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Abstract—In this paper, an approach to learning an obstacle 

avoidance program for an autonomous robot is presented.  A deep 

learning network, which matches one that was successfully used in 

the past for a classification task, was replicated and used to classify 

ten categories in the CIFAR10 dataset.  This trained network was 

then altered by replacing the final fully-connected feed-forward 

network with a new one that was initiated with random weights.  

Using a new database made up of images labeled with the actions 

taken by an operator as he remotely drove the robot, the network 

learned the proper action for each image.  In previous work, we 

reported that this network operating on the actual robot 

successfully moved through the desired path in the training 

environment while avoiding obstacles.  Now we have expanded this 

work by showing that the obstacle avoidance control program is 

generalized enough that it was successful when tested in three 

environments not seen during training. 

Keywords—mobile robotics, obstacle avoidance, deep learning, 

artificial neural networks, indoor, TurtleBot  

I. INTRODUCTION 

Learning systems for autonomous robots that allow them to 
adapt to new environments by helping them move through 
spaces while avoiding obstacles would help reduce development 
time and increase the efficacy of the robots. In this paper, the 
learning system is used to learn an obstacle avoidance system, 
which will make up one part of an overall control system for the 
robot. As the robot operates in its environment performing the 
desired operation through the task control system, the obstacle 
avoidance system overrides other control commands being 
made in order to avoid collisions.  For this research, the task 
control system moves the robot forward at a constant speed, 
while the obstacle avoidance system keeps the robot from 
colliding with any obstacles in the path.    

Deep learning, which involves the use of massive artificial 
neural network architectures, is a reasonable approach for robots 
equipped with cameras.  One of the main functions assigned to 
deep learning models is image processing. Some of these 
architectures are capable of outperforming humans in tasks like 
classifying objects – differentiating one object type from 
another, such as dog versus wolf.   In addition to identifying 
specific types of animals / objects, which is a skill that even 
many humans struggle with, deep learning systems can identify, 
with some level of certainty, which objects exist within an 
image.  In this paper, we present previous work in which we 

used deep learning to develop a TurtleBot type robot that can 
autonomous drive within a tight classroom / laboratory setting 
based strictly on images.  In addition, we present new work that 
shows that not only is the robot able to successfully and 
autonomously drive without hitting obstacles within the original 
room, but it is also able to avoid obstacles in other environments 
such as: the hallways of a building, a completely different room 
with a different set up (different design of chairs, wall colors, 
etc.), and a blocked off carpeted area with wooden blocks it has 
never seen before.  Additionally, the robot abstracted the 
concept of being able to navigate around human legs.   

Much research has been done using TurtleBot robots.  Some 
of this research has considered applications of TurtleBot as it 
interacts with humans. Hotze [1] used the TurtleBot platform to 
develop a robotic framework for identifying anomalies based on 
the detection of unconscious humans.  Mannequins were used in 
substitution of humans to test the system and the robot 
approached fallen mannequins from different positions in a 
mapped environment.  These “humans” were detected based on 
temperature, breath, and face detection.  Significant additions to 
the TurtleBot platform were made for this task.  An Arduino, 
two Adafruit motor shields, a robot arm, a webcam, a 
temperature sensor, and a breath sensor were attached to the 
body of the TurtleBot. In other human interaction research, 
which was appropriate for the TurtleBot, but used another 
platform, Correa et al. [2] used thermal images to identify 
humans along with raw visual images of faces. The approach 
used was a nearest neighbor classifier that utilized similarity 
measurements like histogram intersection.  The robot was used 
to detect particular humans in a waiting room.  Gritti et al. [3] 
developed a Kinect camera based approach to detecting and 
tracking humans. Detecting humans is not a trivial task for a 
robot close to the ground. Either the camera needs to be tilted 
upward or a camera needs to be mounted on a rod.  Gritti et al. 
focused on identifying “leg-like” objects that protruded from the 
ground. This is a natural approach to take considering that the 
TurtleBot is a short robot with a limited view from the ground. 
They developed a statistical classifier to differentiate between 
legs and other objects protruding from the ground plane.  There 
has been strong interest in using the TurtleBot platform for 
obstacle detection and avoidance.  Boucher used the Point Cloud 
Library and depth information along with plane detection 
algorithms to build methods of obstacle avoidance [4]. High 



curvature edge detection was used to locate boundaries between 
the ground and objects that rest on the ground. 

