

Abstract—It is desirable that colony robots be autonomous
and self-sufficient, which requires that they can perform their
duties while maintaining enough energy to operate. In previous
work, we reported the equipping of legged robots with high
capacitance capacitors for power storage and the configuration
of one of these robots to make practical use of its power storage
in a colony recharging system. Research reported in this paper
involves the learning of a control program that allows this robot
to navigate to a charging station. The viability of the
configuration and the learned control program were verified by
observing the actual robot as it operated using the best of the
solutions produced in simulation.

I. INTRODUCTION
N order to perform long-term and independent colony
tasks, robots and their respective environmental systems

must have two properties: autonomy and self-sufficiency
(McFarland [1]). Autonomy means that the robots are able to
make their own decisions and govern their own behavior.
Self-sufficiency denotes the ability of a system to maintain
these robots in a viable state for long periods of time, such
that the robots can maintain their own power supply.
Specifically, the system must include recharging facilities,
i.e. rechargeable batteries and a self-recharge device; in
addition it must also rely on mechanisms that enable the
robots to examine their power supply constantly and to locate
and use a charging station. Any effective autonomous and
self-sufficient robot must balance these two competing
characteristics through the basic cycle outlined by McFarland
and Speir [2], namely, work - find fuel - refuel.

The framework of autonomous and self-sufficient robots
has been an area of interesting research. Yuta and Hada [3]
accomplished a “sport” record by making a robot that ran
continuously for a week by recharging its battery every ten
minutes. Birk [4] points out the problem of batteries and
shows that cell chemistry may constrain consistent robot
behavior. Alternating the use of multiple rechargeable
battery packs was proposed. Floreanno and Mondada [5]
implemented evolved navigation and obstacle avoidance
behavior on a Khepera robot that regularly located a charging
station before the robot’s batteries lost power. Due to long
charging times for any appropriate rechargeable batteries,
however, no battery hardware was used and the batteries and
their recharging were simulated. Sempé, Muñoz, and
Drogoul [6] presented and compared various strategies to

Manuscript received March 1, 2007.
G.B. Parker is the Director of Computer Science at Connecticut College,

New London, CT, USA (e-mail: parker@conncoll.edu)
R.S. Zbeda is a graduate in Computer Science at University of

Pennsylvania (e-mail: rzbeda@seas.upenn.edu).

enable a group of robots to share a charging station, as only
one could recharge its batteries at it at a time. Individual
robots would wander until their go-and-recharge power
threshold was reached, at which point they would navigate
towards a power station. Steels [7] built an ecosystem where
two rival mobile robots compete to use a shared power
supply. No detailed results were presented. Michaud [8]
proposed using artificial emotions to organize long term
activity for a group of robots, although no experiments
involving physical robots were presented.

Common to most of these previous works is that batteries
were used as an on-board power supply and that robot
behavior was preprogrammed. In our previous work, we
presented capacitors as a replacement for batteries used as an
onboard power supply [9]. Capacitors are like batteries,
except that they expend their charge and recharge much
faster. This property enables a more continuous pattern of
behavior in robots as opposed to having them work and
recharge for long periods of time. In addition to facilitating
continuous behavior, capacitors are effective for two other
reasons: resistance to old age [4], and size/power. In
addition, our work is unique because robot behavior is not
preprogrammed, but is learned through a means of
computational intelligence.

The work presented in this paper is the first of two
segments of research in learning autonomous and
self-sufficient robot behavior. The research involves the
learning of two separate but related tasks: area coverage as an
assigned task while the robot is working, and navigation, for
when the robot must find fuel. We employ incremental
learning of the two separate behaviors/tasks to learn the
overall autonomous and self-sufficient behavior. Learning
behavior in incremental steps was proposed by de Garis [10]
and is a widely used approach in evolutionary robotics [11].
The navigation task was learned first and made a module
available to the GA learning the area coverage task. This
incremental approach was necessary, as opposed to learning
both tasks at once, because each behavior is complicated in of
itself and the pattern of area coverage is highly dependant on
the ability of the robot to effectively navigate and find fuel.
The main focus of this paper is on learning the navigation
behavior module.

