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Abstract — Previously we developed an implementation for an 

easily expandable hardware Artificial Neural Network (ANN) 

capable of learning using inexpensive, off-the-shelf Arduino Pro 

Mini microprocessors. This ANN system is unique, general use, 

unspecialized, and inexpensive. The implementation involves a one 

neuron per microchip representation, a ratio which allows for 

computational parallelism and ANN architecture flexibility 

inherent to biological neural networks. Learning happens 

completely on hardware via backpropagation without the need for 

communication with a computer. Tests showed successful, 

dynamic learning of the logical operations OR, AND, XOR, and 

XNOR.  In this paper, we demonstrate the usage and strength of 

this implementation by applying the same framework to learn live 

obstacle avoidance and autonomous navigation for a 1:24 scale 

model car equipped with ultrasonic distance sensors. This test of 

the application involved a user who supervised the learning and a 

method to easily transition between testing and training the ANN 

on the car via Bluetooth.  Results show that the hardware ANN 

consistently learns to navigate the car through an obstacle course 

from entrance to exit and vice versa with no collisions.  

Keywords—Artificial Neural Networks; hardware; Arduino; 

backpropagation; dynamic learning; autonomous navigation; car 

I. INTRODUCTION 

A biological neural network consists of billions of 

interconnected neurons. An Artificial Neural Network (ANN) 

attempts to model such a network for biologically inspired 

control applications with learning capabilities. Most ANNs are 

implemented in simulations and hardware implementations 

usually have the entire ANN on one chip. This research 

involves a unique representation of an ANN whereby each 

microchip represents a single neuron. The commercial market 

has many hardware ANNs, but no general use, unspecialized, 

and inexpensive models exist with such representation. 

Generally, extra modules and processing parts allow the chip to 

function as a single neuron. More commonly, multiple neurons 

are implemented on one chip. These designs generally require 

a good grasp of electrical engineering to fully understand the 

data being mapped as voltage, current, and similar elements are 

used to model data. Specialized and expensive parts are often 

needed to manipulate these features. Furthermore, many of the 

designs are specifically built for certain tasks, cannot be added 

to bigger systems easily, and do not have learning capabilities. 

In previous work we presented a more manageable way to 

create general hardware ANNs with learning capabilities [1]. A 

hardware ANN was built using Arduino Pro Mini (APM) 

microchips, which are popular, low-priced microcontrollers, 

coupled with open-source software. Each APM chip acts as a 

single neuron with learning capabilities to permit a more 

genuine imitation of a biological neural network. The 

architecture of the ANN consists of one APM chip handling the 

input and three other APM chips, two as neurons in the hidden 

layer and one as a neuron in the output layer. The 

communication in the ANN is supported by the I2C (Inter-

Integrated Circuit) of Arduino which creates a Master-Slave 

relationship between the output chip, the hidden layer chips, 

and the input chip. The finished network learned four different 

logic operations successfully: AND, OR, XOR, and XNOR. 

Researchers have explored many ANN architectures to 

solve complex problems.  We chose to build this proof of 

concept based on the notion of solving more fundamental logic 

operators. It is commonly known that to solve the XOR logic 

operator a hidden layer is needed for the ANN. By building this 

functionality we can validate that we have the performance of 

a full ANN and not that of a single Perceptron. 

 This paper discusses the real-world application of learning 

control for autonomous car navigation using the previously 

developed hardware Arduino ANN. A small car was 

constructed to incorporate 3 ultrasonic ping sensors as input 

with the output going to two full-rotation servos for locomotion. 

The same ANN design was used as the previous research except 

the input element was replaced with direct data input to the 

hidden layer from the sensors. The car was driven wirelessly by 

a user via an application written in the Processing prototyping 

language, which delivered the desired output via Bluetooth at 

the live moment to the car as it maneuvered around blocks in 

an 8x8 foot testing space. Transitions between testing and 

training were made to incrementally record the progress of the 

car’s learning. This paper shows that the framework allows for 

a highly flexible testing/training platform and that autonomous 

car navigation can be successfully learned in a multi-path 

obstacle colony space.  



