
Fitness Biasing for the Box Pushing Task

Gary Parker and Jim O'Connor
Computer Science

Connecticut College
New London, CT, USA

parker@conncoll.edu and joconno2@conncoll.edu

Abstract—Anytime Learning with Fitness Biasing has been shown
in previous works to be an effective tool for evolving hexapod
gaits. In this paper, we present the use of Anytime Learning with
Fitness Biasing to evolve the controller for a robot learning the
box pushing task. The robot that was built for this task, was
measured to create an accurate model. The model was used in
simulation to test the effectiveness of Anytime Learning with
Fitness Biasing for the box pushing task. This work is the first
step in new research where an automated system to test the
viability of Fitness Biasing will be created, as well as the first
application of Fitness Biasing to a high level task such as box
pushing.

Keywords-anytime learning, evolutionary robotics, learning
control, genetic algorithm

I. INTRODUCTION
In evolutionary robotics, small or inexpensive robots tend to

have issues learning due to relatively small onboard
controllers. Pre-programming these controllers may ensure the
desired results, but is laborious during development and does
not provide a means for real-time adjustments necessitated by
miscalculation or degradation of the system. Learning control
through some form of evolutionary computation can save
man-hours of development, as well as provide the adaptability
required for autonomy. Unfortunately this method can be too
computationally intense to be carried out on board the robot. A
system of learning that can be carried out offline and then
downloaded to the onboard controller will allow the robot to
adapt to changes in real time.

The task that is explored in this work is box-pushing, which
is popular in the domain of evolutionary computation. It was
examined by Lee [1], who used genetic programming to
evolve behavior primitives for the Khepera robot. Up until this
point, Fitness Biasing had not yet been examined as a learning
method for a box pushing task. It adds the flexibility for the
anytime learning to take place offline, while the robot operates
in real time.

Anytime learning makes use of evolutionary computation in
a learning module to periodically update the robot’s control
module. Grefenstette [2] used evolutionary computation to
continually adjust the controller while the robot operated in an
environment where the target agent had its capabilities
periodically change. Grefenstette's system adapted to changes
by modifying the model used to evolve the robot’s controller

based on changes in the environment, which are interpreted by
an observation module on board the robot. Fitness Biasing, the
learning system employed in the research reported in this
paper, can adapt to changes in the robot’s capabilities without
the use of an onboard observation module to interpret changes
in the environment. Depending only on global observation,
this learning system uses evolutionary computation to learn a
controller for the robot. This makes it more applicable for
small autonomous robots because the learning component can
be offline while the operations component, which is on the
robot, receives periodic downloads of the best solution.

Most forms of evolutionary computation require that a
population of possible solutions be tested over several
iterations. In evolutionary robotics this training can be done on
a model of the robot, entirely on the robot, or a combination of
the two. If all of the training is done offline and the results
transferred to the actual robot when it is complete [3], then
significant attention must be paid to the model as its accuracy
directly affects the results. The time and effort can sometimes
exceed the work required to program by hand. If the
inaccuracies of the model are not dealt with, the control
programs will not transfer to the robot. If most of the training
is done offline and then transferred to the actual robot for
some remaining generations [5], then a less accurate model is
required, but it can take significant time to do the online
training on the actual robot. If the task can be completed and
the fitness can be accurately judged in minimal time, all of the
training can be done online [6]. This method precludes the
need for any model of the robot, but the training takes num-
generations * num-individuals * time-to-complete-task time to
complete. An increase in any of these parameters results in a
multiplicative increase in training time. All of these techniques
require that we either put time into the model or into the
training on the actual robot. In addition, none refine the
solution while the robot is in operation unless it is only doing
the task being learned. Fitness Biasing is a learning method
that couples the simulation to the actual robot while learning is
in progress, thereby allowing for the system to adapt to the
changes in the robots capabilities.

Fitness Biasing was introduced by Parker [7] to address the
problems outlined above. Fitness Biasing was used to evolve
gaits for a hexapod robot with a single controller, and in
subsequent works the same method was used for a hexapod
robot with microcontrollers for each leg [8]. Although

successful in simulation and in preliminary tests on the actual
robot, tests were never performed to apply Fitness Biasing to
an automated system where learning took place without
human interaction. In this paper, we employ Fitness Biasing
for the higher level task of box pushing in addition to
expanding the realm of areas where Fitness Biasing is applied.
This is the first step in ongoing work to create a system where
there is an automated link from the model to the actual robot
in evolutionary robotics and to provide real-time learning for
robots in operation. In this step, Fitness Biasing is employed in
simulation to confirm that it can solve the higher level box
pushing task. An accurate model of the actual robot is
produced through tests on the robot. A genetic algorithm is
employed to learn the task using an inaccurate model, with
tests on an accurate model, which is to simulate the robot. In
parallel to this work, the robot and colony space are being
configured for the tests of the Fitness Biasing learning system
on the actual robot.