The navigational task required that the robot travel directly
and efficiently towards the charging station. Numerous
studies exist addressing learning navigational behavior.
Mondada and Floreano developed Khepera, a miniature
mobile robot, to study the evolution of control structures and
had the robot perform, among other tasks, navigation and

Learning Navigation for Recharging a Self-Sufficient Colony Robot
Gary Parker (Member, IEEE) and Richard Zbeda

I

obstacle avoidance [5]. The controller consisted of an
artificial neural network. Its weights were evolved using a
combination of neural networks and standard genetic
algorithms with fitness scaling and “biased mutations" [12].
Tuci, Quinn, and Harvey used a Khepera robot that was
placed in an arena with the task to navigate towards/search
for a target placed at one end of the arena [13]. No obstacle
avoidance was implemented to help during the navigation; if
the robot crashed into a wall, the trial was terminated. They
used a neural network controller with fixed-connection
weights and “leaky integrator” neurons, and a simple genetic
algorithm for learning. At the National University of
Singapore, controller evolution was studied using an
incremental approach on a Khepera robot doing navigation
and obstacle avoidance [14]. The goal was to test this
incremental approach by first creating a neural controller for
the mobile robot to perform straight navigation while
avoiding obstacles and then later extend it to a wall following
behavior. Ram, Arkin, Boone, and Pearce applied genetic
algorithms to the learning of robot navigation behaviors for
reactive control systems [15]. The task to be performed was
navigation of dynamic environments. Only simulation results
were obtained. In our work, we report the use of a cyclic
genetic algorithm to learn the navigation task for a hexapod
robot. The learning takes place in simulation and the
viability of the resulting solution is tested on the actual robot.

II. CYCLIC GENETIC ALGORITHM (CGA)
The cyclic genetic algorithm (CGA) [16], a variant of

Holland’s genetic algorithm (GA) [17], was developed for
automatic code generation for cyclic control problems. The
genes in a CGA chromosome are tasks to be completed by the
agent, as opposed to being traits of a solution as in the
traditional GA. While still employing the same evolutionary
processes, a CGA is distinct in that it contains a list of
instructions, which could include loops to facilitate the
repetition of a sequence of tasks (as shown in Fig. 1) in its
chromosome. The tasks can be single actions or sub-cycles
of actions and the entire chromosome can be executed
repeatedly for a specified number of times; thus there are
multiple levels of looping involved.

CGAs are particularly useful for problems that require the
learning of cyclic and repetitive behavior, such as actual or
simulated robot movement. When considering the cyclic
nature of autonomous and self-sufficient robots, the CGA is
particularly ideal. The CGA was used to evolve single-loop
programs for robotic control of gait cycles for hexapod robots
[16,18]. In these problems, a large portion of the
chromosome was composed of a single loop, as the
chromosome was structured to complete one repetitive
overall task. However, when introducing dynamic sensor
input based on changes in the environment and the need for
differing overall tasks, a single loop was inadequate. To
address this issue, a CGA with conditional branching [19],
where a multi-loop control program was evolved such that it

would branch to specified loops in response to sensor inputs,
was developed.

Fig 1. GA and CGA chromosomes.

In further work [20], the gene structure of the CGA
chromosome was modified so that the implementation of a
system of conditional branching was feasible for a problem
with many sensors. The key difference was that the robot
used did not just learn what actions had to be executed with
branching tests occurring automatically between such
actions. Instead, the CGA also had to learn when to execute
sensor branching tests, what sensors to test, and what
chromosome segment to jump to in the case of a change in
detected sensor input. By learning to conduct its own
branching in this way, the more significant branch
conditionals could be executed, thus reducing the total
number of loops/segments needed in the chromosome. As a
result, the total number of loops/segments in the chromosome
could be set independently from the total number of sensors
used, rather than creating a loop/segment for every single
sensor input combination. Such a multi-loop CGA with
conditional branching is used in this work to learn the robot
tasks of area coverage and navigation.

III. EXPERIMENTAL FRAMEWORK OF THE DUAL-TASK
SELF-SUFFICIENT PROBLEM

The robot used in this research was the ServoBot, which
was developed by David Braun at Indiana University for
legged robot and colony robotics experimentation. It is a
small, inexpensive hexapod robot constructed out of
Masonite, which is a type of hard-pressed wood. Each of the
six legs has two degrees of freedom as well as two servos
which provide forward thrust and vertical movement. The
ServoBot was originally constructed to be capable of carrying
its own power supply in the form of one 9V battery and 4 AA
batteries. The 4 AA batteries power the 12 servos, while the
9V battery powers the onboard BASIC Stamp II
microcontroller (which controls the robot).

