

Using Deep Convolutional Neural Networks to

Abstract Obstacle Avoidance for Indoor

Environments

Mohammad O. Khan

Department of Computer Science

Connecticut College

New London, CT, USA

mkhan4@conncoll.edu

Gary B. Parker

Department of Computer Science

Connecticut College

New London, CT, USA

parker@conncoll.edu

Abstract—In this paper, an approach to learning an obstacle

avoidance program for an autonomous robot is presented. A deep

learning network, which matches one that was successfully used in

the past for a classification task, was replicated and used to classify

ten categories in the CIFAR10 dataset. This trained network was

then altered by replacing the final fully-connected feed-forward

network with a new one that was initiated with random weights.

Using a new database made up of images labeled with the actions

taken by an operator as he remotely drove the robot, the network

learned the proper action for each image. In previous work, we

reported that this network operating on the actual robot

successfully moved through the desired path in the training

environment while avoiding obstacles. Now we have expanded this

work by showing that the obstacle avoidance control program is

generalized enough that it was successful when tested in three

environments not seen during training.

Keywords—mobile robotics, obstacle avoidance, deep learning,

artificial neural networks, indoor, TurtleBot

I. INTRODUCTION

Learning systems for autonomous robots that allow them to
adapt to new environments by helping them move through
spaces while avoiding obstacles would help reduce development
time and increase the efficacy of the robots. In this paper, the
learning system is used to learn an obstacle avoidance system,
which will make up one part of an overall control system for the
robot. As the robot operates in its environment performing the
desired operation through the task control system, the obstacle
avoidance system overrides other control commands being
made in order to avoid collisions. For this research, the task
control system moves the robot forward at a constant speed,
while the obstacle avoidance system keeps the robot from
colliding with any obstacles in the path.

Deep learning, which involves the use of massive artificial
neural network architectures, is a reasonable approach for robots
equipped with cameras. One of the main functions assigned to
deep learning models is image processing. Some of these
architectures are capable of outperforming humans in tasks like
classifying objects – differentiating one object type from
another, such as dog versus wolf. In addition to identifying
specific types of animals / objects, which is a skill that even
many humans struggle with, deep learning systems can identify,
with some level of certainty, which objects exist within an
image. In this paper, we present previous work in which we

used deep learning to develop a TurtleBot type robot that can
autonomous drive within a tight classroom / laboratory setting
based strictly on images. In addition, we present new work that
shows that not only is the robot able to successfully and
autonomously drive without hitting obstacles within the original
room, but it is also able to avoid obstacles in other environments
such as: the hallways of a building, a completely different room
with a different set up (different design of chairs, wall colors,
etc.), and a blocked off carpeted area with wooden blocks it has
never seen before. Additionally, the robot abstracted the
concept of being able to navigate around human legs.

Much research has been done using TurtleBot robots. Some
of this research has considered applications of TurtleBot as it
interacts with humans. Hotze [1] used the TurtleBot platform to
develop a robotic framework for identifying anomalies based on
the detection of unconscious humans. Mannequins were used in
substitution of humans to test the system and the robot
approached fallen mannequins from different positions in a
mapped environment. These “humans” were detected based on
temperature, breath, and face detection. Significant additions to
the TurtleBot platform were made for this task. An Arduino,
two Adafruit motor shields, a robot arm, a webcam, a
temperature sensor, and a breath sensor were attached to the
body of the TurtleBot. In other human interaction research,
which was appropriate for the TurtleBot, but used another
platform, Correa et al. [2] used thermal images to identify
humans along with raw visual images of faces. The approach
used was a nearest neighbor classifier that utilized similarity
measurements like histogram intersection. The robot was used
to detect particular humans in a waiting room. Gritti et al. [3]
developed a Kinect camera based approach to detecting and
tracking humans. Detecting humans is not a trivial task for a
robot close to the ground. Either the camera needs to be tilted
upward or a camera needs to be mounted on a rod. Gritti et al.
focused on identifying “leg-like” objects that protruded from the
ground. This is a natural approach to take considering that the
TurtleBot is a short robot with a limited view from the ground.
They developed a statistical classifier to differentiate between
legs and other objects protruding from the ground plane. There
has been strong interest in using the TurtleBot platform for
obstacle detection and avoidance. Boucher used the Point Cloud
Library and depth information along with plane detection
algorithms to build methods of obstacle avoidance [4]. High

curvature edge detection was used to locate boundaries between
the ground and objects that rest on the ground.

