operators

Probability for selection was based on fitness, which was computed by summing the fitness
of the individual genes. The gene fitness equaled the forward motion produced by the
gene's signal (repeated the indicated number of repetitions if applicable). This was done on
the model by:

1) taking the current state of legs
2) applying the vertical movement
3) calculating the balance and probable legs on the ground from the model’s current

vertical position of each leg
4) applying the horizontal movement to alter the leg’s state, but only counting legs

on the ground in computation of the movement (fitness)
5) taking off some deduction for lack of balance and/or asymmetry of movement
6) repeat using next gene and the new legs’ state.

This was sequentially done from the start to the end of the string and then repeated as many
times as required in the iterative section. Using this fitness, the best individual was
preserved; the rest of the new population was formed by stochastic selection of mates with
the probability of selection proportional to the fitness.

Crossover in the start section was at a single point equivalent in both chromosomes. In
the iterative section, since it could be considered a circle, crossover was performed at two
points; again equivalent positions in both chromosomes. The effect was to swap sections
within the circle. An alternate type of crossover was a gene-by-gene crossover which
would perform crossover in each of the corresponding genes of the two chromosomes. In
the case where these genes were represented as lists, crosses could happen between the
individual members of the list or within the bits of the specific numbers in the list.

Two types of mutation were used: 1) Gene replace -- each gene had a random chance of
being replaced by a new completely random gene. 2) Gene mutate -- each part of the gene
had a random chance of having one of its bits altered.

For variable length chromosome genetic operators, selection and fitness were calculated
in the same way as the fixed except for the addition of shortness and longness penalties,
which were found to be necessary to maintain reasonable chromosome lengths in early
stages. Crossover differed from the fixed in that the points picked did not correspond to
the points picked in the mate. This resulted in varying lengths of chromosomes.

Gene-by-Gene Evaluation

This was a clean up operator that randomly picked one or two individuals from the
population on each set of trails and examined each gene one at a time. Genes were
evaluated on the whole and move-by-move by comparing the previous move fitness to the
present. Genes that were worse than a preset minimum were eliminated. Genes that were
good in the execution of their early repetitions and subsequently dropped below a threshold
in the later repetitions were modified by reducing their repetitions. Genes that had zero
repetitions were moved out so that only active genes were at the start of the iterative
section. Following these eliminations, if the number of genes or the total number of gene
repetitions fell below some threshold, additional random genes were added until the
thresholds were met.

Coordinators and Inhibitors

Each leg had a possibility of two coordinators. They coordinated the forward/back motion
with the up/down. One made sure that if the leg was going back it was either already down
or moving in that direction. The other ensured that if a leg was going up it was either
already forward or moving in that direction. The coordinators for all legs were stored in a
single 12 bit number (back-down and forward-up for each leg). The inhibitors affected
pairs of legs. They prevented pairs of legs from moving back at the same time. The 2,3
inhibitor prevented both legs 2 and 3 from going back at the same time. It allowed 2 to
move back, but inhibited 3. The inhibitors for the set of legs were stored in a single 15 bit
number (one bit per possible pair). Coordinators and inhibitors could be applicable equally
to all genes in an individual; in which case they were listed first up front. Or they could be
unique to each gene; in which case they were stored in the gene.

TESTS

Tests were done on both variable and fixed length chromosomes using a variety of
population sizes, gene representations, genes per individual, genetic operators, and number
of generations. Fitnesses were determined after 100 moves. Each move equated to an
activation applied for 100 msec.

Variable Length Chromosomes, Numeric Genes -- In these tests the chromosomes were
the most primitive. The start and iterative sections could both vary in size. Each gene was
a 12 bit number with an up or down bit and a forward or back bit for each leg.

Variable Length Chromosomes, List Genes -- The start section was fixed at 10 (this is
the max throw of any of the leg movements). The iterative section could vary in length
with penalties for being too long or too short. The gene was a list of 3 integers: the
activation, inhibitors, and coordinators. A pre-evaluation algorithm combined the elements
of the gene to form a single 12 bit number (activation) that corresponded to the specific leg
movements.

Fixed Length Chromosomes, Global Inhibitors And Coordinators -- The start section
was fixed at one gene and the iterative section at 12. Ten repetitions of one movement
should be sufficient to get the robot’s legs in the proper position to enter the cycle. Twelve
in the iterative section was judged to be enough move changes to handle every possibility
(two per leg). The chromosome was a list consisting of the individual’s inhibitor,
coordinator, start section gene and the 12 iterative genes. The genes were each made up of
two integers: the moves integer with a limit of 10 (the max moves until full throw) and the
activations integer (12 bit number). The pre-evaluation algorithm applied the coordinator
and inhibitor to each activation and then reproduced the result for the specified number of
repetitions designated in the moves integer.

Fixed Length Chromosomes, Gene-By-Gene Evaluator -- This was essentially the same
as above except the Gene-by-Gene Evaluator was added. This helped to speed the
elimination of low performance genes.

RESULTS

Comparison of the different methods at 2000 generations (Figure 1) reveals improvements
with each change. The graph shows each method’s average population fitness and the best
individual’s fitness. The y axis shows average speed of advance (in arbitrary units (9.5 is
maximum)), the x axis shows the differing methods.