II. RELATED WORKS 

A. Hardware Neural Networks 

Significant development of dedicated hardware to develop 

faster and more genuine networks that are processed in parallel 

has been done in the past two decades [2]. Even then, there is 

room for improvement. Dias, Antunes, and Mota note in a 

review of commercial ANN hardware that such hardware is 

specialized and expensive in regards to manufacturing time and 

resources, and not much is known about its commercial 

implications [3]. Goser notes one limitation as dedicated, 

complex wiring due to specialized hardware [4]. Generally, 

multiple neurons exist on one chip and often a full ANN is put 

on one chip. Liao notes in a survey of hardware that the majority 

of designs include an activation block, weights block, transfer 

function block, and other processing elements [5]. The 

activation block is always on board as opposed to the other 

blocks. Thus, these implementations do not focus on building a 

hardware neuron in a single chip. Moreover, other products that 

explore learning through the backpropagation algorithm, but 

they deal more hardware on the parallel machine level than the 

microcontroller level [6].  

A similar method to this research is the use of Field 

Programmable Gate Arrays (FPGAs). FPGAs are integrated 

circuits that can be configured physically. Significant work has 

been done with FPGAs and ANNs [7, 9, 10]. Sahin, Becerikli 

and Yazici implemented a multiple layer ANN by linking 

neurons together with multipliers and adders using an FPGA 

[8]. This framework makes the architecture of the ANN 

dynamic. The weights were learned offline, and no clear 

learning was done on the hardware. Importantly, this work used 

an accessible, prototyping product to develop an ANN. 

However, even though the ANN architecture is adjustable, it 

requires physical configuration and rededication of parts within 

the hardware. 

A common theme with hardware ANNs is having multiple 

neurons exist on one chip. Ienne and Kuhn analyze multiple 

commercial chips [11]. Such as the Philips’ Lneuro-1, which 

consists of 16 neurons. Or the Philips’ Lneuro-2.3, which 

consists of 12 neurons. The Ricoh RN-200 also consists of 16 

neurons in a multi-layered ANN with backpropagation 

learning. Other implementations add extra parts to speed up the 

chip. For example, the Intel’s Ni1000 consists of three parts 

where the microcontroller is joined with a classifier and an 

external interface for conversion calculation to decrease 

overhead on the chip. 

Other intricate methods for designing neurons have been 

explored. Joubert, Belhadj, Temam, and Héliot analyze the 

Leaky Integrate-and-Fire neuron. It is a single neuron 

representation, but it has a special architecture split among three 

parts: the synapse, the neuron core, and the comparator [12]. 

Several of these implementations utilize electrical properties 

such as current, capacitance, and voltage. Although this is a 

more genuine imitation of a biological neuron, it requires 

electrical engineering expertise to design and reproduce, and 

the parts are usually specialized and expensive. 

In summary, much research exists in the development of 

hardware ANNs. However, such hardware implementations are 

generally built with specific parts and expensive resources – a 

clear general, unspecialized, and inexpensive “one neuron to 

one chip” implementation with learning capabilities does not 

exist. We provide an alternative; a hardware ANN capable of 

learning through the backpropagation algorithm with a one 

neuron to one chip ratio using inexpensive, readily available 

APM chips. The implementation is also accessible to typical 

users.  

 

B. Autonomous Car Navigation using Neural Networks 

Much work has been done in autonomous car navigation, 

and most research is done with full sized cars as opposed to 

small model cars such as in this paper. Pomerleau contributed 

to the roots of this research in 1989 with the development of 

ALVINN (An Autonomous Land Vehicle in a Neural Network) 

whereby the ANN was trained offline using simulated road 

images, and testing was done on a truck like vehicle [13]. Two 

years later, he improved this design by allowing “on the fly” 

training by permitting human driving to be desired output in the 

ANN [14]. Jonathan, Chandrasekhar, and Srinivasan developed 

an innovative approach by building a sensor driven network 

such as the research in this paper versus relying on image 

processing overhead. Different parts of the decision making 

such as turning and overtaking had their own algorithms 

implemented within the system. This low processing overhead 

significantly improves time spent for the ANN in learning. A 

more similar work was done on a miniature car which was 

capable of navigation in unknown environments by Farooq, 

Amar, Asad, Hanif, and Saleh [16]. The training, however, 

happened off-line and the learned weights were then put on a 

controller.  