Object recognition is an important task that has been tackled
by the Machine Learning community. Deep learning has
outperformed many other algorithms in this arena. The
ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
has attracted and pushed many researchers to develop advanced
algorithms. This challenge includes 1000 different categories of
images that are to be classified into categories. The training set
by itself is about 1.2 million images, with 150,000 testing
images used to benchmark during training and 50,000 images
for validation, which are used to test the system after training is
complete [5].

A very influential paper in regards to deep learning was
published in 2012 by Krizhevsky, Sutskever, and Hinton [6].
This neural network had 60 million parameters and 650,000
neurons, which were part of five convolutional layers alongside
pooling layers and three fully connected layers including a final
output layer of 1000 outputs. At the time, they achieved a top-5
classification (of the 1000 classes) error rate of only 15.3%
compared to a much higher second-place error rate of 26.2%
(top-5 means that one of the system’s top five predictions to
identify the object was correct). This paper contributed to the
discussion of the importance of depth in neural networks by
noting that removal of a single hidden layer dropped the top-1
classification error rate by 2% (top-1 means that the system’s
top prediction to identify the object was correct).

In 2014, Szegedy et al. [7] entered the ILSVRC challenge
with a 22 layer deep network that won the competition with 12
times fewer parameters than Krizhevsky’s deep network. The
team obtained an impressive 6.66% error rate for top-5
classification. In 2015, He, Zhang, Ren, and Sun of Microsoft
Research surpassed the previous team with a 19 layer deep
neural network for the task and obtained an accuracy of 4.94%
for top-5 classification [8]. This was a landmark
accomplishment as it was the first to beat the human level
performance of 5.1% for the ImageNet dataset.

The most relevant deep learning research for our work is that
of Alex Krizhevsky where he worked on the CIFAR10 dataset
from the Canadian Institute for Advanced Research [9]. Prior to
this, tiny images on the scale of 32 x 32 were not easily labeled
for classification tasks in regards to algorithms like deep
learning. The CIFAR10 dataset includes 10 different classes:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and
truck. The classes are set up in a way to be mutually exclusive.
For example, automobile and truck are completely different
categories. Krizhevsky worked on this dataset in 2009 [10] and
developed different deep neural network models in 2010 to run
training with the dataset. At the time, he obtained the highest
accuracy using this dataset as his best model classified objects
correctly with a success rate of 78.9% [11]. Since then, Mishkin
and Matas have obtained 94.16% accuracy on the CIFAR10
dataset [12] and Springenberg et al. have obtained 95.59%
accuracy [13]. The current best performance is by Graham with
an accuracy of 96.53% using max pooling [14].

Researchers have considered the use of deep learning for the
purpose of obstacle avoidance using the TurtleBot platform. Tai,
Li, and Liu used depth images as the only input into the deep

network for training purposes [15]. They discretized control
commands with outputs such as: “go-straightforward”, “turning-
half-right”, “turning-full-right”, etc. The depth image is from a
Kinect camera with dimensions of 640 x 480. This image was
downsampled to 160 x 120. Three stages of processing were
completed where the layering is ordered as such: convolution,
activation, pooling. The first convolution layer uses 32
convolution kernels, each of size 5 x 5. The final layer includes
a fully-connected layer with outputs for each discretized
movement decision. In all trials, the robot never collided with
obstacles, and the accuracy obtained after training in relation to
the testing set was 80.2%. Their network was trained on only
1104 depth images. This hints at the idea that maybe many edge
cases are missing or that this dataset is specific to only one
environment. The environment used in this dataset seems fairly
straightforward – meaning that the only “obstacles” seem to be
walls or pillars. Tai and Liu produced another paper related to
the previous paper [16]. Instead of a real-world environment,
this was tested in a simulated environment provided by the
TurtleBot platform, called Gazebo. Different types of corridor
environments were tested and learned. A reinforcement learning
technique called Q-learning was paired with the power of deep
learning.

