
Learning Live Autonomous Navigation:

A Model Car with Hardware Arduino Neurons

Mohammad O. Khan and Gary Parker
Department of Computer Science

Connecticut College

New London, CT, USA

parker@conncoll.edu, mkhan4@conncoll.edu

Abstract — Previously we developed an implementation for an

easily expandable hardware Artificial Neural Network (ANN)

capable of learning using inexpensive, off-the-shelf Arduino Pro

Mini microprocessors. This ANN system is unique, general use,

unspecialized, and inexpensive. The implementation involves a one

neuron per microchip representation, a ratio which allows for

computational parallelism and ANN architecture flexibility

inherent to biological neural networks. Learning happens

completely on hardware via backpropagation without the need for

communication with a computer. Tests showed successful,

dynamic learning of the logical operations OR, AND, XOR, and

XNOR. In this paper, we demonstrate the usage and strength of

this implementation by applying the same framework to learn live

obstacle avoidance and autonomous navigation for a 1:24 scale

model car equipped with ultrasonic distance sensors. This test of

the application involved a user who supervised the learning and a

method to easily transition between testing and training the ANN

on the car via Bluetooth. Results show that the hardware ANN

consistently learns to navigate the car through an obstacle course

from entrance to exit and vice versa with no collisions.

Keywords—Artificial Neural Networks; hardware; Arduino;

backpropagation; dynamic learning; autonomous navigation; car

I. INTRODUCTION

A biological neural network consists of billions of

interconnected neurons. An Artificial Neural Network (ANN)

attempts to model such a network for biologically inspired

control applications with learning capabilities. Most ANNs are

implemented in simulations and hardware implementations

usually have the entire ANN on one chip. This research

involves a unique representation of an ANN whereby each

microchip represents a single neuron. The commercial market

has many hardware ANNs, but no general use, unspecialized,

and inexpensive models exist with such representation.

Generally, extra modules and processing parts allow the chip to

function as a single neuron. More commonly, multiple neurons

are implemented on one chip. These designs generally require

a good grasp of electrical engineering to fully understand the

data being mapped as voltage, current, and similar elements are

used to model data. Specialized and expensive parts are often

needed to manipulate these features. Furthermore, many of the

designs are specifically built for certain tasks, cannot be added

to bigger systems easily, and do not have learning capabilities.

In previous work we presented a more manageable way to

create general hardware ANNs with learning capabilities [1]. A

hardware ANN was built using Arduino Pro Mini (APM)

microchips, which are popular, low-priced microcontrollers,

coupled with open-source software. Each APM chip acts as a

single neuron with learning capabilities to permit a more

genuine imitation of a biological neural network. The

architecture of the ANN consists of one APM chip handling the

input and three other APM chips, two as neurons in the hidden

layer and one as a neuron in the output layer. The

communication in the ANN is supported by the I2C (Inter-

Integrated Circuit) of Arduino which creates a Master-Slave

relationship between the output chip, the hidden layer chips,

and the input chip. The finished network learned four different

logic operations successfully: AND, OR, XOR, and XNOR.

Researchers have explored many ANN architectures to

solve complex problems. We chose to build this proof of

concept based on the notion of solving more fundamental logic

operators. It is commonly known that to solve the XOR logic

operator a hidden layer is needed for the ANN. By building this

functionality we can validate that we have the performance of

a full ANN and not that of a single Perceptron.

 This paper discusses the real-world application of learning

control for autonomous car navigation using the previously

developed hardware Arduino ANN. A small car was

constructed to incorporate 3 ultrasonic ping sensors as input

with the output going to two full-rotation servos for locomotion.

The same ANN design was used as the previous research except

the input element was replaced with direct data input to the

hidden layer from the sensors. The car was driven wirelessly by

a user via an application written in the Processing prototyping

language, which delivered the desired output via Bluetooth at

the live moment to the car as it maneuvered around blocks in

an 8x8 foot testing space. Transitions between testing and

training were made to incrementally record the progress of the

car’s learning. This paper shows that the framework allows for

a highly flexible testing/training platform and that autonomous

car navigation can be successfully learned in a multi-path

obstacle colony space.

