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Abstract

Gait generation is a major part of legged robot control.
Learning gaits is a difficult problem because the simulta-
neous movement of all six legs must be coordinated.  A
sequence of commands sent simultaneously to each of the
robot’s leg actuators will produce forward movement.  In
order for this movement to be continuous, this sequence
needs to be continually repeated.  The success of this
repetition is contingent on the smooth transition of the
robot from one state to the next.  Learning cycles of con-
trol activations (simultaneous commands to the leg actua-
tors) for hexapod gaits has been done using Cyclic Ge-
netic Algorithms.  This form of evolutionary computation
was shown to successfully generate gaits when the model
used average values for the leg movement rates.  Although
using average rates resulted in fast convergence, the CGA
could not fully exploit the capabilities of the robot.  In this
paper, we use a CGA working on a model with measured
rates for all possible leg movements to generate gaits for a
hexapod robot.  These gaits are then successfully trans-
ferred to the actual robot.
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1. Introduction

An important aspect of legged robot control is gait gen-
eration.  Hexapod gaits require coordinating the simulta-
neous movement of six legs.  To maintain sustained for-
ward movement, the sequence of individual actions that
propel the robot needs to be continually repeated.  This
puts the robot through several states in a cycle and that
must be easily transitioned from one to the next.  The
problem is compounded when the robot’s legs have dif-
fering capabilities.  This also makes it difficult to transfer
a solution from one robot to another, as the robots will
inevitably vary in construction.  These issues should be

taken into account by the learning mechanism.  Using
some form of evolutionary computation operating on a
model of the robot can cover these issues as long as the
model is adequately accurate.  However, since simulations
are unable to completely represent an environment, the
solution obtained by training on the model needs to be
tested on an actual robot to verify it’s viability.

Gait generation for hexapod robots has been addressed
with several approaches. Rodney Brooks (Brooks,1986)
used subsumption architecture in the development of his
robots.  In later work, he used a genetic algorithm to learn
components of this architecture (Brooks, 1989).  Randall
Beer used a neural net to control a simulated cockroach
(Beer,1990).  Randall Beer and John Gallagher used a
genetic algorithm as a learning mechanism by having it
learn the weights in a pre-defined neural network
(Beer,1992) and tested it on an actual hexapod robot
(Gallagher,1994).  These solutions proved to be success-
ful for the robots used but we wanted a solution that could
work on the most primitive of robots and required less ‘a
priori’  knowledge of how to walk.

Graham Spencer (Spencer,1994) used genetic pro-
gramming to develop gaits for a simulated robot using
minimal knowledge about the intricacies of walking. Al-
though his results were promising in that the system con-
sistently learned gaits which generated sustained forward
movement, we wanted a system that would learn the opti-
mal gait for our model which represented an actual robot
with a very primitive control interface and no means of
feedback.  In addition, we wanted it to be continually
adaptive to robot capabilities and be a quickly converging
algorithm suitable for any-time learning (Grefenstette,
1992). To this end, Cyclic Genetic Algorithms (CGAs)
were developed.

In previous work, CGAs (described in Section 2) were
used to develop a set of primitive instructions that can be
repeated continually to produce a gait (Parker,1996).
Gaits for a hexapod robot were learned in simulation and
tested on an actual robot (Parker,1997).  These tests
showed that the CGA could successfully develop hexapod
gaits using a model that had accurate measurements for



the leg swing capabilities, but only average figures for the
rate of movement.  These rates were averages of the
up/down and forward/back movement; all legs had the
same rate capabilities.  Tests using these rates showed that
the CGA could produce good tripod gaits.  Having the
rates of all the legs the same reduces the complexity of the
problem, but does not allow the CGA to exploit the pecu-
liarities of a specific robot.  This could put limitations on
the solution. The best way to generate a gait specific to a
robot is to use exact measurements and exact rates from
the robot.  This method, however, makes it harder for the
CGA to develop a gait for the robot, as the definition of
optimal is no longer clear.  There are several possibilities
for leg extensions and for how various leg extensions are
used together.  The search space is substantially increased,
requiring the CGA to explore many more possible combi-
nations in a search for the optimal solution.