Object recognition is an important task that has been tackled 
by the Machine Learning community.  Deep learning has 
outperformed many other algorithms in this arena. The 
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 
has attracted and pushed many researchers to develop advanced 
algorithms.  This challenge includes 1000 different categories of 
images that are to be classified into categories.  The training set 
by itself is about 1.2 million images, with 150,000 testing 
images used to benchmark during training and 50,000 images 
for validation, which are used to test the system after training is 
complete [5].  

A very influential paper in regards to deep learning was 
published in 2012 by Krizhevsky, Sutskever, and Hinton [6]. 
This neural network had 60 million parameters and 650,000 
neurons, which were part of five convolutional layers alongside 
pooling layers and three fully connected layers including a final 
output layer of 1000 outputs. At the time, they achieved a top-5 
classification (of the 1000 classes) error rate of only 15.3% 
compared to a much higher second-place error rate of 26.2% 
(top-5 means that one of the system’s top five predictions to 
identify the object was correct).   This paper contributed to the 
discussion of the importance of depth in neural networks by 
noting that removal of a single hidden layer dropped the top-1 
classification error rate by 2% (top-1 means that the system’s 
top prediction to identify the object was correct).      

In 2014, Szegedy et al. [7] entered the ILSVRC challenge 
with a 22 layer deep network that won the competition with 12 
times fewer parameters than Krizhevsky’s deep network. The 
team obtained an impressive 6.66% error rate for top-5 
classification.   In 2015, He, Zhang, Ren, and Sun of Microsoft 
Research surpassed the previous team with a 19 layer deep 
neural network for the task and obtained an accuracy of 4.94% 
for top-5 classification [8]. This was a landmark 
accomplishment as it was the first to beat the human level 
performance of 5.1% for the ImageNet dataset.  

The most relevant deep learning research for our work is that 
of Alex Krizhevsky where he worked on the CIFAR10 dataset 
from the Canadian Institute for Advanced Research [9].  Prior to 
this, tiny images on the scale of 32 x 32 were not easily labeled 
for classification tasks in regards to algorithms like deep 
learning. The CIFAR10 dataset includes 10 different classes: 
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and 
truck. The classes are set up in a way to be mutually exclusive. 
For example, automobile and truck are completely different 
categories. Krizhevsky worked on this dataset in 2009 [10] and 
developed different deep neural network models in 2010 to run 
training with the dataset. At the time, he obtained the highest 
accuracy using this dataset as his best model classified objects 
correctly with a success rate of 78.9% [11].  Since then, Mishkin 
and Matas have obtained 94.16% accuracy on the CIFAR10 
dataset [12] and Springenberg et al. have obtained 95.59% 
accuracy [13].  The current best performance is by Graham with 
an accuracy of 96.53% using max pooling [14].  

Researchers have considered the use of deep learning for the 
purpose of obstacle avoidance using the TurtleBot platform. Tai, 
Li, and Liu used depth images as the only input into the deep 

network for training purposes [15]. They discretized control 
commands with outputs such as: “go-straightforward”, “turning-
half-right”, “turning-full-right”, etc. The depth image is from a 
Kinect camera with dimensions of 640 x 480. This image was 
downsampled to 160 x 120. Three stages of processing were 
completed where the layering is ordered as such: convolution, 
activation, pooling. The first convolution layer uses 32 
convolution kernels, each of size 5 x 5. The final layer includes 
a fully-connected layer with outputs for each discretized 
movement decision. In all trials, the robot never collided with 
obstacles, and the accuracy obtained after training in relation to 
the testing set was 80.2%. Their network was trained on only 
1104 depth images. This hints at the idea that maybe many edge 
cases are missing or that this dataset is specific to only one 
environment. The environment used in this dataset seems fairly 
straightforward – meaning that the only “obstacles” seem to be 
walls or pillars. Tai and Liu produced another paper related to 
the previous paper [16]. Instead of a real-world environment, 
this was tested in a simulated environment provided by the 
TurtleBot platform, called Gazebo. Different types of corridor 
environments were tested and learned. A reinforcement learning 
technique called Q-learning was paired with the power of deep 
learning.  