None of these designs utilize a distributed hardware ANN 

such as in this research. Also, an improvement in the transition 

between training and testing is presented. On board 

transitioning is done easily and quickly with one simple 

application command as opposed to waiting for training to be 

finished before testing. For example, Pomerleau’s systems need 

human driver training for five minutes followed by ten minutes 

of backpropagation before testing can be done. 

III. ARTIFICIAL NEURAL NETWORKS 

Every neuron in an Artificial Neural Network (ANN) 

receives inputs with corresponding weights and produces only 

one output. One neuron’s output is an input for another neuron 

in a subsequent layer. For example, Figure 1 has an input layer 

(no neurons, just three inputs), a two neuron hidden layer, and 

single neuron output layer. A threshold constant (θ) represents 

the activation of a biological neuron, and usually a weighted 

sum of the inputs is matched to this value to produce an output. 

The threshold is set to -1 as an input with a corresponding 

weight in this paper. The weighted sum (X) of the inputs goes 

into an activation function to produce an output (Y). This 

process is called activation. This paper uses the sigmoid 

function: 

     

                            Y = 
1

1 + e -X
 (1) 



 
Figure 1. Visual representation of a multi-layered ANN with three inputs, two 

hidden layer neurons, and an output layer neuron. 

 

The combination of forward propagation and 

backpropagation offer a common technique for learning in 

ANNs when these two stages are repeated continually on 

input/output pairs. Initially, the weights in each neuron are set 

to random values. The input layer gives the input to each hidden 

layer neuron. The hidden layer neurons give their outputs to the 

next layer neurons. Such activations continue to be forward 

propagated until the output layer neurons are reached. An actual 

output is produced at the output layer. This value is compared 

to a desired output for the current input. An error value is 

calculated as the difference between the two values. 

Backpropagation begins with this value by calculating error 

gradients. These values adjust weights for multi-layered ANNs 

since hidden layers do not have clear desired output values. 

Below, the equation formatting is similar to that which is used 

in the Neural Networks chapter of Artificial Intelligence:  A 

Guide to Intelligent Systems by Negnevitsky [12]. Several 

different activation functions exist in ANN learning, and we 

employ the sigmoid activation function for this research. The 

application of the backpropagation algorithm follows as such: 

 

1) The output layer (k) neuron error gradient (δ) at the 

current iteration (t) is calculated.  

 

               δk(t)= Yk(t)  ×  [1 – Yk(t)] ×  ek(t)   

 

Yk  = actual output for output layer 

ek = error at output layer neuron such that: 

 

                        ek (t) =  Yd_k(t) – Yk(t) 

    

Yd_k  = desired output at the output layer neuron. 

 

2) The weights (Wj_k) between the hidden layer (j) and 

output layer (k) are updated for the next iteration (t+1). 

 

Wj_k(t+1) = Wj_k(t) + [ α × Yj(t) × δk(t) ] 

 

Yj = actual output at the hidden layer 

α = constant learning rate 

 

3) The error gradient (δ) for the neurons in the hidden 

layer (j) is calculated. This is the case when there is a single 

output neuron. 

 

δj(t) = Yj(t)  ×  [ 1 – Yj(t) ] ×  [ δk(t) ×  Wj_k(t) ]  

 

4) The weights (Wi_j) between the input layer (i) and hidden 

layer (j) are updated. 

 

Wi_j(t+1) = Wi_j(t) + [ α × xi(t) ×  δj(t) ] 

    

 xi(t) = input to the hidden layer neuron at iteration t 

 

5) Continuously loop through the forward propagation and 

backpropagation cycle.  

