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Abstract—Anytime Learning with Fitness Biasing has been shown 
in previous works to be an effective tool for evolving hexapod 
gaits. In this paper, we present the use of Anytime Learning with 
Fitness Biasing to evolve the controller for a robot learning the 
box pushing task. The robot that was built for this task, was 
measured to create an accurate model. The model was used in 
simulation to test the effectiveness of Anytime Learning with 
Fitness Biasing for the box pushing task. This work is the first 
step in new research where an automated system to test the 
viability of Fitness Biasing will be created, as well as the first 
application of Fitness Biasing to a high level task such as box 
pushing.  
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I.  INTRODUCTION  
In evolutionary robotics, small or inexpensive robots tend to 

have issues learning due to relatively small onboard 
controllers. Pre-programming these controllers may ensure the 
desired results, but is laborious during development and does 
not provide a means for real-time adjustments necessitated by 
miscalculation or degradation of the system. Learning control 
through some form of evolutionary computation can save 
man-hours of development, as well as provide the adaptability 
required for autonomy. Unfortunately this method can be too 
computationally intense to be carried out on board the robot. A 
system of learning that can be carried out offline and then 
downloaded to the onboard controller will allow the robot to 
adapt to changes in real time. 

 

The task that is explored in this work is box-pushing, which 
is popular in the domain of evolutionary computation. It was 
examined by Lee [1], who used genetic programming to 
evolve behavior primitives for the Khepera robot. Up until this 
point, Fitness Biasing had not yet been examined as a learning 
method for a box pushing task. It adds the flexibility for the 
anytime learning to take place offline, while the robot operates 
in real time. 

 

Anytime learning makes use of evolutionary computation in 
a learning module to periodically update the robot’s control 
module. Grefenstette [2] used evolutionary computation to 
continually adjust the controller while the robot operated in an 
environment where the target agent had its capabilities 
periodically change. Grefenstette's system adapted to changes 
by modifying the model used to evolve the robot’s controller 

based on changes in the environment, which are interpreted by 
an observation module on board the robot. Fitness Biasing, the 
learning system employed in the research reported in this 
paper, can adapt to changes in the robot’s capabilities without 
the use of an onboard observation module to interpret changes 
in the environment. Depending only on global observation, 
this learning system uses evolutionary computation to learn a 
controller for the robot. This makes it more applicable for 
small autonomous robots because the learning component can 
be offline while the operations component, which is on the 
robot, receives periodic downloads of the best solution.  
 

Most forms of evolutionary computation require that a 
population of possible solutions be tested over several 
iterations. In evolutionary robotics this training can be done on 
a model of the robot, entirely on the robot, or a combination of 
the two. If all of the training is done offline and the results 
transferred to the actual robot when it is complete [3], then 
significant attention must be paid to the model as its accuracy 
directly affects the results. The time and effort can sometimes 
exceed the work required to program by hand. If the 
inaccuracies of the model are not dealt with, the control 
programs will not transfer to the robot. If most of the training 
is done offline and then transferred to the actual robot for 
some remaining generations [5], then a less accurate model is 
required, but it can take significant time to do the online 
training on the actual robot. If the task can be completed and 
the fitness can be accurately judged in minimal time, all of the 
training can be done online [6]. This method precludes the 
need for any model of the robot, but the training takes num-
generations * num-individuals * time-to-complete-task time to 
complete. An increase in any of these parameters results in a 
multiplicative increase in training time. All of these techniques 
require that we either put time into the model or into the 
training on the actual robot. In addition, none refine the 
solution while the robot is in operation unless it is only doing 
the task being learned. Fitness Biasing is a learning method 
that couples the simulation to the actual robot while learning is 
in progress, thereby allowing for the system to adapt to the 
changes in the robots capabilities.  

 

Fitness Biasing was introduced by Parker [7] to address the 
problems outlined above. Fitness Biasing was used to evolve 
gaits for a hexapod robot with a single controller, and in 
subsequent works the same method was used for a hexapod 
robot with microcontrollers for each leg [8]. Although 



successful in simulation and in preliminary tests on the actual 
robot, tests were never performed to apply Fitness Biasing to 
an automated system where learning took place without 
human interaction. In this paper, we employ Fitness Biasing 
for the higher level task of box pushing in addition to 
expanding the realm of areas where Fitness Biasing is applied. 
This is the first step in ongoing work to create a system where 
there is an automated link from the model to the actual robot 
in evolutionary robotics and to provide real-time learning for 
robots in operation. In this step, Fitness Biasing is employed in 
simulation to confirm that it can solve the higher level box 
pushing task. An accurate model of the actual robot is 
produced through tests on the robot. A genetic algorithm is 
employed to learn the task using an inaccurate model, with 
tests on an accurate model, which is to simulate the robot. In 
parallel to this work, the robot and colony space are being 
configured for the tests of the Fitness Biasing learning system 
on the actual robot. 