The research reported in this paper describes an approach to 
learning an obstacle avoidance system by training and 
leveraging a generalized image classification deep learning 
network and repurposing it for obstacle avoidance.  Specifically, 
the final fully-connected feed-forward network layer is altered 
to form a new one.  The new network layer is initiated with 
random weights and then the entire learning system is trained on 
a new database.  The new database of images was derived from 
a training process involving a robot operator driving the robot 
and labeled each snapshot of the drive with a movement option. 
The network now operates as an obstacle avoidance system, 
which takes proper action in the trained space.  In addition, it has 
sufficiently abstracted the concept of an obstacle so that it can 
avoid obstacles in new and distinct environments with obstacles 
never encountered in the training environment.   

Our approach differs from the two Tai et al. papers and that 
of Boucher’s obstacle avoidance work.  Research like Boucher’s 
does not consider higher level learning, but instead builds upon 
advanced expert systems, the likes of which can detect 
differentials in the ground plane. By focusing on deep learning, 
our research allows a pattern based learning approach that is 
more general and which does not need to be explicitly 
programmed. The logic structure for obstacle avoidance can be 
fairly complex depending on the variability in the environment. 
While Tai et al. used deep learning, their dataset was limited 
with just over 1100 images. We built our own dataset to have 
over 30,000 images, increasing the size of the effective dataset 
by about 28 times. The environment for our research is much 
more complex than just the flat surfaces of walls and columns.  
In addition, for our research, we developed a dataset that was 
based on raw RGB images, opening the door to further research 
with cameras that do not have depth. Moreover, the sizes of the 
images used in this work were dramatically smaller, which also 
opens up the door for faster training and a speed up in forward 
propagation. Lastly, the results of this research are solely tested 
in the real world -- a simulated environment is not used.  In 



addition, our learned controller was able to avoid obstacles in 
environments other than the training environment.   

II. TURTLEBOT PLATFORM 

While the robot (which can be seen in Fig. 2) used for this 
research was not marketed as one that is based on the TurtleBot 
framework, its functionality is essentially equivalent to that of 
the TurtleBot platform. The research robot was marketed as a 
“Deep Learning Robot” from the robotics company, 
Autonomous AI [17]. The robot includes an Asus Xtion Pro 3D 
Depth Camera, a microphone embedded in the camera, and a 
speaker. A Kobuki mobile base allows it to rotate and move in 
any direction on the ground plane. Most importantly, it is 
equipped with an Nvidia Tegra TK1, which allows it to carry out 
deep learning computations on a GPU instead of having to resort 
to long wait times for training with a CPU. This is its main 
differentiator from a regular TurtleBot. While the Tegra TK1 
was marketed as the world’s most powerful mobile processor, it 
only has 2GB of memory. This is problematic for training very 
deep networks and holding too many parameters in memory 
causes the robot to crash. While training, the robot is unstable 
because of this limited memory so running multiple programs at 
the same time has to be avoided. 

This robot is virtually a computer in itself, and it allows us 
to treat it as such as it is very compatible with Ubuntu 14.04. 
Wi-Fi and Bluetooth give us the flexibility of setting up network 
connections and connecting devices for communication, which 
we may consider in the future. The TurtleBot framework works 
hand in hand with the Robot Operating System (ROS). Google 
TensorFlow, Torch, Theano, and Caffe are all compatable deep 
learning frameworks. CUDA and cuDNN are available for 
implementing deep learning on GPUs and for speeding up that 
computation. 