IV. IMPLEMENTATION OF HARDWARE NEURAL NETWORK 

The 5V and 16MHz Arduino Pro Mini (APM) was selected 

for this research because it is widely available, small enough 

(.7’’ x 1.3’’)  for quick prototyping of ANN architectures, and 

inexpensive ($3 to $10 depending on distributer). The APM has 

14 digital input/output pins.  

Communication between neurons was controlled via the 

Inter-Integrated Circuit (I2C) bus, a built-in part of the APM. 

Each neuron has its own memory address assigned within the 

circuit. The I2C is a single bus which permits communication 

through a Serial Clock Line and a Serial Data Line. This creates 

Master-Slave relationships between APMs. The Master chip 

starts the clock and requests data from the Slave chips. The 

Slave chips only respond to Master requests. Pin A4 accesses 

the Data Line and pin A5 accesses the Clock Line. These two 

pins allow simple wiring for communication. 
To manipulate the I2C, the Arduino Wire library was needed. It 
comes with the Arduino Integrated Development Environment. 
The two primary commands used were read() and write(), thus 
data flows in two directions. Commands such as requestFrom() 
and available() were also used. The former allows a Master to 
ask for data, and the latter returns true if data is available from a 
Slave. 

A. I2C Data Communication 

Arduino limits data transfer in the I2C to bytes or characters. 

Thus, a double precision value (4 bytes) cannot be transferred 

simply over wire. Precise weight values are vital for learning 

portion of the ANN. A Union data type was used to work around 

this limitation: union T {byte b[4]; double d;} T; Hence, 

different data types can be stored in the same memory location. 

Here the same memory location includes a double and a byte. A 

double is encoded as an array of bytes. It is then sent over the 

Wire interface to another APM neuron. The receiving end 

reverses this masking to obtain the double precision value. 

While this seems like a trivial note, it is important to clarify that 

this is a mandatory implementation step in order for the network 

to be able to transfer data with double precision and to update in 

an effective manner within the constraints of the I2C framework.  

B. Programming of Individual Microchips 

Each microchip was programmed using the C based Arduino 
language. Different neuron classes were developed for hidden 
layer and output layer neurons. For the I2C bus framework, each 
APM class included a memory address. Arrays of type double 

(2) 

(3) 

(4) 

(5) 

(6) 



within each hidden and output neuron represent inputs and 
weights. The learning rate is set at .35. 

a) Hidden Neuron Microchip (Slave) 

A requestEvent() function waits for a request from the 
output APM Master neuron. Once triggered, an output 
value for the neuron is produced, packaged, and sent over 
wire in forward propagation. A receiveEvent() function is 
triggered with any data from the output neuron in 
backpropagation. This neuron receives a 4 byte error 
gradient from the output neuron, with which the weights are 
updated. Meanwhile, three ultrasonic sensors input data to 
the neuron.  

b) Output Neuron Microchip (Master) 

A readHidden() function requests an output from each 
hidden layer neuron. An actual output is produced once the 
inputs are received. The neuron continuously accepts data 
packets via an HC-05 Bluetooth module from a Processing 
application running on a remote laptop. Depending on the 
data, a desired output is determined [(0), (.5), (1)] 
respectively based on the turn [(left), (forward), (right)]. 
Using the desired output and a calculated output an error is 
calculated, and backpropagation starts. Also received from 
the application is data that triggers training mode to be 
initiated.   

C. Neural Network Circuit  

For this application there are 3 APM microchips. Each 
microchip is a single artificial neuron. As shown in Figure 2, 
there are 3 inputs coming in ultrasonic sensors into two hidden 
layer neurons in the same hidden layer, and the output of those 
neurons is input into one output layer neuron. This ANN 
architecture mirrors Figure 1. The communication works in a 
way such that the output neuron is the Master APM and the 
hidden neurons are the Slave APMs. The I2C bus is interlaced 
using the A4 and A5 pins of all the APMs. A wire for Data and 
a wire for Clock allows this connection. Power is provided 
through the VCC pin for each APM, and all APMs are grounded 
through the GND pin. Four AAA batteries were used to power 
the servos, and a single 9V battery was used to power all the 
APM chips, through which the ultrasonic sensors were also 
powered. For presentation purposes, an LED is attached to the 
output layer neuron to visualize the toggling between testing and 
training.  