II. FITNESS BIASING 
 

Anytime learning is an approach to evolutionary robotics 
introduced by Grefenstette [2] that allows for learning in a 
dynamic environment. The anytime learning system that 
Grefenstette describes is broken into two systems, as shown in 
Figure 1: the execution system and the learning system. The 
execution system is comprised of the environment, the 
decision making system of the robot, and a monitor. The 
monitor is on board the robot and observes the environment 
for changes, in order to update the simulation. 
  

    The simulation is contained in the learning system, which is 
comprised of the simulation, a learning method, a test 
knowledge base, and a decision maker model. The learning 
system works to try many possible strategies in the simulation, 
and provide the execution system with the best current 
strategy. The learning system adjusts its strategies in response 
to feedback from the monitor based on the robots 
environment. 
 

    Punctuated Anytime Learning (PAL) [9] is an extension of 
anytime learning that was developed for robots that lack an 
observation module on board and allows for interactively 
connecting the simulation and reality to provide effective 
evolutionary computation. PAL compensates for the lack of an 
onboard observation module through global observation. 
Additionally, the system trains the controller with a genetic 
algorithm in a simple offline model, while periodic checks on 
the actual robot find and help to correct any disparities 
between the simulation and reality. 
 

    Fitness Biasing [7] is one of two types of PAL. When using 
Fitness Biasing, the model of the robot is not changed; instead 
the genetic algorithm is improved by biasing the fitness of 
each chromosome according to periodic checks on the actual 
robot. These periodic checks allow the chromosomes that are 
more effective in the real world to have a higher probability of 
selection. 
 

Probability for selection is determined by computing each 
individual’s fitness on the robot model. After each n 
generations all solutions of the genetic algorithm population 
are tested on the actual robot. These measurements are used to 
bias the fitnesses found on the model to make them equal to 
the actual robot fitnesses. These biases are used as the genetic 
algorithm continues training. In this way, solutions that are 
good on the actual robot but poor on the model have boosted 
fitnesses during training, which results in their production of 
more offspring. To select parents for crossover, the corrected 
fitness of each individual is determined as fitness-on-model * 
bias. When crossover is performed, the biases of the two 
parents are averaged to determine the bias of the child. This 
solution requires population-size actual tests every n 
generations.  

III. COLONY SPACE AND SIMULATION 
The task being explored in this work is a box-pushing 

scenario. Box pushing is an important behavior for robotics, 
because of the many applications that are built around pushing 
objects. 

A. Colony 
The colony space is an eight-foot by eight-foot section in 

the Connecticut College Autonomous Agent Learning Lab 
used for robotics research. The colony is surrounded by a one-
foot high wall, and is equipped with an overhead camera. The 
camera is connected to a nearby workstation, and can view the 
entire colony space at once. This camera is used in our work to 
simulate a robot's GPS, by providing the coordinates of the 
robot as they would appear if the colony was a cartesian plane. 
The colony space is covered with a low pile carpet to retain 
traction for wheeled robots. The box used in this research is 
also in the colony space. The box is a standard two-foot by 
two-foot by four-inch cardboard box, and is easily moved by 
the robot. A simulation of the colony space was built for this 
work, and the space was divided into nine equal sections. The 

 

 
Figure 1. Diagram showing the Anytime Learning as described by 
Grefenstette [1] 

 



simulation incorporated the colony space, the box, and the 
robot. The parameters of the colony and box were modeled 
after and in proportion to, the actual colony and cardboard box 
used for box-pushing research. 

B. Robot 
The robot used in this work is a small, inexpensive 

wheeled robot, as shown in Figure 2. The body of this robot is 
a six-inch wide, six-inch long, five-inch tall acrylic box. The 
robot has two wheels powered by servo motors modified for 
continuous rotation, and one omni-wheel.  The robot has an 
array of ultrasonic sensors mounted in its front panel, which 
allow the robot to distinguish between the box and a wall, and 
to receive a measurement for the distance from each. The 
servo motors and the ultrasonic sensors are connected to an 
Arduino Duemillanove board, which contains an ATMega 
microcontroller. The robot was designed and assembled in the 
Connecticut College Autonomous Agent Learning Lab.  