II. RELATED WORKS

A. Hardware Neural Networks

Significant development of dedicated hardware to develop

faster and more genuine networks that are processed in parallel

has been done in the past two decades [2]. Even then, there is

room for improvement. Dias, Antunes, and Mota note in a

review of commercial ANN hardware that such hardware is

specialized and expensive in regards to manufacturing time and

resources, and not much is known about its commercial

implications [3]. Goser notes one limitation as dedicated,

complex wiring due to specialized hardware [4]. Generally,

multiple neurons exist on one chip and often a full ANN is put

on one chip. Liao notes in a survey of hardware that the majority

of designs include an activation block, weights block, transfer

function block, and other processing elements [5]. The

activation block is always on board as opposed to the other

blocks. Thus, these implementations do not focus on building a

hardware neuron in a single chip. Moreover, other products that

explore learning through the backpropagation algorithm, but

they deal more hardware on the parallel machine level than the

microcontroller level [6].

A similar method to this research is the use of Field

Programmable Gate Arrays (FPGAs). FPGAs are integrated

circuits that can be configured physically. Significant work has

been done with FPGAs and ANNs [7, 9, 10]. Sahin, Becerikli

and Yazici implemented a multiple layer ANN by linking

neurons together with multipliers and adders using an FPGA

[8]. This framework makes the architecture of the ANN

dynamic. The weights were learned offline, and no clear

learning was done on the hardware. Importantly, this work used

an accessible, prototyping product to develop an ANN.

However, even though the ANN architecture is adjustable, it

requires physical configuration and rededication of parts within

the hardware.

A common theme with hardware ANNs is having multiple

neurons exist on one chip. Ienne and Kuhn analyze multiple

commercial chips [11]. Such as the Philips’ Lneuro-1, which

consists of 16 neurons. Or the Philips’ Lneuro-2.3, which

consists of 12 neurons. The Ricoh RN-200 also consists of 16

neurons in a multi-layered ANN with backpropagation

learning. Other implementations add extra parts to speed up the

chip. For example, the Intel’s Ni1000 consists of three parts

where the microcontroller is joined with a classifier and an

external interface for conversion calculation to decrease

overhead on the chip.

Other intricate methods for designing neurons have been

explored. Joubert, Belhadj, Temam, and Héliot analyze the

Leaky Integrate-and-Fire neuron. It is a single neuron

representation, but it has a special architecture split among three

parts: the synapse, the neuron core, and the comparator [12].

Several of these implementations utilize electrical properties

such as current, capacitance, and voltage. Although this is a

more genuine imitation of a biological neuron, it requires

electrical engineering expertise to design and reproduce, and

the parts are usually specialized and expensive.

In summary, much research exists in the development of

hardware ANNs. However, such hardware implementations are

generally built with specific parts and expensive resources – a

clear general, unspecialized, and inexpensive “one neuron to

one chip” implementation with learning capabilities does not

exist. We provide an alternative; a hardware ANN capable of

learning through the backpropagation algorithm with a one

neuron to one chip ratio using inexpensive, readily available

APM chips. The implementation is also accessible to typical

users.

B. Autonomous Car Navigation using Neural Networks

Much work has been done in autonomous car navigation,

and most research is done with full sized cars as opposed to

small model cars such as in this paper. Pomerleau contributed

to the roots of this research in 1989 with the development of

ALVINN (An Autonomous Land Vehicle in a Neural Network)

whereby the ANN was trained offline using simulated road

images, and testing was done on a truck like vehicle [13]. Two

years later, he improved this design by allowing “on the fly”

training by permitting human driving to be desired output in the

ANN [14]. Jonathan, Chandrasekhar, and Srinivasan developed

an innovative approach by building a sensor driven network

such as the research in this paper versus relying on image

processing overhead. Different parts of the decision making

such as turning and overtaking had their own algorithms

implemented within the system. This low processing overhead

significantly improves time spent for the ANN in learning. A

more similar work was done on a miniature car which was

capable of navigation in unknown environments by Farooq,

Amar, Asad, Hanif, and Saleh [16]. The training, however,

happened off-line and the learned weights were then put on a

controller.

None of these designs utilize a distributed hardware ANN

such as in this research. Also, an improvement in the transition

between training and testing is presented. On board

transitioning is done easily and quickly with one simple

application command as opposed to waiting for training to be

finished before testing. For example, Pomerleau’s systems need

human driver training for five minutes followed by ten minutes

of backpropagation before testing can be done.

III. ARTIFICIAL NEURAL NETWORKS

Every neuron in an Artificial Neural Network (ANN)

receives inputs with corresponding weights and produces only

one output. One neuron’s output is an input for another neuron

in a subsequent layer. For example, Figure 1 has an input layer

(no neurons, just three inputs), a two neuron hidden layer, and

single neuron output layer. A threshold constant (θ) represents

the activation of a biological neuron, and usually a weighted

sum of the inputs is matched to this value to produce an output.