In this paper, we use a CGA operating on a model with
movement rates measured individually for each leg to
learn gaits for a specific hexapod robot.  Each leg in the
model has separate values for rates from the robot for rate
up, rate down, rate forward, and rate backward.  The gaits
learned in simulation are then downloaded onto the actual
robot to confirm the solution’s viability.  A graph is pro-
vided that shows the learning curves in simulation and on
the robot.

2. Cyclic Genetic Algorithms

Cyclic Genetic Algorithms were developed as a modifica-
tion of the standard Genetic Algorithm first introduced by
John Holland (Holland,1975).  Genetic Algorithms use
ideas from the laws of selection and survival of the fittest.
They use the three standard genetic operations of selec-
tion, crossover, and mutation on a randomly generated
population to search for an optimal solution to a problem.
The population is a collection of individuals that are pos-
sible solutions to the problem and usually represented as a
bit string of fixed length, which is called a chromosome.
Whether or not an individual survives depends on how
well its solution performs compared to the other individu-
als in the population, which is the solution’s fitness.

Cyclic Genetic Algorithms (Figure 1) were designed to
solve problems requiring a solution made up of a se-
quence of tasks that is to be continually repeated
(Parker,1996).  The genes of the CGA chromosome are
tasks (as opposed to traits in a standard GA) and the
chromosome is a cycle of bits (as opposed to linear bit
string in a standard GA).  In addition to the cycle, the
CGA can have two tails.  These tails allow for the com-
pletion of tasks during the pre and post-cycle procedures
when necessary.  In the case of gait generation, the pre-
cycle could be used to position the legs in a ready to walk

stance, and the post-cycle could be used to return the legs
to a stable stance once the desired forward movement was
complete.  The genes of a CGA chromosome can be as
simple as individual tasks that are to be completed in a
specific amount of time up to complicated sub-cycles that
can be trained separately on a CGA.

Figure 1: A CGA chromosome.  It has a start sec-
tion (in this case made up of three genes), an itera-
tive or cyclic section, and a tail section.

CGAs can be represented by both fixed and variable
length chromosomes.  In order for the CGA to have the
flexibility to complete a full cycle, the system must be
capable of assigning the appropriate number of tasks to
each phase.  Variable length chromosomes allow for the
maximum possible flexibility in this regard, but their vari-
ability can slow convergence. Using fixed length chromo-
somes, with the task plus the number of times it is re-
peated encoded in the gene, the flexibility of a variable
length chromosome can be represented in a fixed length.
However, the chromosome must be designed to have
enough genes so that enough signal changes can occur to
solve the problem.

For our tests, the chromosome was cyclic with no tails
(previous tests showed that the best solutions were tail-
less). The genes of the chromosome were made up of two
parts: activations (tasks delineating the movement of each
actuator) and repetitions (the number of time to consecu-
tively repeat the activation.  The resulting trained chromo-
some will contain a cycle of primitive instructions that can
be continually repeated by our robot’s simple controller to
produce a gait.
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3.  ServoBot

The robot used for our tests was a ServoBot (Figure 2).
The ServoBot is a legged robot with two degrees of free-
dom per leg.  Each leg has two servos, resulting in twelve
servos that provide forward thrust and vertical movement.
The robot used in these tests has a different servo place-
ment than the ServoBots used in previously reported re-
search (Parker,1997).   The servos controlling vertical
movement are installed in such a way that gives the robot
increased potential to hold itself higher off the ground.
The servos controlling the horizontal movement for the
front pairs of legs on the current robot are further back
from the legs, closer to the middle pair of legs, than in the
previous robot.  This difference in placement in the hori-
zontal servos meant that the front legs’  full extension ca-
pabilities had to be reduced to avoid collisions with the
middle legs.  Both of these changes made the gait control
solutions significantly different from those learned in pre-
vious experimentation.