III. DEEP LEARNING 

A. Artificial Neural Networks 

A deep learning network is a type of Artificial Neural 
Network (ANN). The typical ANN has interconnections of 
single neurons linked together by weighted connections through 
which information is transferred.  The idea is to create a 
biologically inspired control / learning system.   

These neurons are stacked in multiple layers where different 
layers of neurons serve different functions. There is an input, 
which goes to the first layer of neurons and the output of these 
neurons becomes the input for other neurons in a subsequent 
layer.  In fully connected models, every neuron in the previous 
layer is connected to every neuron in the next layer.  A threshold 
value (θ) symbolically represents the activation potential of a 
biological neuron. A weighted sum of all the inputs is compared 
to this value to determine an output after it is fed into an 
activation function, which in our research is the sigmoid 
function. 

B. Deep Learning Network 

The ANN mode of architecture is excellent for many 
applications, but has limitations when dealing with large images, 
which was one of the main motivations for the development of 
deep learning. Instead of sending all input values from layer to 
layer, deep networks take regions or subsamples of inputs. 

Instead of sending all pixels in the entire image as inputs, 
different neurons will only take regions of the image as inputs. 
Essentially, full connectivity is reduced to local connectivity.  In 
some ways, this model is more biologically inspired than ANNs 
because it better models the visual cortex. Neurons in the visual 
cortex are activated by stimuli in a specific location based 
manner. This means that neurons that are linked as direct 
neighbors share the saturation from an impulse [18].    

1) Convolution: This method of subsampling used in deep 
learning is called convolution. The local receptive fields can be 
seen as small windows, with a predefined number of panes, that 
slide over the image.  These panes help determine what features 
under the window we want to extract, and over time these 
features are better refined. The weighted windows are 
commonly called kernels. The kernel defines how the image gets 
subsampled.  Matrix operations use the weights of the kernel and 
the values of the image to produce the parts of a newer, smaller 
image by placing the product of the operation in a correlated 
region in the new image. Depending on the type of kernel, 
different features of the image may be highlighted, which leads 
to different results, such as blurring and sharpening. In this way, 
networks can develop identification of complex patterns in 
datasets just by applying kernel filters.   Deep learning networks 
are able to develop these kernels through training -- supervision 
is from a loss function in the output layer determining how close 
the network’s prediction was to the actual value of the image. 
Through training, these kernels become more fine-grained to 
reduce the loss function’s output.  

2) Pooling: Deep networks may include many different 
types of layers. A general strategy is to follow a convolution 
layer with a pooling layer. The convolution layer is responsible 
for learning the lower level features of an image, such as edges, 
and the pooling layer seeks to detect higher-level features, such 
as corners where two edges meet.  Pooling is also good for 
building translational invariance, where the system can detect 
an object even if it moves to a different part of the image in a 
subsequent frame.   In this way, dominant features persist 
deeper into the network.  In addition, pooling can help in 
dramatically reducing the size of an image by down sampling a 
rectangular region of pixels in one of three ways:  max pooling 
(choose the maximum pixel value), min pooling (choose the 
minimum pixel value), and Average pooling (choose the 
average pixel value).   Reducing the size of the image 
significantly cuts down on the time for processing an image. 
The convolution layer passes convolution windows over the 
image to produce new images that are smaller. The number of 
images (each accompanied by a convolution kernel signifying 
the weights) produced can be specified by the programmer.  
Pooling is then applied to each one of these new images.   
Convolution and pooling are the most prominent deep learning 
layers, but there were other types of layers that we used in this 
research. 

3) Rectified Linear Unit: The Rectified Linear Unit (RLU) 
layer involves returning a numerical input if it is positive, 
otherwise multiplying the input by -1. This effectively 
eliminates negative inputs and boosts computation time over 
other functions such as the sigmoid activation function since no 
exponentiation and computations are required.  Alex 
Krizhevsky et al. were able to accelerate convergence in their 



training by a factor of six times in relation to the sigmoid 
activation function using this function [6]. 