The research reported in this paper describes an approach to
learning an obstacle avoidance system by training and
leveraging a generalized image classification deep learning
network and repurposing it for obstacle avoidance. Specifically,
the final fully-connected feed-forward network layer is altered
to form a new one. The new network layer is initiated with
random weights and then the entire learning system is trained on
a new database. The new database of images was derived from
a training process involving a robot operator driving the robot
and labeled each snapshot of the drive with a movement option.
The network now operates as an obstacle avoidance system,
which takes proper action in the trained space. In addition, it has
sufficiently abstracted the concept of an obstacle so that it can
avoid obstacles in new and distinct environments with obstacles
never encountered in the training environment.

Our approach differs from the two Tai et al. papers and that
of Boucher’s obstacle avoidance work. Research like Boucher’s
does not consider higher level learning, but instead builds upon
advanced expert systems, the likes of which can detect
differentials in the ground plane. By focusing on deep learning,
our research allows a pattern based learning approach that is
more general and which does not need to be explicitly
programmed. The logic structure for obstacle avoidance can be
fairly complex depending on the variability in the environment.
While Tai et al. used deep learning, their dataset was limited
with just over 1100 images. We built our own dataset to have
over 30,000 images, increasing the size of the effective dataset
by about 28 times. The environment for our research is much
more complex than just the flat surfaces of walls and columns.
In addition, for our research, we developed a dataset that was
based on raw RGB images, opening the door to further research
with cameras that do not have depth. Moreover, the sizes of the
images used in this work were dramatically smaller, which also
opens up the door for faster training and a speed up in forward
propagation. Lastly, the results of this research are solely tested
in the real world -- a simulated environment is not used. In

addition, our learned controller was able to avoid obstacles in
environments other than the training environment.

II. TURTLEBOT PLATFORM

While the robot (which can be seen in Fig. 2) used for this
research was not marketed as one that is based on the TurtleBot
framework, its functionality is essentially equivalent to that of
the TurtleBot platform. The research robot was marketed as a
“Deep Learning Robot” from the robotics company,
Autonomous AI [17]. The robot includes an Asus Xtion Pro 3D
Depth Camera, a microphone embedded in the camera, and a
speaker. A Kobuki mobile base allows it to rotate and move in
any direction on the ground plane. Most importantly, it is
equipped with an Nvidia Tegra TK1, which allows it to carry out
deep learning computations on a GPU instead of having to resort
to long wait times for training with a CPU. This is its main
differentiator from a regular TurtleBot. While the Tegra TK1
was marketed as the world’s most powerful mobile processor, it
only has 2GB of memory. This is problematic for training very
deep networks and holding too many parameters in memory
causes the robot to crash. While training, the robot is unstable
because of this limited memory so running multiple programs at
the same time has to be avoided.

This robot is virtually a computer in itself, and it allows us
to treat it as such as it is very compatible with Ubuntu 14.04.
Wi-Fi and Bluetooth give us the flexibility of setting up network
connections and connecting devices for communication, which
we may consider in the future. The TurtleBot framework works
hand in hand with the Robot Operating System (ROS). Google
TensorFlow, Torch, Theano, and Caffe are all compatable deep
learning frameworks. CUDA and cuDNN are available for
implementing deep learning on GPUs and for speeding up that
computation.

III. DEEP LEARNING

A. Artificial Neural Networks

A deep learning network is a type of Artificial Neural
Network (ANN). The typical ANN has interconnections of
single neurons linked together by weighted connections through
which information is transferred. The idea is to create a
biologically inspired control / learning system.

These neurons are stacked in multiple layers where different
layers of neurons serve different functions. There is an input,
which goes to the first layer of neurons and the output of these
neurons becomes the input for other neurons in a subsequent
layer. In fully connected models, every neuron in the previous
layer is connected to every neuron in the next layer. A threshold
value (θ) symbolically represents the activation potential of a
biological neuron. A weighted sum of all the inputs is compared
to this value to determine an output after it is fed into an
activation function, which in our research is the sigmoid
function.

B. Deep Learning Network

The ANN mode of architecture is excellent for many
applications, but has limitations when dealing with large images,
which was one of the main motivations for the development of
deep learning. Instead of sending all input values from layer to
layer, deep networks take regions or subsamples of inputs.

Instead of sending all pixels in the entire image as inputs,
different neurons will only take regions of the image as inputs.
Essentially, full connectivity is reduced to local connectivity. In
some ways, this model is more biologically inspired than ANNs
because it better models the visual cortex. Neurons in the visual
cortex are activated by stimuli in a specific location based
manner. This means that neurons that are linked as direct
neighbors share the saturation from an impulse [18].