Figure 2: The ServoBot Robot used in Testing

A BASIC Stamp IISX controls the ServoBot.  The Servo-
Bot is powered by a 9 volt battery and either four 1.5 volt
batteries carried on-board or an external power supply.
The control program is written in a BASIC Stamp Editor
on a PC and then downloaded onto the control chip via
the PC serial port connection.  Once the program has been
downloaded, the ServoBot can be disconnected from the
computer.  The BASIC Stamp will store and execute the
sequence of instructions in the control program.  Each
instruction in the sequence corresponds to an activation
number and the number of repetitions for that activation.

An activation for the ServoBot is in the form of a 12-
bit number, which controls the actuators of the robot.
Each bit in the number corresponds to a servo.  When the
bit is set at 1, the leg is up if it is a vertical servo and back
if it is a horizontal servo.  When the bit is set at 0, the leg
is down or forward, respectively.  Figure 3 gives an ex-
ample of an activation and shows the resulting movement
on the robot.  The bits of the activation number can be
divided into six pairs, where each pair controls the leg's
vertical and horizontal movement.  The first bit of a pair
represents the vertical movement and the second bit repre-
sents the horizontal movement.  The legs on the ServoBot
are numbered 0, 2, and 4 from front to back on the right
side, and 1, 3, and 5 from front to back on the left side.

Figure 3: A Robot Activation and Its Results

A model of the ServoBot had to be simulated by the com-
puter in order to allow the CGA to generate a gait.  Meas-
urements of each leg's capabilities were used in a simple
data structure (Figure 4)  that also recorded each leg's
current state.  These capabilities, combined with the input
activations, were used to determine how much to change
the current state of each leg.  Each leg actuator was acti-
vated individually so that the leg's maximum throw could
be recorded.  These measurements were then used to fill
the max leg position fields in the computer model.  An
average rate per activation was calculated for each leg’s
horizontal and vertical movement by dividing the maxi-
mum throw by the number of activations required to attain
it.

In previous work, the rate up/down and rate for-
ward/back were applicable to all legs, meaning there was
just one value for the rate up/down and one for the rate
forward/back.  In the tests reported in this paper, meas-
urements were taken from each of the legs to give six spe-
cific rate up values, six specific rate down values, six spe-
cific rate forward values, and six specific rate back values.
These rates were then used in the computer model for the
CGA to generate possible gaits.



current up - current vertical position of the leg
max up - position off the ground when completely up
max down - position off the ground when completely

down
current back - current horizontal position of the leg
max back - position relative to completely forward when

completely back
rate up - rate of vertical upward movement when servo

activated
rate down – rate of vertical downward movement when

servo activated
rate back - rate of horizontal backward movement when

servo activated
rate forward – rate of horizontal forward movement

when servo activated

Figure 4: Model Data Structure

4.  CGA Applied to Gait Generation

4.1 Chromosome

The fixed length chromosome (Figure 5) is a list consist-
ing of the individual’s global coordinators and inhibitors
and a 12 gene cyclic section.  The genes in the cyclic sec-
tion were each made up of two integers: the activations
integer (12 bit number) and the repetitions integer (8 bit
number).

 (C  I  ((A R)1 (A R)2 (A R)3 (A R)4 (A R)5 (A R)6

           (A R)7 (A R)8 (A R)9 (A R)10 (A R)11 (A R)12))

Figure 5:  Fixed Length CGA Chromosome with
Global Coordinators & Inhibitors

Twelve in the iterative section was used because it was
thought to be enough move changes to handle every pos-
sibility (two per leg for the six-legged). Coordinators and
inhibitors were a part of the robot’s coordination, which
could evolve to increase leg control and proper move-
ment.  They were initiated as random numbers and were
learned by the algorithm.

Coordinators were 12 bit numbers that directed the co-
ordination of individual leg movement. This number could
be looked at as six pairs of bits, one pair for each leg.  The
first being the back-down coordinator which, if activated,
ensured that the leg would be down or moving in that di-
rection if it was moving back.  The second bit was the
forward-up coordinator, which ensured that the leg would
be moving forward if it was up.