II. FITNESS BIASING

Anytime learning is an approach to evolutionary robotics
introduced by Grefenstette [2] that allows for learning in a
dynamic environment. The anytime learning system that
Grefenstette describes is broken into two systems, as shown in
Figure 1: the execution system and the learning system. The
execution system is comprised of the environment, the
decision making system of the robot, and a monitor. The
monitor is on board the robot and observes the environment
for changes, in order to update the simulation.

 The simulation is contained in the learning system, which is
comprised of the simulation, a learning method, a test
knowledge base, and a decision maker model. The learning
system works to try many possible strategies in the simulation,
and provide the execution system with the best current
strategy. The learning system adjusts its strategies in response
to feedback from the monitor based on the robots
environment.

 Punctuated Anytime Learning (PAL) [9] is an extension of
anytime learning that was developed for robots that lack an
observation module on board and allows for interactively
connecting the simulation and reality to provide effective
evolutionary computation. PAL compensates for the lack of an
onboard observation module through global observation.
Additionally, the system trains the controller with a genetic
algorithm in a simple offline model, while periodic checks on
the actual robot find and help to correct any disparities
between the simulation and reality.

 Fitness Biasing [7] is one of two types of PAL. When using
Fitness Biasing, the model of the robot is not changed; instead
the genetic algorithm is improved by biasing the fitness of
each chromosome according to periodic checks on the actual
robot. These periodic checks allow the chromosomes that are
more effective in the real world to have a higher probability of
selection.

Probability for selection is determined by computing each
individual’s fitness on the robot model. After each n
generations all solutions of the genetic algorithm population
are tested on the actual robot. These measurements are used to
bias the fitnesses found on the model to make them equal to
the actual robot fitnesses. These biases are used as the genetic
algorithm continues training. In this way, solutions that are
good on the actual robot but poor on the model have boosted
fitnesses during training, which results in their production of
more offspring. To select parents for crossover, the corrected
fitness of each individual is determined as fitness-on-model *
bias. When crossover is performed, the biases of the two
parents are averaged to determine the bias of the child. This
solution requires population-size actual tests every n
generations.

III. COLONY SPACE AND SIMULATION
The task being explored in this work is a box-pushing

scenario. Box pushing is an important behavior for robotics,
because of the many applications that are built around pushing
objects.

A. Colony
The colony space is an eight-foot by eight-foot section in

the Connecticut College Autonomous Agent Learning Lab
used for robotics research. The colony is surrounded by a one-
foot high wall, and is equipped with an overhead camera. The
camera is connected to a nearby workstation, and can view the
entire colony space at once. This camera is used in our work to
simulate a robot's GPS, by providing the coordinates of the
robot as they would appear if the colony was a cartesian plane.
The colony space is covered with a low pile carpet to retain
traction for wheeled robots. The box used in this research is
also in the colony space. The box is a standard two-foot by
two-foot by four-inch cardboard box, and is easily moved by
the robot. A simulation of the colony space was built for this
work, and the space was divided into nine equal sections. The

Figure 1. Diagram showing the Anytime Learning as described by
Grefenstette [1]

simulation incorporated the colony space, the box, and the
robot. The parameters of the colony and box were modeled
after and in proportion to, the actual colony and cardboard box
used for box-pushing research.

B. Robot
The robot used in this work is a small, inexpensive

wheeled robot, as shown in Figure 2. The body of this robot is
a six-inch wide, six-inch long, five-inch tall acrylic box. The
robot has two wheels powered by servo motors modified for
continuous rotation, and one omni-wheel. The robot has an
array of ultrasonic sensors mounted in its front panel, which
allow the robot to distinguish between the box and a wall, and
to receive a measurement for the distance from each. The
servo motors and the ultrasonic sensors are connected to an
Arduino Duemillanove board, which contains an ATMega
microcontroller. The robot was designed and assembled in the
Connecticut College Autonomous Agent Learning Lab.

To create a simulation of the robot measurements of its
capabilities were taken. The robot was placed in the colony
space and ran twenty times down a measured track. The
highest and lowest values for the speed of the robot were
discarded before the data set was averaged to find the speed of
the robot when moving forward. Similar experiments were
repeated to find the turning rate for the robot, and the model
parameters in the simulation were created accordingly. The
parameters that are used in the simulation are the robots speed,
turn rate, and the distance that it can see with its wall sensor,
and with its box sensor.