It was determined in previous research [9] that supplying
the power to the colony should not involve non-rechargeable

batteries since they only supply power for a limited period of
time. A solution using capacitors was developed that
included a total capacitance of 150F and a 4.6V (limitation
due to the high capacitance capacitors used) level of charge.
The higher the capacitance is, the higher the level of power
the capacitors can hold at any voltage. When charged/used,
the capacitors voltage level goes up/down. However, when
being supplied/used at a level of charge beyond 4.6V, the
capacitors voltage would increase/decrease very fast and was
not as reliable a source of power for the servos.

Given this implementation, the capacitors would expend
their charge by powering the servomotors and would
recharge by connecting to a power station, which was a flat
piece of wood (Fig. 2), with two metal plates connected to a
power supply that was laid against one of the walls of the
colony space. Future research will deal with supplying power
to the power station through solar panels instead of a
regulated power source. Recharging was facilitated by the
robot’s two metallic probes that extend outwards 7 inches in
front of it and are connected to the capacitors. When these
wires were placed in contact with the metal plates of the
charging station, they would recharge the capacitors.

Fig 2. The robot and its metallic probes, power station with its metal plates,
and light source. Six pairs of capacitors to power the ServoBot are mounted
under the robot.

In order to decrease the charge time, the power supply was
set at a voltage level higher that the capacitors maximum
accepted voltage and the process was stopped when the
maximum accepted voltage was reached. It was possible to
significantly decrease the charge time in this way since the
graph of Voltage vs. Time for charging a capacitor is an
exponential graph. Tests were done to determine the run time
and charge time for our specific capacitor configuration when
the capacitors were charged at 4.6V. It was determined that
for the task of walking for approximately 3 minutes the
ServoBot had a charge time of 2min 20sec and had a run time
of 2min 50sec [9].

In order for this self-sufficient system to be effective, we
devised a control scheme that allowed the ServoBot to

effectively make use of it [21]. A voltage sensor (a
microcontroller [PIC 12F675] functioning as an
Analog-to-Digital voltage converter [ADC]) was placed on
the robot so that it could tell when it was time to charge, when
it was charging, and when charging was complete.
Additionally, the robot needed sensors to be able to
autonomously find and travel to the power station to recharge
on its own. Light sensors (two CdS [cadmium sulfide]
photocells) and a source were installed for this purpose. The
information from these two sensors was made available to
onboard BASIC Stamp II controllers so that they could guide
robot behavior towards self-sufficiency.

IV. LEARNING THE NAVIGATION TASK AS PART OF A
SELF-SUFFICIENT FRAMEWORK

This research involved evolving a multi-loop control
program using a CGA with conditional branching in
simulation. This program was to direct a simulated hexapod
colony robot towards effectively completing the dual
self-sufficient tasks of area coverage (i.e. work) and
navigation (i.e. finding fuel). In this paper, we report the
successful completion of a control program for navigation.
The simulation was defined in such a way that it realistically
and accurately represented the physical colony robot, colony
space, and self-sufficient power supply system. In this way,
any evolved behavior in simulation could be transferred to the
physical system with minimal discrepancies.

A. The Simulation Details
The simulation was modeled after the ServoBot -- the

nature of its gait cycles. In this paper, we consider a gait
cycle as a full step cycle where the legs have gone through all
the positions in a step and have returned to their original
position. On the physical robot, the standard gait, or walking
style, is made up of a control sequence which is a list of
activations that the on-board controller will continually
repeat. Each activation controls the instantaneous movement
of the 12 servo actuators.

In previous work, a repeated sequence of these activations
was evolved with a cyclic genetic algorithm to produce an
optimal gait (in terms of speed) for a specific ServoBot [18];
the gait generated for our test was a tripod gait. The tripod
gait is where legs 0, 3, & 4 (right-front, left-middle, and
right-back) alternate with legs 1, 2, & 5 in providing the thrust
for forward movement. While one set of legs is providing
thrust, the other set is repositioning for its next thrust.

Differing degrees of turn were provided in the gait cycle
through the use of affecters. These affecters could interrupt
(in differing degrees) activations to the thrust actuators for
either the left or right side of the robot. In addition to left and
right turn gaits, there was also a four extra preprogrammed
gaits: no movement, straight backwards, left rotate, and right
rotate. In all, a total of 16 different gait cycles were used.