1) Convolution: This method of subsampling used in deep
learning is called convolution. The local receptive fields can be
seen as small windows, with a predefined number of panes, that
slide over the image. These panes help determine what features
under the window we want to extract, and over time these
features are better refined. The weighted windows are
commonly called kernels. The kernel defines how the image gets
subsampled. Matrix operations use the weights of the kernel and
the values of the image to produce the parts of a newer, smaller
image by placing the product of the operation in a correlated
region in the new image. Depending on the type of kernel,
different features of the image may be highlighted, which leads
to different results, such as blurring and sharpening. In this way,
networks can develop identification of complex patterns in
datasets just by applying kernel filters. Deep learning networks
are able to develop these kernels through training -- supervision
is from a loss function in the output layer determining how close
the network’s prediction was to the actual value of the image.
Through training, these kernels become more fine-grained to
reduce the loss function’s output.

2) Pooling: Deep networks may include many different
types of layers. A general strategy is to follow a convolution
layer with a pooling layer. The convolution layer is responsible
for learning the lower level features of an image, such as edges,
and the pooling layer seeks to detect higher-level features, such
as corners where two edges meet. Pooling is also good for
building translational invariance, where the system can detect
an object even if it moves to a different part of the image in a
subsequent frame. In this way, dominant features persist
deeper into the network. In addition, pooling can help in
dramatically reducing the size of an image by down sampling a
rectangular region of pixels in one of three ways: max pooling
(choose the maximum pixel value), min pooling (choose the
minimum pixel value), and Average pooling (choose the
average pixel value). Reducing the size of the image
significantly cuts down on the time for processing an image.
The convolution layer passes convolution windows over the
image to produce new images that are smaller. The number of
images (each accompanied by a convolution kernel signifying
the weights) produced can be specified by the programmer.
Pooling is then applied to each one of these new images.
Convolution and pooling are the most prominent deep learning
layers, but there were other types of layers that we used in this
research.

3) Rectified Linear Unit: The Rectified Linear Unit (RLU)
layer involves returning a numerical input if it is positive,
otherwise multiplying the input by -1. This effectively
eliminates negative inputs and boosts computation time over
other functions such as the sigmoid activation function since no
exponentiation and computations are required. Alex
Krizhevsky et al. were able to accelerate convergence in their

training by a factor of six times in relation to the sigmoid
activation function using this function [6].

4) Local Response Normalization: The Local Response
Normalization layer imitates biological lateral inhibition, which
is a situation in which excited neurons have the capability and
often tendency of subduing neighbor neurons [19]. This results
in an amplification when there is a differential in neuron
excitement. These layers allow neuron’s with large activation
values to be much more influential than other neurons, which
results in the survival of significant features from one layer into
deeper layers of the network.

5) Fully Connected Layer: The fully connected layer that
we used is like that of a layer in a regular ANN. This was used
as the final layer of the network so the outputs of the neurons in
this layer were the actual outputs of the network. These outputs
are compared to the desired outputs to compute the loss with
the learning dependent on gradient descent updates.

IV. DEEP LEARNING IN THE LEARNING ENVIRONMENT

The problem addressed was that of training a deep neural
network to control an autonomous vehicle driving in a tight,
chaotic room/lab environment. To test the functionality and
success of the program, the performance of the robot was
checked to see if it could autonomously follow an approximately
rectangular path in a tight environment without colliding into
obstacles.

Fig. 1. A visual of the environment with lab tables, chairs, and cabinets.

Images are provided below to help understand this environment even more.

A. Environment

The training/testing environment (drawing in Fig. 1) was set
up in a robotics lab. The white circles with dark borders
represent chairs. The radii of the chairs are larger than the circles
show because the feet of the chairs extend further such that there
is no gap for the robot to move in between neighboring chairs
(in most cases). The white rectangles with dark borders are lab
tables, which are solid sides on the ends, but not along the long
sides. They are tall enough for the robot to be able to drive
through and for this reason, chairs were placed in those
locations. The dark brown rectangle is a boxed off area in the
lab that is used for other experiments, but in this research acts as
borders that the robot would need to avoid hitting. The golden
rectangles denote cabinets, which the robot must also avoid. The
red rectangle in the middle of the figure shows the general path

that the robot must follow to avoid chairs, tables, and other
obstacles. During training and tests we ran the robot on this path
in both the clockwise and counterclockwise directions.