C. Controller
The controller for the robot involves using the information

from the overheard camera to divide the colony space up into
nine equal sections. When the robot makes a decision, it will
turn left, turn right, or move forward based on which of these
nine sections it is in. The controller has a separate set of rules
(Figure 3) for each of these nine sections. The rules are placed
in priority ordering, but the control bits (bit one, two, etc.)

control whether or not the rule will ever fire. It is the job of the
genetic algorithm to determine the values of these control bits.

IV. FITNESS BIASING APPLIED TO BOX PUSHING

A. Genetic Algorithm
 The learning was done using a genetic algorithm, with a
population of one hundred chromosomes, each composed of
sixty-four bits. Each chromosome was split into nine sets of
six bits, with ten additional bits (Figure 4). The first nine sets
of six bits determined the robot’s actions in each of the nine
sections of the colony space. As shown in Figure 3, each of the
six bits in each section of the chromosome controlled a
different behavior. If the robot could see the box, the first
three bits caused it to move forward, turn left, or turn right
when activated, respectively. If the robot could see a wall, the
same was true for the next three bits. In this way, the system
allowed the robot to acquire a different behavior in each of the
nine sections of the colony space based upon which of those

Figure 2. The box pushing robot developed for this work.

IF in Section One
 IF box is seen AND bit one
 THEN move forward
 ELSE IF box is seen AND bit two
 THEN turn left
 ELSE IF box is seen AND bit three
 THEN turn right
 ELSE IF wall is seen AND bit four
 THEN move forward
 ELSE IF wall is seen AND bit five
 THEN turn left
 ELSE IF wall is seen AND bit six
 THEN turn right
 ELSE IF first bit of final section
 THEN move forward
 ELSE
 turn left

Figure 3. An example of how the first section of the chromosome was read by
the controller. This refers to the six bits that make up the first section as well as
the first bit of the final section.

[110101011101…

Rule parameters for section one.

…1001011100]

The last ten bits. The first, bolded bit is used to determine whether or not

the robot should move forward in section one.

Figure 4. Break down of the chromosome. The top six bolded bits
correspond to bits one, two, …, six in Figure 3. The bolded bit in the lower
group is the first bit of the final section in Figure 3.

six bits were activated in each of the nine sections of its
chromosome. Nine of the last ten bits that make up the final
section of the chromosome are used to determine what to do if
nothing is seen while in one of the nine sections; if activated,
move forward, otherwise turn left. The sixty-fourth bit is not
used.

The fitness of each chromosome is measured by the
number of times the robot completes the task in six minutes,
with the location of the box and the robot being reset to
random locations in the colony space every minute. A fitness
proportionate (roulette wheel) method is used for selection of
chromosomes, and chromosomes are combined with one
hundred percent crossover and 0.05% chance of mutation.

B. Fitness Biasing
To test the effectiveness of Fitness Biasing to solve the box

pushing task, the first step was to test in simulation. This is the
work reported in this paper. The simulation was to use a model
of the actual robot, with its parameters carefully measured, to
represent the actual robot. The measured parameters of this
model were slightly skewed to create a model that represented
the training model, which was to be used for evolution. To
simulate a Fitness Biasing system, the genetic algorithm used
the training model (inaccurate) to learn a controller with the
periodic tests during the punctuated generations done on the
robot (accurate model). These tests determined the biases,

which were returned to the genetic algorithm to bias the
chromosome fitnesses and continue evolution on the training
model. The punctuated generations were every ten generations
of the genetic algorithm learning system.

V. RESULTS
 Three separate methods of learning were tested with five
runs of each, to show the effectiveness of Fitness Biasing for
evolving a box pushing controller. First, a standard genetic
algorithm was run for two-hundred generations in a simulation
of the task using an accurate model of the robot. This test was
representative of running the genetic algorithm on the actual
robot for a full two-hundred generations. This was the method
of learning that produced the best controller after two-hundred
generations, but it would be very taxing on the robot. Using a
genetic algorithm in this way to evolve the control system for
box-pushing entirely on the robot would be a viable method if
not for the extreme amount of time that is required, as well as
the wear on the actual robot. Second, a genetic algorithm was
run in the simulation using the model that was slightly
skewed; the parameters were each randomly off by a small
amount, which is representative of running the genetic
algorithm purely in a simulated model of the world. This
method of learning produced the worst controller, due to the
inaccuracies in the model. This problem of accuracy is the
primary flaw with learning a control program entirely in

Figure 5. The best chromosome for every tenth generation for a genetic algorithm on the robot, on the model, and with Fitness Biasing. Error bars
represent standard deviation.

simulation; inaccuracies in the model can never be entirely
overcome in a pure simulation method. Third, Fitness Biasing
was tested by running the genetic algorithm in simulation with
each of the model parameters being skewed, but having the
system test every tenth population on the robot (for this phase
of the research, this was on the simulation with accurate
parameters). This was the most effective method of learning,
due to the ability of Fitness Biasing to combine the strengths
of learning on the simulation and learning on the robot. Due to
the Fitness Biasing system running mostly in simulation, the
long runtime and the wear on the robot that are present in
learning on the robot are both significantly reduced.
Additionally, periodic tests on the robot retain much of the
accuracy absent from the pure simulation method.