Each turn gait cycle was measured for rate of turn and
displacement. The form on measurement consisted of a list of

three numbers: F, T, and ΔH. F was the distance in
centimeters that the moved forward. The F axis was defined
as the heading of the robot before movement. T was the
distance traveled left or right. The T axis was defined as a
perpendicular to the F axis. Left movement resulted in a
negative T, right in a positive T. ΔH was a measurement (in
degrees) of the change in heading from the start heading F
axis to the heading after execution of the gait cycles. Left was
negative, right was positive. A diagram of F, T, and ΔH
measurement is shown in Fig. 3. Turn rates, defined using F,
T, and ΔH; were stored for each gait cycle. Figure 4 shows
the 16 gait cycle measurements.

Fig 3. Gait Cycle Turn Measurements. The left diagram shows F and T. F is
the distance moved forward (relative to the start position heading). T is the
distance moved in the turn direction (perpendicular to the start position
heading). The right diagram shows ΔH, which is the change in heading from
before to after turn execution.

The robot’s gait cycle measurements were used in the
simulation to calculate moves by the simulated robot. The
robot’s position in the simulation area was fully described by
its xy coordinates, as well as a number between 0 and 359
showing the direction of its heading. Motion was determined
by applying each gait cycle from the chromosome one at a
time. Using the current xy position and heading of the robot,
a new position was calculated by applying the forward (F)
and left/right (T) movements stored for that gait cycle. The
new heading was an addition of the current heading and the
gait cycle heading change (ΔH).

Fig 4. The robot capabilities for each of the 16 gait cycles. For each gait
cycle, the first number indicates the gait cycle type, and the remaining list of
three numbers represents F, T, and ΔH respectively. Gaits 0-5 are the right
turn gait cycles and gaits 8-13 are the left turn gait cycles. Gait 6 is the right
rotate gait cycle, gait 14 is the left rotate cycle, gait 7 is the no movement gait
cycle and gait 15 is the straight backwards gait cycle.

The simulated robot would move and operate within the
simulation area (500x500 units). A simulated power station
was positioned at the coordinate (500,250) and covering the y
range of 225-275. This simulated power station represents

the size and placement of the actual power station. In order
for the simulated robot to use the power station, its simulated
wires, which extend out 45 units in front of it, must make
contact with the power station while the robot is angled
between 45 and 135 degrees (the robot center cannot get
within 25 units of a wall, in which case the run would halt).
The required angle is a realistic property of charging because
the physical robot’s probes cannot touch the power stations
plated at an extreme angle. Further, the power station is
marked by a powerful light source that only illuminates a
certain area of the simulated colony space, as specified in Fig.
5. The light emanates from two point coordinates ((500,240)
(500,260)) which are near the power station. They can only
be seen/sensed by the robot from a point in the illuminated
area, and only when either of the two light sources fall under
the robot’s sensor’s vision. The actual distribution of light
was measured in the physical colony space and the simulated
light distribution is a relatively accurate representation of it.

Fig 5. The simulated colony space.

The robot is equipped with three types of sensors – one that

would enable it to detect the presence of a wall, one a direct
beam of light from a light source, and one that would enable it
to detect whether or not it had power below a certain
threshold. The simulated robot has both left and right light
and obstacle avoidance sensors, as well as one power sensor
for a total of five sensors. Each sensor has two possible
states: 0 (inactive) and 1 (active). The simulated thresholds
used in delineating membership in such states have been
specifically set to correspond with values determined through
experimentation on the physical robot. In terms of the object
avoidance sensors, the activation distance is 95.5 units,
meaning that these sensors can sense a wall 95.5 units away.
Also, the span of each of the object avoidance sensor’s vision
is 45 degrees. Since the left and right sensors are situated at

the front of the robot, with their spans overlapping by 10
degrees, a total span of 80 degrees is provided. These sensors
are important because avoiding walls is necessary to survival
- contact with a wall will automatically end the life of the
robot. In terms of light sensors, the activation distance is
infinite, meaning that once the front of the robot is in line with
the light source, a light signal is detected. The span of the
light sensor’s vision is 80 degrees. Since the two sensors are
situated at the front of the robot, with their spans overlapping
by 40 degrees, a total span of 120 degree is provided. Lastly,
the robot’s power sensor senses when the robot’s capacitor
power level is below the lower power threshold. The lower
power threshold signifies the power-level below which the
robot is in danger of not having enough power to move.