The threshold is set to -1 as an input with a corresponding

weight in this paper. The weighted sum (X) of the inputs goes

into an activation function to produce an output (Y). This

process is called activation. This paper uses the sigmoid

function:

 Y =
1

1 + e -X
 (1)

Figure 1. Visual representation of a multi-layered ANN with three inputs, two

hidden layer neurons, and an output layer neuron.

The combination of forward propagation and

backpropagation offer a common technique for learning in

ANNs when these two stages are repeated continually on

input/output pairs. Initially, the weights in each neuron are set

to random values. The input layer gives the input to each hidden

layer neuron. The hidden layer neurons give their outputs to the

next layer neurons. Such activations continue to be forward

propagated until the output layer neurons are reached. An actual

output is produced at the output layer. This value is compared

to a desired output for the current input. An error value is

calculated as the difference between the two values.

Backpropagation begins with this value by calculating error

gradients. These values adjust weights for multi-layered ANNs

since hidden layers do not have clear desired output values.

Below, the equation formatting is similar to that which is used

in the Neural Networks chapter of Artificial Intelligence: A

Guide to Intelligent Systems by Negnevitsky [12]. Several

different activation functions exist in ANN learning, and we

employ the sigmoid activation function for this research. The

application of the backpropagation algorithm follows as such:

1) The output layer (k) neuron error gradient (δ) at the

current iteration (t) is calculated.

 δk(t)= Yk(t) × [1 – Yk(t)] × ek(t)

Yk = actual output for output layer

ek = error at output layer neuron such that:

 ek (t) = Yd_k(t) – Yk(t)

Yd_k = desired output at the output layer neuron.

2) The weights (Wj_k) between the hidden layer (j) and

output layer (k) are updated for the next iteration (t+1).

Wj_k(t+1) = Wj_k(t) + [α × Yj(t) × δk(t)]

Yj = actual output at the hidden layer

α = constant learning rate

3) The error gradient (δ) for the neurons in the hidden

layer (j) is calculated. This is the case when there is a single

output neuron.

δj(t) = Yj(t) × [1 – Yj(t)] × [δk(t) × Wj_k(t)]

4) The weights (Wi_j) between the input layer (i) and hidden

layer (j) are updated.

Wi_j(t+1) = Wi_j(t) + [α × xi(t) × δj(t)]

 xi(t) = input to the hidden layer neuron at iteration t

5) Continuously loop through the forward propagation and

backpropagation cycle.

IV. IMPLEMENTATION OF HARDWARE NEURAL NETWORK

The 5V and 16MHz Arduino Pro Mini (APM) was selected

for this research because it is widely available, small enough

(.7’’ x 1.3’’) for quick prototyping of ANN architectures, and

inexpensive ($3 to $10 depending on distributer). The APM has

14 digital input/output pins.

Communication between neurons was controlled via the

Inter-Integrated Circuit (I2C) bus, a built-in part of the APM.

Each neuron has its own memory address assigned within the

circuit. The I2C is a single bus which permits communication

through a Serial Clock Line and a Serial Data Line. This creates

Master-Slave relationships between APMs. The Master chip

starts the clock and requests data from the Slave chips. The

Slave chips only respond to Master requests. Pin A4 accesses

the Data Line and pin A5 accesses the Clock Line. These two

pins allow simple wiring for communication.
To manipulate the I2C, the Arduino Wire library was needed. It
comes with the Arduino Integrated Development Environment.
The two primary commands used were read() and write(), thus
data flows in two directions. Commands such as requestFrom()
and available() were also used. The former allows a Master to
ask for data, and the latter returns true if data is available from a
Slave.

A. I2C Data Communication

Arduino limits data transfer in the I2C to bytes or characters.

Thus, a double precision value (4 bytes) cannot be transferred

simply over wire. Precise weight values are vital for learning

portion of the ANN. A Union data type was used to work around

this limitation: union T {byte b[4]; double d;} T; Hence,

different data types can be stored in the same memory location.

Here the same memory location includes a double and a byte. A

double is encoded as an array of bytes. It is then sent over the

Wire interface to another APM neuron. The receiving end

reverses this masking to obtain the double precision value.