Fig. 2 shows some photographs of areas in the environment.
The intent was to create a complex testing area by the placement
of the obstacles. One can see from Fig. 2 that the gaps outside
of the desired path were closed with the adjustable round chairs,
which each have 5 rounded legs and a circular stump. The chair
heights can be adjusted and the orientation can change 360
degrees for both the base and the actual seating. The chairs were
chosen as the main objects of interest because, due to the legs,
there is a good amount of gap area in between the objects. This
allows for complexity in defining what an obstacle is and what
an obstacle is not. The deep learning system cannot simply learn
to follow the color of the carpet because even the gaps reveal the
carpet. There was also a dynamic nature to the environment
since students often moved the chairs each night. While the
chairs might be in the same relative location, the orientations
were completely different each time. This added to the
complexity of the problem since it is not easy for a pattern to be
developed when the orientation of objects keeps changing.

Although we wanted sufficient complexity to ensure this was
a difficult task, there were two situations in the environment that
would be impossible for the robot to solve. In the first, if there
is enough of a gap between two chairs the robot may make the
decision to go straight instead of turning away from the chairs.
Therefore, the chairs were placed close enough so that the gap
was smaller than the robot. In the second, if the robot is heading
directly toward a cabinet and close enough so that it only sees
the cabinet, it won’t know which way to turn. Even for a human
with limited peripheral vision, it would be impossible to know
which direction to turn. To solve this issue, areas with cabinets
included an open cabinet that swiveled to a direction the robot
was supposed to avoid. These changes established rough
guidelines as to the correct path for the robot, plus since the
contents of the cabinets added a variety of different items for the
visual system to process, these changes added complexity to the
environment.

Fig. 2. The images above demonstrate various obstacle avoidance scenarios in

the training environment.

Chairs, cabinets, and tables were not the only obstacles to
avoid. A good amount of the dataset included the borders of a
colony space environment and a few images in the dataset
included small cardboard boxes. It was important to include
obstacles like this in order to confirm that the concept of obstacle

Fig. 3. The final architecture for the deep network. This is inspired by the architecture for solving the CIFAR10 dataset.

avoidance was being abstracted instead of the robot only
avoiding black colored objects (the black chairs). It is also
significant to note that students used the lab throughout the day
and night, so conditions of the carpet changed while the dataset
was being developed. For example, coins and shreds of paper
were found at different locations on the path. We decided not to
remove some of these items while building the dataset because
it only added to the diversity in what we might consider edge
cases.

A. Dataset Collection:

To collect data for learning, an operator remotely drove the
robot along its path avoiding obstacles while the robot’s camera
took photographs. These images were each labeled with the
corresponding action taken by the operator in the position where
the photos were taken. Every time the user hit a directional key,
the image was saved along with its label. The TurtleBot was
driven around the lab following the path in both directions. To
increase the diversity of the dataset, different starting points
were chosen and hard scenarios such as being close to walls
were considered. Overall, 30,754 images were collected. By
default the images from the camera were 640 x 480. These were
later downsized to 64 x 64 for our deep learning network.

B. The Deep Neural Network Architecture

To learn the controller for our robot we replicated the deep
network architecture used by Alex Krizhevsky to solve the
CIFAR10 dataset. We trained this network with the original
CIFAR10 dataset and obtained about 74% accuracy. We then
used this trained network, with some modifications to learn our
dataset. The final network used for our research is shown in Fig.
3. It is split into three lines to ease the visualization. We can see
that there are 3 iterations of the layer combinations of
convolution, pooling, and normalization. The layer “ip1Tweak”
is labeled as such because the final layer of Krizhevsky’s
network was removed and replaced with an inner product, or
also considered as fully connected, layer that only had 3 outputs
(his had 10). This is signified by the value 3 above the ip1Tweak
layer in the visual. The 3 outputs correspond to the decision
making of the TurtleBot in terms of autonomous driving
directions. The original network included 32 convolution
kernels for the first convolution, 32 convolution kernels for the
second convolution, and 64 convolution kernels for the last one.
We can also see how each convolution layer is immediately
followed by a pooling layer. Every convolution layer also
includes a rectified linear unit attached to it. Local response
normalization also appears to be an effective addition to this
network, as it augments the outputs of 2 of the 3 pooling layers.