The quantities of power usage and thresholds were all
approximated from observations of the actual robot and its
capacitors. Among the quantities measured were the power
usage per gait cycle, the empty power threshold, the low
power threshold, and the high power threshold. In terms of
the power usage per cycle, unless the robot remains
motionless, it will expend a constant 0.0209V of charge. The
empty power threshold was set at 2.7V and marks the power
level below which the robot will not have enough power to
execute another gait cycle. The low power threshold was set
at 4V. The high power threshold is 5V and marks the amount
of energy attained just after completing a charging routine at
the charging station. A charging routine is a preprogrammed
routine in which the robot connects with the power station
(while its power level is below the lower threshold level),
recharges up to the high threshold level, executes 4 straight
backwards gait cycles (which can be executed only at this
time) and then resumes its area coverage task.

V. LEARNING THE NAVIGATION MODULE
In order to learn the navigation task, a multi-loop CGA

with conditional branching was used; a type that learns
jumping from one loop to another, which was designed to
handle many sensor input combinations [20]. Multiple loops
were needed because different overall tasks of repetitive
behavior were required for different sensors inputs as there
were such behaviors as turning in a circle until light is sensed,
and moving towards the light. The correct jumping between
such types of sub-tasks needed to be learned. As a result, a
chromosome had to be developed that would have a sufficient
number of loops to cover each sub-task; in addition, there had
to be a sufficient number of instructions in each loop to create
enough gait cycle movement and/or conditional branch tests
to make the loop function effective. However, while the
number of loops and instructions in the loops had to be
determined to be large enough for the problem, they could not
be so large that the CGA could not converge on a good
solution.

Each chromosome consisted of 8 genes, and each gene
(Fig. 6) consisted of a 2 bit number followed by four 7 bit
numbers. The gene represented a “for” loop with the two bit

number specifying how many times the loop should be
executed; the possible values being 01 (once), 10 (twice), 11
(three times) and 00 (infinite). The four 7 bit numbers
represented the instructions in the loop.

Fig 6. The structure of a gene. This example shows the two different
instruction types.

The flow of the fitness evaluation of a chromosome would
begin, in general, by completing the list of instructions in the
first gene, or “for” loop. As the algorithm finished executing
each instruction, it went on to the next instruction in the “for”
loop, unless a branch condition instruction in the gene sent
the point of execution to another gene. Additionally, as the
algorithm finished executing a gene, it went on to the
beginning of the next gene. In the case that the algorithm
finished executing the last gene, control returned to the
beginning of the first gene. The algorithm would continue
until the run terminated. In order to avoid infinite branching,
after 32 consecutive branches without a gait cycle instruction,
the simulation run was set to halt.

Within this flow of execution of instructions, two types of
instructions could be executed. The first is an instruction
which directs the robot to move a specific gait cycle. In this
case, the robot moves according to the displacement and
rotation of the gait. The second is a conditional branching
instruction, which tests specific sensors (Fig. 7) for their input
states. If the sensor tests are positive, the chromosome
section that controls the robot changes to a beginning of the
gene specified in the instruction. Otherwise, the conditional
branch instruction is passed, and the next instruction in the
gene is executed.

 Fig 7. The eight sensor state tests.

For each 7-bit instruction, the first bit represented whether
or not the instruction was a conditional branching test or if it
represented a gait cycle to be executed. If it was a 0, then the
next 4 bits would signify the one of 16 gait cycles to be
executed (although the straight backwards gait cycle could
only be executed after a charging routine). Otherwise, if it

was a 1, then the next 3 bits would signify one of 8 combined
sensor input combinations/states that were designed with
respect to their relevance towards useful comparisons
between sensor types. The 8 sensor combinations are listed in
Figure 7. The 3 bits after the conditional signified the address
of one of the 8 segments to which a jump would be executed
if the actual sensor states matched the conditional sensor state
combination.

The actual training procedure was as follows. Five
populations on 256 randomly generated individuals were
created. Evolution was carried out for 1024 generations. For
each generation each individual was assigned the same 10
randomly generated starting positions. Then each individual
was evaluated starting from the 10 randomly generated
starting positions. The fitness of each individual was based
on its average performance in the 10 runs. The final average
was raised to the 1.5 power to amplify fitness differences
between individuals in a population. After each individual
had been evaluated and assigned a fitness value, the
individual with the best fitness was automatically included in
the next generation. The remaining individuals were
produced through the application of the three standard
genetic operators, namely, selection, crossover and mutation.
The populations at periodic generations from 0 up to 1024
were saved during the evolution.