While this seems like a trivial note, it is important to clarify that

this is a mandatory implementation step in order for the network

to be able to transfer data with double precision and to update in

an effective manner within the constraints of the I2C framework.

B. Programming of Individual Microchips

Each microchip was programmed using the C based Arduino
language. Different neuron classes were developed for hidden
layer and output layer neurons. For the I2C bus framework, each
APM class included a memory address. Arrays of type double

(2)

(3)

(4)

(5)

(6)

within each hidden and output neuron represent inputs and
weights. The learning rate is set at .35.

a) Hidden Neuron Microchip (Slave)

A requestEvent() function waits for a request from the
output APM Master neuron. Once triggered, an output
value for the neuron is produced, packaged, and sent over
wire in forward propagation. A receiveEvent() function is
triggered with any data from the output neuron in
backpropagation. This neuron receives a 4 byte error
gradient from the output neuron, with which the weights are
updated. Meanwhile, three ultrasonic sensors input data to
the neuron.

b) Output Neuron Microchip (Master)

A readHidden() function requests an output from each
hidden layer neuron. An actual output is produced once the
inputs are received. The neuron continuously accepts data
packets via an HC-05 Bluetooth module from a Processing
application running on a remote laptop. Depending on the
data, a desired output is determined [(0), (.5), (1)]
respectively based on the turn [(left), (forward), (right)].
Using the desired output and a calculated output an error is
calculated, and backpropagation starts. Also received from
the application is data that triggers training mode to be
initiated.

C. Neural Network Circuit

For this application there are 3 APM microchips. Each
microchip is a single artificial neuron. As shown in Figure 2,
there are 3 inputs coming in ultrasonic sensors into two hidden
layer neurons in the same hidden layer, and the output of those
neurons is input into one output layer neuron. This ANN
architecture mirrors Figure 1. The communication works in a
way such that the output neuron is the Master APM and the
hidden neurons are the Slave APMs. The I2C bus is interlaced
using the A4 and A5 pins of all the APMs. A wire for Data and
a wire for Clock allows this connection. Power is provided
through the VCC pin for each APM, and all APMs are grounded
through the GND pin. Four AAA batteries were used to power
the servos, and a single 9V battery was used to power all the
APM chips, through which the ultrasonic sensors were also
powered. For presentation purposes, an LED is attached to the
output layer neuron to visualize the toggling between testing and
training.

Figure 2. A schematic of the APM circuit is shown. Each neuron is labeled.

Input comes in from 3 ultrasonic sensors to each hidden layer neuron. An LED

is attached to the output layer neuron to show testing mode in action. A
Bluetooth module (rectangle) and two full rotation servos (black ovals) are also

attached to the output layer neuron.

D. Car Design

A foot long wooden chassis was cut long enough to hold the

hardware Arduino ANN (Figure 3). Three Parallax Ultrasonic

Ping))) sensors were placed on a cardboard frame and attached

to the edge of the chassis 40° apart (Figure 3). The range of the

sensors is between 2cm to 300cm. However, the inverse of each

sensor value is taken and multiplied by 100 to bias the learning

towards closer obstacles by producing larger numbers. Thus,

the range lies between the value of .333 for far objects, and 50

for close objects. Two full rotation Parallax servos were

attached at the end of the chassis to hold two 2” diameter plastic

wheels. The car moves forward at a constant rate of about 6

inches per second when there is no user input. Both right and

left turns are approximately the same angle and speed, which is

defined by a signal to the appropriate servo telling it to turn at

half speed. This signal is sent to the servo every 20 milliseconds

while the turn command is active. Different amounts of turn

are achieved by running the function again and again over a

certain period of time. This equates to the driver pressing and

holding a key. Two omni-directional wheels are attached to the

back end of the chassis with an axle to allow for smooth turning.

Figure 3. The car used in this research with its various elements and a view of

the placement of the ultrasonic sensors on the front.

E. Navigation Space and Task

The task of the car is to learn to complete the path in the 8x8

foot colony space with 1x1 foot block obstacles as shown in

Figure 4 from both directions. A full training and testing

iteration is counted as the summed distance of both paths taken

(384 inches).

Figure 4.The car learns to complete the path from both directions.

F. Algorithm

The user constantly supervises the car; driving it by sending

control commands as desired output through a Processing

application. Bluetooth delivers computer keyboard inputs: 4 as

left, 5 as right, enter as start testing, backspace to end testing,

otherwise move the car forward using the servos. Note that

although the human driver has full control of the car during the

training phase, he or she does not send error signals to the ANN,

instead the error is calculated automatically within the APM

chips by comparing the ANN’s output direction with the

direction input by the user as he/she continuously navigates the

course with the Processing application.