The results of the three separate experiments are shown in
Figure 5. As can be seen in this graph, the genetic algorithm
operating directly on the robot produced the best results in
two-hundred generations. However, this came at a price, since
twenty thousand evaluations 200 generations * 100
individuals were done on the robot. This would not only take a
long time to get the results, it would be detrimental to the
robot. The genetic algorithm operating only on the model

would be the fastest and not require any tests on the robot, but
the resultant solution was not very good. The genetic
algorithm with Fitness Biasing required two thousand
evaluations on the actual robot (one tenth of all tests on the
robot), yet yielded effective results with a fitness near to the
actual robot genetic algorithm. It’s clear from these tests that
Fitness Biasing produces a better controller than the train-on-
model method without Fitness Biasing, when one considers
the total set of generations. However, what may not be as clear
from this graph is that Fitness Biasing is superior to testing
entirely on the robot. Although nearly attaining the on-robot
fitness after two-hundred generations, the main argument for
Fitness Biasing is the extra time and wear caused by training
solely on the robot.

Figure 6 helps to better compare the effectiveness of Fitness
Biasing with a train-on-robot approach. It shows the genetic
algorithm on the robot versus the genetic algorithm with
Fitness Biasing when considering only tests on the robot. Over
the full two hundred generations of training, the genetic
algorithm with Fitness Biasing had only twenty generations of
tests on the robot, so this is plotted against the first twenty
generations of training for the genetic algorithm on the robot.

Figure 6. The genetic algorithm on the robot and the genetic algorithm with Fitness Biasing, measured in tests performed on the robot.
Error bars represent standard deviation.

It’s clear from this graph that the genetic algorithm with
Fitness Biasing was the superior method when considering the
number of tests required on the robot.

VI. CONCLUSION
Tests done in simulation show that Fitness Biasing is an

effective method for evolving a controller to complete the box
pushing task. This is the first use of Fitness Biasing for
problems other than gait generation. The system performed
well for this problem requiring the proper responses to sensors
in order to complete a task. In this work, we showed its
efficiency in learning the task. What was not shown, but is one
of the advantages of Fitness Biasing is that if there are changes
in the robot or environment that affect the robot’s
performance, Fitness Biasing has the capacity of compensating
for this while the robot is in operation. In future research, we
will continue this work by testing the Fitness Biasing learning
system on the actual robot operating in our colony space. In
addition, we plan to change the capabilities of the robot during
training to observe how it adapts and modifies the control
program.

REFERENCES
[1] Lee, W.-P., Hallam, J., and Lund, H. (1997). "Applying Genetic

Programming to Evolve Behavior Primitives and Arbitrators for Mobile
Robots." Proceedings of IEEE 4th International Conference on
Evolutionary Computation.

[2] Grefenstette, J. and Ramsey, C. (1992). "An Approach to Anytime
Learning." Proceedings of the Ninth International Conference
on Machine Learning.

[3] Beer, R., and Gallagher, J. (1992). "Evolving Dynamical Neural
Networks for Adaptive Behavior." Adaptive Behavior, 1 (pp. 91-122).
Cambridge: MIT Press.

[4] Gallagher, J. and Beer, R. (1994). "Application of Evolved Locomotion
Controllers to a Hexapod Robot." Technical Report CES-94-7,
Department of Computer Engineering and Science, Case Western
Reserve University.

[5] Lund, H. and Miglino, O. (1996). "From Simulated to Real Robots."
Proceedings of IEEE 3rd International Conference on Evolutionary
Computation.

[6] Husbands, P., Harvey, I., Cliff, D., and Miller G. (1997). “Artificial
Evolution: A New Path for Artificial Intelligence?” Brain and Cognition
v. 34, (pp. 130-159).

[7] Parker, G. and Mills, J. (1999). "Adaptive Hexapod Gait Control Using
Anytime Learning with Fitness Biasing." Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 1999).

[8] Parker, G. (2004). “Fitness Biasing to Produce Adaptive Gaits for
Hexapod Robots” Proceedings of the 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems. (IROS 2004).

[9] Parker, G. (2004)."Punctuated Anytime Learning for Hexapod Gait
Generation" Proceedings of the 2002 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2002).