To assign a fitness value to a single individual for a single
run, the following procedure was used. The robot would start
with a power level set at the low power threshold of 4V and a

relatively low maximum of 200 steps in order to induce it to
waste little time and travel straight towards the power station.
Its goal to would be to connect with the charging station or to
get as close to it as possible (without getting within 25 units
of the wall) before the run was terminated. The robot got the
maximum fitness for reaching the charging station. If the
robot did not reach the power station it received a fitness
value related to its proximity to the power station so that the
closer the robot was, the higher its fitness rating. In this latter
case, the proximity distance was square-rooted in order to
amplify the reward received at closer distances.

Termination of a run and the assignment of a fitness value
could occur for any of four reasons: the power-station was
reached, the maximum number of steps (e.g. gait cycles) were
taken, the robot got within 25 units of a wall (collision with
the wall), and the power level of the robot dropped below the
empty power threshold of 2.7V.

VI. RESULTS
For each of the 5 tests (each with a population that was

initially randomly generated), population details were stored
at the 0, 1, 32, 64, 128, 256, 384, 512, 768, and 1024
generations. Tests were conducted, such that the populations
at each of these generations were evaluated at 100 randomly
generated start positions. The best individual fitness
(averaged over the 100 trials) from each population at each
stored generation was recorded (Fig. 8).

Fig 8. Fitness of the power seeking module. Each line represents the fitness of one of 5 populations; the bold line shows the average of the 5. The best
individual at each generation for each population was saved and individuals from selected generations were tested on a series of common staring positions.

Observations of the robots in simulation and in the actual
colony space revealed that the CGA had learned reasonable
solutions. In each population, the individual with the best
fitness would make a few turns if its sensors did not sense any
light. If the individual was in one of the dark areas, it would
circle until it moved out of the dark area or ran out of steps. If
the individual robot sensed light, it would travel directly
towards the power station such that it would continuously
make minimal left turns until its left light sensor did not sense
any light, switch to making minimal right turns until its right
light sensor did not sense anything, and carry on in this
manner back-and-forth. The resulting repetitive cyclic
behavior was carried out until the power station area was
reached.

It is evident from the results of all five runs of the
navigation module that the population fitness average
reached a relatively high point after several hundred
generations and improved only modestly after that to a high at
1024 generations. Observations of the simulated robot
revealed that its behavioral improvement was commonly
characterized by its increasingly immediate and direct routes
to the power station – although this improvement was more
drastic in early generations than in latter ones. The best
solution produced in simulation was downloaded to the actual
robot. Observations of its behavior verified that the CGA
learned solution was effective on the physical robot operating
in the actual colony space.

VII. CONCLUSIONS
The use of a multi-loop CGA with conditional branching

was shown to be an effective learning method for learning the
navigation task and tests on the actual robot confirmed that
the navigation control program produced a reasonable track
over the ground for the robot to locate the charging station.
This successful navigation behavior that was developed could
be used later in learning the work segment of the
self-sufficient behavior.

While our experiment was specific to our colony setup, we
believe that our approach to a self-sufficient system has
general relevance and can be replicated on other colony area
systems. The use of capacitors and a charging station is
readily applicable to small and light weight robots in which
short run/charge times are desired.

There is much future work that can be accomplished in
developing our self-sufficient approach. Improved capacitors
rated at 2.7v and 100F are now available and would greatly
improve the ability of the capacitors to hold concentrated
charge at higher voltage levels. They could increase the
robot’s work cycle time of a self-sufficient task. Using solar
or wind energy to power the charging station could make the
entire system self-sufficient. We also believe that issues
with multiple robot interaction in a self-sufficient system
should be addressed. Numerous behavioral relationships
such as cooperation and competition could be exhibited.

REFERENCES
[1] McFarland D. (1995) Autonomy and Self-Sufficiency in Robots. The

Artificial Life Route to Artificial Intelligence. Building Embodied,
Situated Agents. Steels L.(ed). Lawrence Erlbaum Ass. Pub. USA,
187-213.