The following algorithm demonstrates the learning process
for the hardware Arduino ANN through car movement:

1) Upon receiving power, all APM neurons are inputted a

threshold variable of -1 within their programs, and random

weights are set between -1 and 1 within each neuron program.

2) While the steps below are happening, the user is

navigating the course wirelessly through keyboard input on the

computer to drive the car in such a way that is avoids any

collisions with the obstacles.

3) The car is placed in the START position as in the left

image in Figure 4.

4) Forward propagation starts at the output (Master)

neuron when the user sends a driving command to the hardware

Arduino ANN. It requests 4 bytes from each hidden node.

Meanwhile, hidden layer neurons are constantly getting

updated input about any obstacles from the ultrasonic sensors.

5) Each hidden layer neuron forward propagates, and

sends an output to the Master neuron.

6) Activation happens at the output layer, and the Master

neuron produces an actual output. The Master also registers the

current data from the driver as the desired output.

7) Using the actual output and the desired output, an error

is calculated at the Master neuron. Using this, an output layer

error gradient is also calculated. This value is used to calculate

a hidden layer error gradient.

8) This hidden layer error gradient is sent to each hidden

layer neuron. The weights of the output layer are updated using

the output layer error gradient, and the weights of the hidden

layer are updated using the hidden layer error gradient.

9) Steps 4 through 8 are repeated until the FINISH line is

reached. The car is put into test mode, and reversed to face the

new path, then put into train mode and Steps 3-9 are repeated

for the backwards path as in the right image in Figure 4. This

marks the end of one iteration.

10) Testing mode is initiated. The car is placed as in step 3,

put into test mode via the Processing application, and allowed

to autonomously navigate. The distance where the first collision

occurs is recorded along with how many iterations have

elapsed. We loop back to step 3 for further training.

V. RESULTS

The vehicle successfully completed navigation of the course

in 5 different trials. Without any training, the car is able to

navigate to about 13 inches into the path before a collision.

After one iteration of training, the distance traveled is about 8

inches greater than before. After five iterations of training, the

average distance traveled is around 75 inches. At six iterations,

a major jump of distance traveled occurs on average of 182

inches traveled – just 10 inches shy of completing half the

course. Furthermore, the least number of iterations it took to

complete the full 384 inch course for any trial was 29 iterations,

while the most was 34 iterations (Figure 5). This range of

performance is fairly consistent, but is also heavily dependent

on how consistently the driver is able to navigate the path. In

the initial runs, the car was observed to develop bad “habits”

from being supervised by the user. This included taking an

unorthodox path by staying close to the right side of the path.

In cases like these, only one or two sensor inputs were being

mapped and learned. However, once consistency was

developed by the driver to keep the car in the middle “lane” of

the path, the ANN was able to learn obstacle avoidance on all

sensors and sides and stay more in the middle of the path.

One issue with the car was that its forward motion was not

always consistently straight throughout the course. This

probably added to the time spent learning for the ANN since the

car swerved to a side even though it was executing a forward

movement command, which lead to a misinterpretation of what

the best ground truth movement should be. This could be due

to several factors. For example, the plastic wheels were

wrapped with rubber bands which were not completely

symmetrically placed, the course was on a carpeted area with

small variations of texture patches, and the motors wore out

over iterations. In a more controlled environment, these

contributions to the error could have been minimized before

each run with adjustments. Another note is that the ultrasonic

sensors returned erratic values at some intervals of testing,

albeit few. This also contributed to incorrect learning of ground

truth since a close distance might have been mapped as a far

distance and vice versa during the iterations that the sensor was

incorrect. While this commonly happens with certain ping

sensors, in our experiments this could possibly also happen

when the program gets interrupted by user input before the

distance calculation is fully completed by the microchips

controlling the sensors. One way to handle this may be to only

give commands to the car in a synchronous fashion. However,

this would lead to a less genuine model for learning in a real

time environment. Despite the issues with non-exact forward

motion and occasional erratic sensor information, the system

was very effective at learning the proper control signals.

It’s also important to note that this framework is not a

completely parallel system because the communication

between the APM chips happens through a bus. Nevertheless,

it is also worth noting that this is a more parallel system than a

sequential software computation model or a single

microprocessor loop implementation since the internal

computations of the neurons still can happen in parallel. In the

future, this would be an interesting comparative study to

undertake in terms of noting performance and training time

between the different models for a similar task.