4) Local Response Normalization: The Local Response 
Normalization layer imitates biological lateral inhibition, which 
is a situation in which excited neurons have the capability and 
often tendency of subduing neighbor neurons [19].  This results 
in an amplification when there is a differential in neuron 
excitement.  These layers allow neuron’s with large activation 
values to be much more influential than other neurons, which 
results in the survival of significant features from one layer into 
deeper layers of the network.   

5) Fully Connected Layer: The fully connected layer that 
we used is like that of a layer in a regular ANN.  This was used 
as the final layer of the network so the outputs of the neurons in 
this layer were the actual outputs of the network.  These outputs 
are compared to the desired outputs to compute the loss with 
the learning dependent on gradient descent updates. 

IV. DEEP LEARNING IN THE LEARNING ENVIRONMENT 

The problem addressed was that of training a deep neural 
network to control an autonomous vehicle driving in a tight, 
chaotic room/lab environment. To test the functionality and 
success of the program, the performance of the robot was 
checked to see if it could autonomously follow an approximately 
rectangular path in a tight environment without colliding into 
obstacles.  

 

Fig. 1. A visual of the environment with lab tables, chairs, and cabinets. 

Images are provided below to help understand this environment even more. 

A. Environment 

The training/testing environment (drawing in Fig. 1) was set 
up in a robotics lab.  The white circles with dark borders 
represent chairs. The radii of the chairs are larger than the circles 
show because the feet of the chairs extend further such that there 
is no gap for the robot to move in between neighboring chairs 
(in most cases).  The white rectangles with dark borders are lab 
tables, which are solid sides on the ends, but not along the long 
sides.  They are tall enough for the robot to be able to drive 
through and for this reason, chairs were placed in those 
locations. The dark brown rectangle is a boxed off area in the 
lab that is used for other experiments, but in this research acts as 
borders that the robot would need to avoid hitting. The golden 
rectangles denote cabinets, which the robot must also avoid. The 
red rectangle in the middle of the figure shows the general path 

that the robot must follow to avoid chairs, tables, and other 
obstacles.  During training and tests we ran the robot on this path 
in both the clockwise and counterclockwise directions. 

Fig. 2 shows some photographs of areas in the environment.  
The intent was to create a complex testing area by the placement 
of the obstacles.   One can see from Fig. 2 that the gaps outside 
of the desired path were closed with the adjustable round chairs, 
which each have 5 rounded legs and a circular stump. The chair 
heights can be adjusted and the orientation can change 360 
degrees for both the base and the actual seating. The chairs were 
chosen as the main objects of interest because, due to the legs, 
there is a good amount of gap area in between the objects. This 
allows for complexity in defining what an obstacle is and what 
an obstacle is not. The deep learning system cannot simply learn 
to follow the color of the carpet because even the gaps reveal the 
carpet.  There was also a dynamic nature to the environment 
since students often moved the chairs each night. While the 
chairs might be in the same relative location, the orientations 
were completely different each time.  This added to the 
complexity of the problem since it is not easy for a pattern to be 
developed when the orientation of objects keeps changing. 

Although we wanted sufficient complexity to ensure this was 
a difficult task, there were two situations in the environment that 
would be impossible for the robot to solve. In the first, if there 
is enough of a gap between two chairs the robot may make the 
decision to go straight instead of turning away from the chairs. 
Therefore, the chairs were placed close enough so that the gap 
was smaller than the robot.  In the second, if the robot is heading 
directly toward a cabinet and close enough so that it only sees 
the cabinet, it won’t know which way to turn.  Even for a human 
with limited peripheral vision, it would be impossible to know 
which direction to turn. To solve this issue, areas with cabinets 
included an open cabinet that swiveled to a direction the robot 
was supposed to avoid.  These changes established rough 
guidelines as to the correct path for the robot, plus since the 
contents of the cabinets added a variety of different items for the 
visual system to process, these changes added complexity to the 
environment. 

   

Fig. 2. The images above demonstrate various obstacle avoidance scenarios in 

the training environment. 