[2] McFarland D., E. Spier. (1997) Basic Cycles, Utility and Opportunism
in Self-sufficient Robots. Robotics and Autonomous System (20),
179-190.

[3] Yuta S., Hada Y. (2000) First Stage Experiments of Long Term Activity
of Autonomous Mobile Robot: Result of Repetitive Base Docking over
a Week. In: Proceedings of ISER'00, 7th International Symposium on
Experimental Robotics, 235-244.

[4] Birk A. (1997) Autonomous Recharging of Mobile Robots. In:
Proceedings of the 30th International Symposium on Automative
Technology and Automation. Isata Press.

[5] D. Floreano and F. Mondada, "Evolution of Homing Navigation in a
Real Mobile Robot," IEEE Transactions on Systems, Man and
Cybernetics, Vol. 26, No. 3, 1996, pp 396-407.

[6] Sempé F., Muñoz A., Drogoul A. “Autonomous Robots Sharing a
Charging Station with no Communication: a Case Study.” Proceedings
of the 6th International Symposium on Distributed Autonomous
Robotic Systems (DARS'02). June 2002.

[7] Steels L. (1994) A case study in the behavior-oriented design of
autonomous agents. In: From animals to animats 3. Proceedings of the
3rd International Conference on Simulation of Adaptive Behavior. Clif
D., Husbands P., Meyer J.-A., Wilson S.W. (eds). USA, MIT Press,
445-452.

[8] Michaud F., Robichaud E., Audet J. (2001) Using Motives and
Artificial Emotions for Prolonged Activity of a Group of Autonomous
Robots. To appear in: Proceedings of the AAAI Fall Symposium on
Emotions. Cape Code Massachusetts, USA.

[9] G. Parker, R. Georgescu, and K. Northcutt, “Continuous Power Supply
for a Robot Colony.” Proceedings of the World Automation Congress
(WAC 2004). June 2004.

[10] H. de Garis, “Genetic Programming: GenNets, Artificial Nervous
Systems, Artificial Embryos”, Ph.D. thesis, Université libre de
Bruxelles, Belgium, (1991).

[11] Petrovic, P. (1999) Overview of Incremental Evolution Approaches to
Evolutionary Robotics, Proceedings to Norwegian Conference on
Computer Science, p. 151-162.

[12] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, Reading, MA, 1989.

[13] E. Tuci, M. Quinn, and I. Harvey, “Evolving Fixed-Weight Networks
for Learning Robots,” Proceedings of Congress on Evolutionary
Computation (CEC2002), 2002.

[14] D. Bajaj and M. Ang, “An Incremental Approach in Evolving Robot
Behavior,” Proceedings of the Sixth International Conference on
Control, Automation, Robotics and Vision, 2000.

[15] A. Ram, R. Arkin, G. Boone, and M. Pearce, “Using Genetic
Algorithms to Learn Reactive Control Parameters for Autonomous
Robotic Navigation,” Adaptive Behavior, vol. 2, issue 3, 1994.

[16] G. B. Parker and G. J. E. Rawlins “Cyclic Genetic Algorithms for the
Locomotion of Hexapod Robots,” Proc. World Automation Congress,
Vol. 3, Robotic and Manufacturing Systems, 1996, pp. 617-622.

[17] J. H. Holland, Adaptation in Natural and Artificial Systems, Ann Arbor,
MI, The University of Michigan Press, 1975.

[18] G. Parker, D. Braun, and I. Cyliax, “Evolving Hexapod Gaits Using a
Cyclic Genetic Algorithm.” Proceedings of the IASTED International
Conference on Artificial Intelligence and Soft Computing (ASC'97).
July 1997 (pp. 141-144).

[19] G. B. Parker, I. I. Parashkevov, H. J. Blumenthal, and T. W. Guildman,
“Cyclic Genetic Algorithms for Evolving Multi-Loop Control
Programs,” Proceedings of the World Automation Congress (WAC
2004). June 2004.

[20] G. Parker and R. Georgescu, “Using Cyclic Genetic Algorithms to
Evolve Multi-Loop Control Programs.” Proceedings of the 2005 IEEE
International Conference on Mechatronics and Automation (ICMA
2005). July 2005.

[21] G. Parker and R. Zbeda, “Controller Use of a Robot Colony Power
Supply.” Proceedings of the 2005 IEEE International Conference on
Systems, Man, and Cybernetics (SMC 2005). October 2005.