VI. CONCLUSION

We have shown that a hardware Arduino ANN with single

neurons on each chip can be used for practical applications such

as learning control for obstacle avoidance and autonomous

navigation of a test path. The training framework provided

through the communication between the Arduino and a

Processing application, plus the capability to easily switch from

training to testing, proved to be effective in gathering

information after each training iteration in regards to

understanding the performance of the ANN. Future research

will include the expansion of the system to test its robustness

and ability to take on more difficult tasks.

VII. REFERENCES

[1] G. Parker and M. Khan, “Distributed Neural Network: Dynamic Learning
via Backpropagation with Hardware Neurons using Arduino Chips,”
International Joint Conference on Neural Networks , 2016.

[2] J. Misra and I. Saha, “Artificial neural networks in hardware: A survey of
two decades of progress,” Neurocomputing, 74(1-3), pp. 239-255, 2010,
doi:10.1016/j.neucom.2010.03.021.

[3] F. M. Dias, A. Antunes, and A. M. Mota, “Artificial neural networks: A
review of commercial hardware,” Engineering Applications of Artificial
Intelligence, IFAC, 17(8), pp. 945-952, 2004.

[4] K. Goser, “Implementation of artificial neural networks into hardware:
Concepts and limitations,” Mathematics and Computers in Simulation,
41(1-2), pp. 161-171, 1996.

[5] Y. Liao, “Neural networks in hardware: A survey,” Davis, CA:
Department of Computer Science, University of California, Davis, 2001.

[6] V. Kumar, S. Shekhar, and M. B. Amin, “A scalable parallel formulation
of the backpropagation algorithm for hypercubes and related

architectures,” IEEE Transactions on Parallel and Distributed Systems,
4(10), pp. 1073-1090, 1994.

[7] A. R. Omondi and J. C. Rajapakse (Eds.), “FPGA implementations of
neural networks,” Springer, Netherlands, 2006.

[8] S. Sahin, Y. Becerikli, and S. Yazici, “Neural network implementation in
hardware using FPGAs,” NIP, Neural Information Processing, 4234(3),
pp. 1105–1112, 2006.

[9] L. P. Maguire, T. M. McGinnity, B. Glackin, A. Ghani, A. Belatreche,
and J. Harkin, “Challenges for large-scale implementations of spiking
neural networks on FPGAs,” Neurocomputing, 71(1-3), pp. 13-29, 2007,
doi:10.1016/j.neucom.2006.11.029.

[10] J. Zhu, and P. Sutton, “FPGA implementations of neural networks–a
survey of a decade of progress,” In Field Programmable Logic and
Application, Springer Berlin Heidelberg, pp. 1062-1066, 2003.

[11] P. Ienne, and G. Kuhn, “Digital systems for neural networks,” Digital
Signal Processing Technology, 57, pp. 311-45, 1995.

[12] A. Joubert, B. Belhadj, O. Temam, and R. Héliot, “Hardware spiking
neurons design: Analog or digital?” International Joint Conference on
Neural Networks, pp. 1-5, June 2012.

[13] D. A. Pomerleau, “ALVINN: An Autonomous Land Vehicle in a Neural
Network,” Report CMU-CS-89-107, Carnegie Mellon University, 1989.

[14] D. A. Pomerleau, “Rapidly adapting neural networks for autonomous
navigation” , Advances in Neural Information Processing Systems,
Morgan Kaufmann, San. Mateo, 3, pp. 429–435, 1991.

[15] J. B. S. Jonathan, A. Chandrasekhar, and T. Srinivasan, “Sentient
Autonomous Vehicle Using Advanced Neural Net Technology,”
Department of Computer Science and Engg, Sri Venkateswara College of
Engineering, Sriperumbudur, India, 2004.

[16] U. Farooq, M. Amar, M. U. Asad, A. Hanif, and S. O. Saleh, “Design
and Implementation of Neural Network Based Controller for Mobile
Robot Navigation in Unknown Environments,” International Journal of
Computer and Electrical Engineering, 6(2), 2014.

[17] M. Negnevitsky, Artificial intelligence: A guide to intelligent systems,
2nd ed., England: Pearson Education Limited, 2005, pp. 165-216.

Figure 5. Distance the car covered in the path is mapped against the number of training iterations.