Chairs, cabinets, and tables were not the only obstacles to 
avoid. A good amount of the dataset included the borders of a 
colony space environment and a few images in the dataset 
included small cardboard boxes.  It was important to include 
obstacles like this in order to confirm that the concept of obstacle  



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The final architecture for the deep network. This is inspired by the architecture for solving the CIFAR10 dataset.       

avoidance was being abstracted instead of the robot only 
avoiding black colored objects (the black chairs). It is also 
significant to note that students used the lab throughout the day 
and night, so conditions of the carpet changed while the dataset 
was being developed.  For example, coins and shreds of paper 
were found at different locations on the path. We decided not to 
remove some of these items while building the dataset because 
it only added to the diversity in what we might consider edge 
cases. 

A. Dataset Collection: 

To collect data for learning, an operator remotely drove the 
robot along its path avoiding obstacles while the robot’s camera 
took photographs.  These images were each labeled with the 
corresponding action taken by the operator in the position where 
the photos were taken.  Every time the user hit a directional key, 
the image was saved along with its label.  The TurtleBot was 
driven around the lab following the path in both directions. To 
increase the diversity of the dataset, different starting points 
were chosen and hard scenarios such as being close to walls 
were considered. Overall, 30,754 images were collected.   By 
default the images from the camera were 640 x 480.  These were 
later downsized to 64 x 64 for our deep learning network.
  

 

B. The Deep Neural Network Architecture 

To learn the controller for our robot we replicated the deep 
network architecture used by Alex Krizhevsky to solve the 
CIFAR10 dataset.  We trained this network with the original 
CIFAR10 dataset and obtained about 74% accuracy. We then 
used this trained network, with some modifications to learn our 
dataset.  The final network used for our research is shown in Fig. 
3.  It is split into three lines to ease the visualization. We can see 
that there are 3 iterations of the layer combinations of 
convolution, pooling, and normalization.  The layer “ip1Tweak” 
is labeled as such because the final layer of Krizhevsky’s 
network was removed and replaced with an inner product, or 
also considered as fully connected, layer that only had 3 outputs 
(his had 10). This is signified by the value 3 above the ip1Tweak 
layer in the visual. The 3 outputs correspond to the decision 
making of the TurtleBot in terms of autonomous driving 
directions. The original network included 32 convolution 
kernels for the first convolution, 32 convolution kernels for the 
second convolution, and 64 convolution kernels for the last one. 
We can also see how each convolution layer is immediately 
followed by a pooling layer. Every convolution layer also 
includes a rectified linear unit attached to it. Local response 
normalization also appears to be an effective addition to this 
network, as it augments the outputs of 2 of the 3 pooling layers. 



The dataset was split for the final network: 7,689 images for 
testing and 23,065 images for training. This is based on a 75% 
training split of the entire dataset. The hyperparameters were 
defined as: 
- testing iterations (how many forward passes the test will carry 
out): 100  
- batch size (this is for batch gradient descent – notice that batch 
size * testing iterations will cover the entire testing dataset): 77  
- testing interval (testing will be carried out every x training 
iterations): 150 
- base learning rate: .001  
- momentum .9 
- weight decay: .004  
- learning rate policy: fixed  
- maximum iterations: 15,000   

B. Results Using Deep Learning for Autonomous Driving 

After training with the CIFAR10 dataset and altering the 
network, we trained using approximately 30,000 images.  It took 
the network about 200 iterations to get to 84% accuracy and 
around 2000 iterations to achieve an accuracy of about 90%. It 
was able to obtain an accuracy of about 92% after 15,000 
iterations.  To test the results in the environment, ten different 
runs were completed where the robot was reversed after a 
completion of a lap in order to complete the lap in both 
directions [20]. The robot did very well in these tests, although 
rarely, it lightly grazed against the leg of a chair or a cardboard 
box. However, this did not change the trajectory of the robot and 
it was still able to complete its course. For this reason, we did 
not consider these rare occurrences to be major collision events. 