The inhibitors affected pairs of legs.  They prevented
pairs of legs from moving back at the same time.  The 2,3
inhibitor prevented both legs 2 and 3 from going back at
the same time.  It allowed 2 to move back, but inhibited 3.
The inhibitors were stored in a single 15 bit number (one
bit per possible pair).  This 15 bit number could be
thought of as 5 groups.  The first group made up of 5 bits
indicated which legs would be inhibited from moving in
the same direction as leg 0.  Five bits were required to
cover the remaining legs 1 through 5.  The second group
was made up of 4 bits showing what legs would be inhib-
ited from moving in the same direction as leg 1.  Since leg
0 had already been matched with all legs in the first group
it does not appear in the second.  This continues until all
possible leg matchings have been addressed.

4.2 Genetic Operators

The probability for selection was based on fitness, which
was computed by estimating the millimeters of travel after
1000 activations.  The was determined on the model by:

1) taking the current state of legs
2) applying the vertical movement of the activation
3) calculating the balance and probable legs on the
ground from the model’s current vertical position of
each leg
4) applying the horizontal movement of the activation
to alter the leg’s state, but only counting legs on the
ground in computation of  the movement (fitness)
5) taking off some deduction for lack of balance
and/or asymmetry of movement
6) repeat using the next activation and the new state
of the robot

This was sequentially done from activation to activation
and repeated as many times as required in the cyclic sec-
tion to reach a total of 1000 activations.  Using this fit-
ness, the best individual was preserved; the rest of the new
population was formed by stochastic selection of mates
with the probability of selection proportional to the fit-
ness.

Crossover was done by randomly picking correspond-
ing spots in the chromosome.  In the cyclic section, since
it could be considered a circle, crossover was performed
at two points (equivalent positions in both chromosomes).
The effect was to swap sections within the circle.   An
alternate type of crossover was a gene-by-gene crossover,
which would perform crossover in each of the corre-
sponding genes of the two chromosomes.  In the case
where these genes were represented as lists, crosses could
happen between the individual members of the list or
within the bits of the specific numbers in the list.

Two types of mutation were used.  Gene replace gave
each gene a random chance of being replaced by a new
completely random gene.  With gene mutate each part of



the gene had a random chance of having one of its bits
altered.

Gene-by-Gene Evaluation was a clean up operator that
randomly picked one or two individuals from the popula-
tion on each set of trails and examined each gene one at a
time.  Genes were evaluated on the whole and move-by-
move by comparing the previous move fitness to the pres-
ent.  Genes that were worse than a preset minimum were
eliminated.  Genes that were good in the execution of their
early repetitions and subsequently dropped below a
threshold in the later repetitions were modified by reduc-
ing their repetitions.  Genes that had zero repetitions were
moved out so that only active genes were at the start of the
iterative section.  Following these eliminations, if the
number of genes or the total number of gene repetitions
fell below some threshold, additional random genes were
added until the thresholds were met.

5. Tests

Tests were run to determine if a plausible hexapod gait
could be developed using the actual rates from the robot.
The testing done in simulation and on the robot used the
actual measurements for each leg of max up, max down,

max back, rate up, rate down, rate back, and rate forward
gathered from the robot.  The tests were run on five dis-
tinct randomly generated populations for 5000 genera-
tions.  Each population was made up of 64 individuals
(chromosomes).  In order to see the progression of learn-
ing, intermediate generations looking at the 10th, 100th,
200th, 500th, 1000th, and 2000th generations were saved to
file.

To determine the fitness of each resulting population,
performance tests were run in simulation.  The simulated
forward movement produced by the generation’s best in-
dividual for each of the intermediate generations was
computed using the computer model.  These gaits were
then downloaded and tested on the actual robot to deter-
mine if the solution was transferable. The distance trav-
eled by the robot in each of these tests was recorded.