The dataset was split for the final network: 7,689 images for
testing and 23,065 images for training. This is based on a 75%
training split of the entire dataset. The hyperparameters were
defined as:
- testing iterations (how many forward passes the test will carry
out): 100
- batch size (this is for batch gradient descent – notice that batch
size * testing iterations will cover the entire testing dataset): 77
- testing interval (testing will be carried out every x training
iterations): 150
- base learning rate: .001
- momentum .9
- weight decay: .004
- learning rate policy: fixed
- maximum iterations: 15,000

B. Results Using Deep Learning for Autonomous Driving

After training with the CIFAR10 dataset and altering the
network, we trained using approximately 30,000 images. It took
the network about 200 iterations to get to 84% accuracy and
around 2000 iterations to achieve an accuracy of about 90%. It
was able to obtain an accuracy of about 92% after 15,000
iterations. To test the results in the environment, ten different
runs were completed where the robot was reversed after a
completion of a lap in order to complete the lap in both
directions [20]. The robot did very well in these tests, although
rarely, it lightly grazed against the leg of a chair or a cardboard
box. However, this did not change the trajectory of the robot and
it was still able to complete its course. For this reason, we did
not consider these rare occurrences to be major collision events.

V. TESTING IN NEW ENVIRONMENTS

To fully understand the extent of the learning it was
important that we tested the robot in the real world. The robot
was first tested in the original environment where the dataset
was collected and used to train the controller. This was a fair
assessment to make, and a true “validation dataset” of a sorts,
since the robot had not seen these exact orientations as every run
was different. To take this testing a step further, we explored
testing the robot in three different environments.

The first new environment test was to see if the robot would
be successful in avoiding bumping into walls in a hallway (Fig.
4 top photos). For the most part the robot was able to turn away
from walls in the hallway. This is especially surprising since
there were very few images in the original dataset that had white
walls to turn away from. Perhaps the robot is instead turning
away from the dark brown bottom lining of the white walls as
that color is close to the color of the chairs. The robot also
successfully managed to turn away from doors in the hallway.
However, a head-on approach to a door was a problem and the
robot had trouble navigating its way out of that situation. This
makes sense as we can liken this to the issue with head on
approaches of cabinets in the original training environment.
Some diagonal approaches are also problematic. In some cases,
the robot would not make enough of a turn and did not see the
edge of a wood lining for a door and would bump into it. We
speculate that this could be mitigated by tweaking the turning
angle so that smaller turns are made.

Fig. 4. New environments not seen by the robot during training: first row: hall;

second row: colony space; third row: other lab with lower chairs/tables; fourth

row: person.

The second new environment that was tested was the colony
space in the laboratory (Fig. 4 second row photos). This is an 8
x 8 foot area where wooden blocks of 1 x 1 foot dimension can
be rearranged to create paths. The robot was generally
successful in avoiding these blocks, but only if the blocks were
doubly stacked on each other or if the blocks were placed
horizontally. One hypothesis for this behavior is that most of the
avoidance of similar colored and textured objects from the
original dataset had objects that were large (cabinets) or high
enough for the robot to detect ahead of time (border of colony
space).

The third environment that the robot was introduced into was
a differently configured room (Fig. 4 third row photos). This
room does not have cabinets like the original room and the tables
and chairs are different. The robot successfully avoided all
chairs and tables. It was also able to go under tables and avoid
objects there, where lighting conditions were much darker than
in any image in the dataset. The fact that the robot was able to
avoid chairs with different designs in the new room is yet
another confirmation that the deep neural network has abstracted
the concept of obstacle avoidance. Perhaps what is more
important for the network is the concept of going to an open
area, which might focus on the color and texture of the carpet,
since the carpets in the two rooms are very similar.

Another interesting scenario presented to the robot was that
of obstacle avoidance with humans, or specifically human legs
(Fig. 4 bottom row photos). Recall that Gritti et al. approached
a similar problem scenario or at least to the point of detecting
legs. Although nowhere in our original dataset were jeans or
human legs introduced, the robot was able to avoid these
obstacles as well. One hypothesis is that the network correlates
dark objects with obstacles and the individual in the experiment
wore dark pants. However, this is very hard to verify since the
inner workings of the network do not easily reveal that
information.