 

To create a simulation of the robot measurements of its 
capabilities were taken. The robot was placed in the colony 
space and ran twenty times down a measured track. The 
highest and lowest values for the speed of the robot were 
discarded before the data set was averaged to find the speed of 
the robot when moving forward. Similar experiments were 
repeated to find the turning rate for the robot, and the model 
parameters in the simulation were created accordingly. The 
parameters that are used in the simulation are the robots speed, 
turn rate, and the distance that it can see with its wall sensor, 
and with its box sensor.  

C. Controller 
The controller for the robot involves using the information 

from the overheard camera to divide the colony space up into 
nine equal sections. When the robot makes a decision, it will 
turn left, turn right, or move forward based on which of these 
nine sections it is in. The controller has a separate set of rules 
(Figure 3) for each of these nine sections. The rules are placed 
in priority ordering, but the control bits (bit one, two, etc.) 

control whether or not the rule will ever fire. It is the job of the 
genetic algorithm to determine the values of these control bits.  

 

 

IV. FITNESS BIASING APPLIED TO BOX PUSHING 

A. Genetic Algorithm 
    The learning was done using a genetic algorithm, with a 
population of one hundred chromosomes, each composed of 
sixty-four bits. Each chromosome was split into nine sets of 
six bits, with ten additional bits (Figure 4). The first nine sets 
of six bits determined the robot’s actions in each of the nine 
sections of the colony space. As shown in Figure 3, each of the 
six bits in each section of the chromosome controlled a 
different behavior. If the robot could see the box, the first 
three bits caused it to move forward, turn left, or turn right 
when activated, respectively. If the robot could see a wall, the 
same was true for the next three bits. In this way, the system 
allowed the robot to acquire a different behavior in each of the 
nine sections of the colony space based upon which of those 

 
Figure 2. The box pushing robot developed for this work. 

 

IF in Section One 
 IF box is seen AND bit one  
  THEN move forward 
 ELSE IF box is seen AND bit two 
  THEN turn left 
 ELSE IF box is seen AND bit three  
  THEN turn right 
 ELSE IF wall is seen AND bit four 
  THEN move forward 
 ELSE IF wall is seen AND bit five 
  THEN turn left 
 ELSE IF wall is seen AND bit six 
  THEN turn right 
 ELSE IF first bit of final section 
  THEN move forward 
 ELSE 
  turn left 
 
Figure 3. An example of how the first section of the chromosome was read by 
the controller. This refers to the six bits that make up the first section as well as 
the first bit of the final section. 

[110101011101… 
 

Rule parameters for section one. 

 
…1001011100] 

 
 
The last ten bits. The first, bolded bit is used to determine whether or not 

the robot should move forward in section one. 
 
 

Figure 4. Break down of the chromosome. The top six bolded bits 
correspond to bits one, two, …, six in Figure 3. The bolded bit in the lower 
group is the first bit of the final section in Figure 3. 



six bits were activated in each of the nine sections of its 
chromosome. Nine of the last ten bits that make up the final 
section of the chromosome are used to determine what to do if 
nothing is seen while in one of the nine sections; if activated, 
move forward, otherwise turn left. The sixty-fourth bit is not 
used.  

 

The fitness of each chromosome is measured by the 
number of times the robot completes the task in six minutes, 
with the location of the box and the robot being reset to 
random locations in the colony space every minute. A fitness 
proportionate (roulette wheel) method is used for selection of 
chromosomes, and chromosomes are combined with one 
hundred percent crossover and 0.05% chance of mutation. 

B. Fitness Biasing 
To test the effectiveness of Fitness Biasing to solve the box 

pushing task, the first step was to test in simulation. This is the 
work reported in this paper. The simulation was to use a model 
of the actual robot, with its parameters carefully measured, to 
represent the actual robot. The measured parameters of this 
model were slightly skewed to create a model that represented 
the training model, which was to be used for evolution. To 
simulate a Fitness Biasing system, the genetic algorithm used 
the training model (inaccurate) to learn a controller with the 
periodic tests during the punctuated generations done on the 
robot (accurate model). These tests determined the biases, 

which were returned to the genetic algorithm to bias the 
chromosome fitnesses and continue evolution on the training 
model. The punctuated generations were every ten generations 
of the genetic algorithm learning system. 