6. Results

Figure 6 shows the simulated and actual values for each
generation averaged over the five populations. The hori-
zontal axis represents the generations completed and the
vertical axis represents the distances traveled at each gen-
eration in centimeters.
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Figure 6: Gait Learning Tests in Simulation and on the Actual Robot Averaged over Five Trials

The results showed that using the CGA learning on a
model having the actual rate measurements for the legs
was successful both in simulation and on the actual robot

(Figure 6).  In simulation the results showed a steady im-
provement in the distances traveled over the 5000 genera-
tions.  In most cases, the makings of a tripod gait were



visible by the 100th generation, yet negative or stationary
movements caused by awkward leg arrangements during
gait phase transitions hindered the success of the gaits.  In
three of the five cases, near optimal tripod gaits were
achieved by 2000 generations.  Figures 3 and 7 illustrate
the tripod gait.  The two outermost legs on a side work
with the middle leg on the opposite side, forming a trian-
gular shape that maintains static stability. Once the tripod
gait was developed in these three populations, any re-
maining irregularities in the stepping pattern were me-
ticulously smoothed out.  In two of the five cases, the gaits
were not predominantly tripod, but they still resulted in
increased forward movement.  The nature of these gaits is
described later in this section.

Once the simulations were complete, the gaits were
downloaded and tested on the robot.  The results of the
actual testing on the robot showed a similar learning curve
to the simulated results although the fitness was consis-
tently less (Figure 6).  During actual tests of the group of
three tripod gait populations, the tripod nature was not
seen until around 200 generations.  What may have con-
tributed to the robot’s inability to produce a tripod gait

when the simulated results showed one was the inaccuracy
of the model in the computer.  Not all outside forces were
transferred to the computer environment.  For example,
the simulation did not take into account gravity or vari-
ances in friction.  The weight of the robot was ignored.  In
simulation, the center of gravity of the model was not as
close to the ground as the robot was in actuality.  Though
the model fully utilized the capabilities of its legs, once
the actual robot began walking, leg extension was hin-
dered by the weight of the robot.  For this reason, often
when a gait was expected to perform well, it was either
stationary or experienced dragging of the legs.  A tripod
or near tripod gait was reached by the 1000th generation.
In some cases, after a tripod gait was found, a slight de-
crease in the distance traveled would occur.  This can be
attributed to the model perceiving that the most optimal
solution would require using the maximum vertical and
horizontal movement possible although the optimal thrust
could actually be found without utilizing the entire range
of motion.  When this occurred, it would take the robot
longer to go the same distance.

Figure 7:  Representation of the tripod gait produced for the ServoBot using CGAs.  The diagram shows a
timeline of what all the feet are concurrently doing.  The dark blocks indicate times that the legs are in
swing (off the ground) and the absence of a block means the leg is in stance (providing thrust).  At least
three legs are on the ground at all times.  This gait is statically stable.

Figure 8: Alternate Gait Developed by the CGA for the ServoBot



The first alternate gait developed can be seen in Figure 8.
This gait uses the front and middle leg on one side with
the back leg on the opposite side of the body.  Although
this is not a tripod gait, it was still able to perform at vir-
tually the same level as the tripod, resulting in a similar
learning curve.  The second alternate gait incorporates
aspects from both the previous gait and the tripod gait.
First it uses the front left leg and the middle and back right
legs.  Then it uses the front and middle right legs and the
back left leg.  The last phase uses a tripod arrangement,
but is unable to fully develop the tripod gait.  Instead it
cycles back, repeating the three phases.  While this gait
was not as clean as the other four, it still produced reason-
able forward progress.

7. Conclusions

Our tests illustrate that the Cyclic Genetic Algorithm was
able to produce reasonable gaits, both in simulation and in
tests done on the robot.  Due to the lack of external forces
in the model such as accurate friction and gravity, the
simulation regularly performed better than the tests that
were done on the robot.  Once the gaits were downloaded
onto the robot and tested, our results showed that, in three
of the five tests run, the model was able to achieve a tri-
pod gait.  In the two cases where a tripod gait did not de-
velop, the tests produced alternate gaits that showed posi-
tive learning curves.  The CGA was successful in gener-
ating a gait using the actual values for rate up, rate down,
rate back, and rate forward that could be applied to the
hexapod robot.  This shows that CGAs can learn despite
the increased complications of a model with specific rate
information and can successfully be used to develop gaits
for individual robots.
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