 
 

Figure 2. A schematic of the APM circuit is shown. Each neuron is labeled. 

Input comes in from 3 ultrasonic sensors to each hidden layer neuron. An LED 

is attached to the output layer neuron to show testing mode in action. A 
Bluetooth module (rectangle) and two full rotation servos (black ovals) are also 

attached to the output layer neuron. 

 

D.  Car Design  

A foot long wooden chassis was cut long enough to hold the 

hardware Arduino ANN (Figure 3). Three Parallax Ultrasonic 

Ping))) sensors were placed on a cardboard frame and attached 

to the edge of the chassis 40° apart (Figure 3). The range of the 

sensors is between 2cm to 300cm. However, the inverse of each 

sensor value is taken and multiplied by 100 to bias the learning 

towards closer obstacles by producing larger numbers. Thus, 

the range lies between the value of .333 for far objects, and 50 

for close objects. Two full rotation Parallax servos were 

attached at the end of the chassis to hold two 2” diameter plastic 

wheels. The car moves forward at a constant rate of about 6 

inches per second when there is no user input. Both right and 

left turns are approximately the same angle and speed, which is 

defined by a signal to the appropriate servo telling it to turn at 

half speed. This signal is sent to the servo every 20 milliseconds 

while the turn command is active.  Different amounts of turn 

are achieved by running the function again and again over a 

certain period of time. This equates to the driver pressing and 

holding a key. Two omni-directional wheels are attached to the 

back end of the chassis with an axle to allow for smooth turning. 

 

 

 

Figure 3. The car used in this research with its various elements and a view of 

the placement of the ultrasonic sensors on the front. 
 

 

E. Navigation Space and Task 

The task of the car is to learn to complete the path in the 8x8 

foot colony space with 1x1 foot block obstacles as shown in 

Figure 4 from both directions. A full training and testing 

iteration is counted as the summed distance of both paths taken 

(384 inches). 
 
 

 

 
Figure 4.The car learns to complete the path from both directions. 

 



F. Algorithm 

The user constantly supervises the car; driving it by sending 

control commands as desired output through a Processing 

application. Bluetooth delivers computer keyboard inputs: 4 as 

left, 5 as right, enter as start testing, backspace to end testing, 

otherwise move the car forward using the servos. Note that 

although  the human driver has full control of the car during the 

training phase, he or she does not send error signals to the ANN, 

instead the error is calculated automatically within the APM 

chips by comparing the ANN’s output direction with the 

direction input by the user as he/she continuously navigates the 

course with the Processing application. 

The following algorithm demonstrates the learning process 
for the hardware Arduino ANN through car movement: 

1) Upon receiving power, all APM neurons are inputted a 

threshold variable of -1 within their programs, and random 

weights are set between -1 and 1 within each neuron program. 

2) While the steps below are happening, the user is 

navigating the course wirelessly through keyboard input on the 

computer to drive the car in such a way that is avoids any 

collisions with the obstacles.  

3) The car is placed in the START position as in the left 

image in Figure 4.  

4) Forward propagation starts at the output (Master) 

neuron when the user sends a driving command to the hardware 

Arduino ANN.  It requests 4 bytes from each hidden node. 

Meanwhile, hidden layer neurons are constantly getting 

updated input about any obstacles from the ultrasonic sensors. 

5) Each hidden layer neuron forward propagates, and 

sends an output to the Master neuron.  

6) Activation happens at the output layer, and the Master 

neuron produces an actual output. The Master also registers the 

current data from the driver as the desired output. 

7) Using the actual output and the desired output, an error 

is calculated at the Master neuron. Using this, an output layer 

error gradient is also calculated. This value is used to calculate 

a hidden layer error gradient. 