V. TESTING IN NEW ENVIRONMENTS 

To fully understand the extent of the learning it was 
important that we tested the robot in the real world.  The robot 
was first tested in the original environment where the dataset 
was collected and used to train the controller.  This was a fair 
assessment to make, and a true “validation dataset” of a sorts, 
since the robot had not seen these exact orientations as every run 
was different. To take this testing a step further, we explored 
testing the robot in three different environments.  

The first new environment test was to see if the robot would 
be successful in avoiding bumping into walls in a hallway (Fig. 
4 top photos). For the most part the robot was able to turn away 
from walls in the hallway. This is especially surprising since 
there were very few images in the original dataset that had white 
walls to turn away from. Perhaps the robot is instead turning 
away from the dark brown bottom lining of the white walls as 
that color is close to the color of the chairs. The robot also 
successfully managed to turn away from doors in the hallway. 
However, a head-on approach to a door was a problem and the 
robot had trouble navigating its way out of that situation. This 
makes sense as we can liken this to the issue with head on 
approaches of cabinets in the original training environment. 
Some diagonal approaches are also problematic. In some cases, 
the robot would not make enough of a turn and did not see the 
edge of a wood lining for a door and would bump into it.   We 
speculate that this could be mitigated by tweaking the turning 
angle so that smaller turns are made. 

 

 

   

     

    

   

Fig. 4. New environments not seen by the robot during training: first row: hall; 

second row: colony space; third row: other lab with lower chairs/tables; fourth 

row: person. 

 



The second new environment that was tested was the colony 
space in the laboratory (Fig. 4 second row photos). This is an 8 
x 8 foot area where wooden blocks of 1 x 1 foot dimension can 
be rearranged to create paths. The robot was generally 
successful in avoiding these blocks, but only if the blocks were 
doubly stacked on each other or if the blocks were placed 
horizontally. One hypothesis for this behavior is that most of the 
avoidance of similar colored and textured objects from the 
original dataset had objects that were large (cabinets) or high 
enough for the robot to detect ahead of time (border of colony 
space).  

The third environment that the robot was introduced into was 
a differently configured room (Fig. 4 third row photos). This 
room does not have cabinets like the original room and the tables 
and chairs are different. The robot successfully avoided all 
chairs and tables. It was also able to go under tables and avoid 
objects there, where lighting conditions were much darker than 
in any image in the dataset. The fact that the robot was able to 
avoid chairs with different designs in the new room is yet 
another confirmation that the deep neural network has abstracted 
the concept of obstacle avoidance. Perhaps what is more 
important for the network is the concept of going to an open 
area, which might focus on the color and texture of the carpet, 
since the carpets in the two rooms are very similar.  

Another interesting scenario presented to the robot was that 
of obstacle avoidance with humans, or specifically human legs 
(Fig. 4 bottom row photos). Recall that Gritti et al. approached 
a similar problem scenario or at least to the point of detecting 
legs. Although nowhere in our original dataset were jeans or 
human legs introduced, the robot was able to avoid these 
obstacles as well. One hypothesis is that the network correlates 
dark objects with obstacles and the individual in the experiment 
wore dark pants. However, this is very hard to verify since the 
inner workings of the network do not easily reveal that 
information. 

VI. CONCLUSIONS  

The approach of fine-tuning Krizhevsky’s network that 
solved the CIFAR10 dataset was greatly successful. The robot 
effectively avoided obstacles in the original room where the 
dataset was collected and it also avoided colliding into other 
obstacles that were not part of the dataset. This was 
demonstrated by placing the robot in three new environments. 
This implies that the learning system has abstracted the idea of 
obstacle avoidance and that the network did not overfit in its 
training on the original dataset. In other words, the deep network 
did not solely focus on specific chairs, tables, and cabinets as the 
only obstacles to avoid.  In future work, we plan to use this same 
approach to learn control programs for other robots in 
completely new environments.  For example, in an outdoor 
environment, this approach can learn to stay on the path in 
addition to obstacle avoidance.  It could also learn to take the 
correct action, such as stopping in a dynamic environment with 
no place to go, such as when surrounded by people, and start 
moving again when the area is sufficiently clear.   
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