V. RESULTS 
    Three separate methods of learning were tested with five 
runs of each, to show the effectiveness of Fitness Biasing for 
evolving a box pushing controller. First, a standard genetic 
algorithm was run for two-hundred generations in a simulation 
of the task using an accurate model of the robot. This test was 
representative of running the genetic algorithm on the actual 
robot for a full two-hundred generations. This was the method 
of learning that produced the best controller after two-hundred 
generations, but it would be very taxing on the robot. Using a 
genetic algorithm in this way to evolve the control system for 
box-pushing entirely on the robot would be a viable method if 
not for the extreme amount of time that is required, as well as 
the wear on the actual robot. Second, a genetic algorithm was 
run in the simulation using the model that was slightly 
skewed; the parameters were each randomly off by a small 
amount, which is representative of running the genetic 
algorithm purely in a simulated model of the world. This 
method of learning produced the worst controller, due to the 
inaccuracies in the model. This problem of accuracy is the 
primary flaw with learning a control program entirely in 

 
Figure 5. The best chromosome for every tenth generation for a genetic algorithm on the robot, on the model, and with Fitness Biasing. Error bars 
represent standard deviation. 



simulation; inaccuracies in the model can never be entirely 
overcome in a pure simulation method. Third, Fitness Biasing 
was tested by running the genetic algorithm in simulation with 
each of the model parameters being skewed, but having the 
system test every tenth population on the robot (for this phase 
of the research, this was on the simulation with accurate 
parameters). This was the most effective method of learning, 
due to the ability of Fitness Biasing to combine the strengths 
of learning on the simulation and learning on the robot. Due to 
the Fitness Biasing system running mostly in simulation, the 
long runtime and the wear on the robot that are present in 
learning on the robot are both significantly reduced. 
Additionally, periodic tests on the robot retain much of the 
accuracy absent from the pure simulation method.  
 

The results of the three separate experiments are shown in 
Figure 5. As can be seen in this graph, the genetic algorithm 
operating directly on the robot produced the best results in 
two-hundred generations. However, this came at a price, since 
twenty thousand evaluations 200 generations * 100 
individuals were done on the robot. This would not only take a 
long time to get the results, it would be detrimental to the 
robot. The genetic algorithm operating only on the model 

would be the fastest and not require any tests on the robot, but 
the resultant solution was not very good. The genetic 
algorithm with Fitness Biasing required two thousand 
evaluations on the actual robot (one tenth of all tests on the 
robot), yet yielded effective results with a fitness near to the 
actual robot genetic algorithm. It’s clear from these tests that 
Fitness Biasing produces a better controller than the train-on-
model method without Fitness Biasing, when one considers 
the total set of generations. However, what may not be as clear 
from this graph is that Fitness Biasing is superior to testing 
entirely on the robot. Although nearly attaining the on-robot 
fitness after two-hundred generations, the main argument for 
Fitness Biasing is the extra time and wear caused by training 
solely on the robot. 

  

Figure 6 helps to better compare the effectiveness of Fitness 
Biasing with a train-on-robot approach. It shows the genetic 
algorithm on the robot versus the genetic algorithm with 
Fitness Biasing when considering only tests on the robot. Over 
the full two hundred generations of training, the genetic 
algorithm with Fitness Biasing had only twenty generations of 
tests on the robot, so this is plotted against the first twenty 
generations of training for the genetic algorithm on the robot. 

 
                                     

 
 

Figure 6. The genetic algorithm on the robot and the genetic algorithm with Fitness Biasing, measured in tests performed on the robot. 
Error bars represent standard deviation. 

 
 



It’s clear from this graph that the genetic algorithm with 
Fitness Biasing was the superior method when considering the 
number of tests required on the robot. 

VI. CONCLUSION 
Tests done in simulation show that Fitness Biasing is an 

effective method for evolving a controller to complete the box 
pushing task. This is the first use of Fitness Biasing for 
problems other than gait generation. The system performed 
well for this problem requiring the proper responses to sensors 
in order to complete a task. In this work, we showed its 
efficiency in learning the task. What was not shown, but is one 
of the advantages of Fitness Biasing is that if there are changes 
in the robot or environment that affect the robot’s 
performance, Fitness Biasing has the capacity of compensating 
for this while the robot is in operation. In future research, we 
will continue this work by testing the Fitness Biasing learning 
system on the actual robot operating in our colony space. In 
addition, we plan to change the capabilities of the robot during 
training to observe how it adapts and modifies the control 
program. 
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