8) This hidden layer error gradient is sent to each hidden 

layer neuron. The weights of the output layer are updated using 

the output layer error gradient, and the weights of the hidden 

layer are updated using the hidden layer error gradient.  

9) Steps 4 through 8 are repeated until the FINISH line is 

reached. The car is put into test mode, and reversed to face the 

new path, then put into train mode and Steps 3-9 are repeated 

for the backwards path as in the right image in Figure 4. This 

marks the end of one iteration. 

10) Testing mode is initiated. The car is placed as in step 3, 

put into test mode via the Processing application, and allowed 

to autonomously navigate. The distance where the first collision 

occurs is recorded along with how many iterations have 

elapsed. We loop back to step 3 for further training. 

V. RESULTS 

The vehicle successfully completed navigation of the course 

in 5 different trials. Without any training, the car is able to 

navigate to about 13 inches into the path before a collision. 

After one iteration of training, the distance traveled is about 8 

inches greater than before. After five iterations of training, the 

average distance traveled is around 75 inches. At six iterations, 

a major jump of distance traveled occurs on average of 182 

inches traveled – just 10 inches shy of completing half the 

course. Furthermore, the least number of iterations it took to 

complete the full 384 inch course for any trial was 29 iterations, 

while the most was 34 iterations (Figure 5). This range of 

performance is fairly consistent, but is also heavily dependent 

on how consistently the driver is able to navigate the path. In 

the initial runs, the car was observed to develop bad “habits” 

from being supervised by the user. This included taking an 

unorthodox path by staying close to the right side of the path. 

In cases like these, only one or two sensor inputs were being 

mapped and learned. However, once consistency was 

developed by the driver to keep the car in the middle “lane” of 

the path, the ANN was able to learn obstacle avoidance on all 

sensors and sides and stay more in the middle of the path.  

One issue with the car was that its forward motion was not 

always consistently straight throughout the course. This 

probably added to the time spent learning for the ANN since the 

car swerved to a side even though it was executing a forward 

movement command, which lead to a misinterpretation of what 

the best ground truth movement should be. This could be due 

to several factors. For example, the plastic wheels were 

wrapped with rubber bands which were not completely 

symmetrically placed, the course was on a carpeted area with 

small variations of texture patches, and the motors wore out 

over iterations. In a more controlled environment, these 

contributions to the error could have been minimized before 

each run with adjustments. Another note is that the ultrasonic 

sensors returned erratic values at some intervals of testing, 

albeit few. This also contributed to incorrect learning of ground 

truth since a close distance might have been mapped as a far 

distance and vice versa during the iterations that the sensor was 

incorrect. While this commonly happens with certain ping 

sensors, in our experiments this could possibly also happen 

when the program gets interrupted by user input before the 

distance calculation is fully completed by the microchips 

controlling the sensors.  One way to handle this may be to only 

give commands to the car in a synchronous fashion. However, 

this would lead to a less genuine model for learning in a real 

time environment.  Despite the issues with non-exact forward 

motion and occasional erratic sensor information, the system 

was very effective at learning the proper control signals. 

It’s also important to note that this framework is not a 

completely parallel system because the communication 

between the APM chips happens through a bus. Nevertheless, 

it is also worth noting that this is a more parallel system than a 

sequential software computation model or a single 

microprocessor loop implementation since the internal 

computations of the neurons still can happen in parallel.  In the 

future, this would be an interesting comparative study to 

undertake in terms of noting performance and training time 

between the different models for a similar task. 



VI. CONCLUSION 

We have shown that a hardware Arduino ANN with single 

neurons on each chip can be used for practical applications such 

as learning control for obstacle avoidance and autonomous 

navigation of a test path. The training framework provided 

through the communication between the Arduino and a 

Processing application, plus the capability to easily switch from 

training to testing, proved to be effective in gathering 

information after each training iteration in regards to 

understanding the performance of the ANN.  Future research 

will include the expansion of the system to test its robustness 

and ability to take on more difficult tasks.  
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Figure 5. Distance the car covered in the path is mapped against the number of training iterations. 