VI. CONCLUSIONS

The approach of fine-tuning Krizhevsky’s network that
solved the CIFAR10 dataset was greatly successful. The robot
effectively avoided obstacles in the original room where the
dataset was collected and it also avoided colliding into other
obstacles that were not part of the dataset. This was
demonstrated by placing the robot in three new environments.
This implies that the learning system has abstracted the idea of
obstacle avoidance and that the network did not overfit in its
training on the original dataset. In other words, the deep network
did not solely focus on specific chairs, tables, and cabinets as the
only obstacles to avoid. In future work, we plan to use this same
approach to learn control programs for other robots in
completely new environments. For example, in an outdoor
environment, this approach can learn to stay on the path in
addition to obstacle avoidance. It could also learn to take the
correct action, such as stopping in a dynamic environment with
no place to go, such as when surrounded by people, and start
moving again when the area is sufficiently clear.

 REFERENCES

[1] W. Hotze, “Robotic First Aid: Using a mobile robot to localise and
visualise points of interest for first aid.” Master’s Thesis. Embedded and
Intelligent Systems, Hamstad University, 2016.

[2] M. Correa, G. Hermosilla, R. Verschae, & J. Ruiz-del-Solar, J., “Human
Detection and Identification by Robots Using Thermal and Visual
Information in Domestic Environments.” Journal of Intelligent Robot
Systems, 2012, 66:223–243. DOI 10.1007/s10846-011-9612-2

[3] A. Gritti, O. Tarabini, J. Guzzi, G. Caro, V. Cagliotti, L. Gambardella, &
A. Giusti, “Kinect-based people detection and tracking from small-
footprint ground robot.” International Conference on Intelligent Robots
and Systems (IROS), 2014.

[4] S. Boucher, “Obstacle Detection and Avoidance Using TurtleBot
Platform and XBox Kinect.” Research Assistantship Report. Department
of Computer Science, Rochester Institute of Technology, 2012.

[5] O. Russakovsky, J. Deng, H. Su, et al., “ImageNet Large Scale Visual
Recognition Challenge.” International Journal of Computer Vision, 2015,
115: 211. doi:10.1007/s11263-015-0816-y

[6] A. Krizhevsky, I. Sutskever, & G. Hinton, “ImageNet classification with
deep convolutional neural networks”, Neural Information Processing
Systems (NIPS), 2012.

[7] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions.”,
2014, CoRR, abs/1409.4842

[8] K. He, X. Zhang, S. Ren, & J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification.” In
International Conference on Computer Vision, 2015.

[9] A. Krizhevsky, CIFAR10 Dataset Project Page.
https://www.cs.toronto.edu/~kriz/cifar.html

[10] A. Krizhevsky, “Learning multiple layers of features from Tiny Images”,
Master’s thesis, Dept of Computer Science, University of Toronto, 2009.

[11] A. Krizhevsky, “Convolutional Deep Belief Networks on CIFAR-10.”
Unpublished manuscript, 2010.

[12] D. Mishkin, & J. Matas, “All you need is a good init”, International
Conference on Learning Representations, 2016.

[13] J. Springenberg, A. Dosovitskiy, T. Brox, & M. Riedmiller, “Striving
for simplicity: The all convolutional net.” 2014, arXiv:1412.6806

[14] B. Graham, “Fractional max-pooling.” CoRR, 2014, abs/1412.6071.
http://arxiv.org/abs/1412.6071.

[15] L. Tai, S. Li, & M. Liu, “A Deep-Network Solution Towords Model-Less
Obstacle Avoidence”, IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2016.

[16] L. Tai & M. Liu, “A robot exploration strategy based on q-learning
network”, IEEE International Conference on Real-time Computing and
Robotics (RCAR), 2016.

[17] Deep Learning Robot. Produced and sold by Autonomous AI.
https://www.autonomous.ai/deep-learning-robot

[18] A. Ng, et al. “Unsupervised Feature Learning and Deep Learning
(UFLDL)”, online tutorial and notes. Computer Science Department,
Stanford University. http://ufldl.stanford.edu/tutorial

[19] P. Joshi, “Perpetual enigma: perennial fascination with all things tech”,
2016, Online blog. https://prateekvjoshi.com/2016/04/05/what-is-local-
response-normalization-in-convolutional-neural-networks/

[20] M. Khan & G. Parker, “Deep Convolutional Neural Network Processing
of Images for Obstacle Avoidance”, Studies in Computational
Intelligence, vol 922. Springer, Cham., 2021.