Variable Length Chromosomes, Numeric Genes (VLC, Numeric) -- This scheme never
developed the optimal tripod gait within 40,000 generation, although it did consistently
attain sustained forward motion. In addition, eventual development of a system that could
learn in real time required faster learning rates. It was determined that inhibitors and
coordinators were required.

Variable Length Chromosomes, List Genes (VLC, List) -- The results, with the addition
of the inhibitors and coordinators resulted in significant improvement. But the drastic
changes in chromosome length due to random crossover points in the iterative section were
mixing up the gene locations too much to take advantage of the full power of genetic
algorithms. A scheme allowing fixed chromosome length yet variable repetitions was
required.

Fixed-Length Chromosomes, Global Inhibitors and Coordinators (FLC, Global) --
Fixing
the length and putting the repetitions in each gene, plus reducing the variances by making
the inhibitors and coordinators global resulted in some additional improvement. A tripod
like gait developed but its fitness plateaued with some less than optimal moves. These
would probably eventually be worked out but a faster method was desired.

Fixed-Length Chromosomes, Gene-by-Gene Evaluator (FLC, G by G) -- The Gene-by
Gene evaluator in conjunction with the genetic operators converged on the optimal tripod
gait within 2000 generations.

0

2

4

6

8

10

VLC,
Numeric

VLC,
List

FLC,
Global

 FLC,
G by G

Figure 1: Method Comparison, 2000 Generations

Average

Best

What this comparison fails to emphasize is the rapid convergence to optimality of the
last method (Fixed Length Chromosomes, Global Coordinators / Inhibitors and Gene-by-
Gene Evaluator). This can be observed by the drastic improvements shown in Figure 2
(the x axis is the number of generations, the y axis is the acquired fitness). The addition of
the gene-by-gene evaluator enabled the algorithm to reach optimality in less than 500
generations. This graph also emphasizes the difficulty of this problem in that the initial
random population’s performance was so poor. The negative figures come from movement
causing backward motion and penalties for lack of balance and non-symmetric activation.

-6

-4

-2

0

2

4

6

8

10

0 10 100 200 500

Figure 2: Fixed Length, Gene-by-Gene
fitness increase with increased generations

Average

Best

Important in this model is that it is adaptable to changes (sometimes drastic) in the
abilities of the robot. In an attempt to test this adaptability, we disabled selected legs by
restricting the horizontal movement (leaving the vertical enabled). Tests started with the
healthy 500 generation population discussed in the previous paragraph and with new
random populations. The results (Figure 3) confirmed the adaptability of the algorithm as
in all cases the fitness improved quickly to a stable gait. The following key will assist in
graph interpretation (all use the method FLC, G by G):

Start Shows starting random population fitness and best individual after
500 generations fitness

Leg2S Slight restricted movement of leg 2 (before & after 2000 generations)
Legs2&3T Total disablement of legs 2 & 3 (before & after 5000 generations)
Leg2SN Slight restricted movement of leg 2 (before & after 5000 generations)
 Starting with a random population
Legs2&3TN Total disablement of legs 2 & 3 (before & after 30000 generations)

Starting with a random population
All But One All legs but one with disabilities (vertical and horizontal movement)
 (before & after 5000 generations)

-4

-2

0

2

4

6

8

10

Start Leg2S Legs2&3T Leg2SN Legs2&3TN All But One

Figure 3: Fixed Length, Gene-by-Gene with Disabled Leg/Legs

Before

After

CONCLUSIONS

The Cyclic Genetic Algorithm can, with only the most basic of motion primitives, produce
reasonable gaits in a model of the Stiquito robot. With only slightly higher order primitives
it is capable of developing the optimal tripod gait and attain maximum speed. Additionally,
the learning algorithm is fast and will adapt to changes in the robot’s capabilities.

ACKNOWLEDGMENTS

This research was supported in part by NSF Graduate Research Traineeship Grant GER93-54898.

REFERENCES

1. Donner, M. D. (1986). Real-Time Control of Walking. Boston; Basel; Stuttgart: Birkhauser.
2. Brooks, R. A. (1989). “A Robot That Walks: Emergent Behaviors from a Carefully Evolved Network.”

Neural Computation (pp. 254-262).
3. Gallagher, J. C. and Beer, R. D. (1994). “Application of Evolved Locomotion Controllers to a Hexapod

Robot.” Technical Report CES-94-7, Department of Computer Engineering and Science, Case Western
Reserve University. Refers to Beer, R. D., and Gallagher, J. C. (1992). “Evolving Dynamical Neural
Networks for Adaptive Behavior.” Adaptive Behavior, 1 (pp. 91-122). Cambridge: MIT Press.

4. Spencer, G. (1994). “Automatic Generation of Programs for Crawling and Walking.” Advances in
Genetic Programming. (pp. 335-353) K. Kinnear, Jr. (ed.), Cambridge, Ma: MIT Press.

5. Grefenstette, J. J. and Ramsey, C. L. (1992). “An Approach to Anytime Learning.” Proceedings of the
Ninth International Conference on Machine Learning, (pp. 189-195), D. Sleeman and P. Edwards

 (eds.), San Mateo, Ca: Morgan Kaufmann.
6. Mills, J. (1994). “Stiquito II and Tensipede: Two Easy-to-Build Nitinol-Propelled Robots.” Technical

Report #414, Computer Science Department, Indiana University.
7. Goldberg, David E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning.
 Reading, Ma: Addison-Wesley.

