
 
 

 

  

Abstract—It is desirable that colony robots be autonomous 
and self-sufficient, which requires that they can perform their 
duties while maintaining enough energy to operate.  In previous 
work, we reported the equipping of legged robots with high 
capacitance capacitors for power storage and the configuration 
of one of these robots to make practical use of its power storage 
in a colony recharging system.  Research reported in this paper 
involves the learning of a control program that allows this robot 
to navigate to a charging station.  The viability of the 
configuration and the learned control program were verified by 
observing the actual robot as it operated using the best of the 
solutions produced in simulation.  

I. INTRODUCTION 
N order to perform long-term and independent colony 
tasks, robots and their respective environmental systems 

must have two properties: autonomy and self-sufficiency 
(McFarland [1]).  Autonomy means that the robots are able to 
make their own decisions and govern their own behavior.  
Self-sufficiency denotes the ability of a system to maintain 
these robots in a viable state for long periods of time, such 
that the robots can maintain their own power supply.  
Specifically, the system must include recharging facilities, 
i.e. rechargeable batteries and a self-recharge device; in 
addition it must also rely on mechanisms that enable the 
robots to examine their power supply constantly and to locate 
and use a charging station.  Any effective autonomous and 
self-sufficient robot must balance these two competing 
characteristics through the basic cycle outlined by McFarland 
and Speir [2], namely, work - find fuel - refuel. 

The framework of autonomous and self-sufficient robots 
has been an area of interesting research.  Yuta and Hada [3] 
accomplished a “sport” record by making a robot that ran 
continuously for a week by recharging its battery every ten 
minutes.  Birk [4] points out the problem of batteries and 
shows that cell chemistry may constrain consistent robot 
behavior.  Alternating the use of multiple rechargeable 
battery packs was proposed.  Floreanno and Mondada [5] 
implemented evolved navigation and obstacle avoidance 
behavior on a Khepera robot that regularly located a charging 
station before the robot’s batteries lost power.  Due to long 
charging times for any appropriate rechargeable batteries, 
however, no battery hardware was used and the batteries and 
their recharging were simulated.  Sempé, Muñoz, and 
Drogoul [6] presented and compared various strategies to 
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enable a group of robots to share a charging station, as only 
one could recharge its batteries at it at a time.  Individual 
robots would wander until their go-and-recharge power 
threshold was reached, at which point they would navigate 
towards a power station.  Steels [7] built an ecosystem where 
two rival mobile robots compete to use a shared power 
supply.  No detailed results were presented.  Michaud [8] 
proposed using artificial emotions to organize long term 
activity for a group of robots, although no experiments 
involving physical robots were presented. 

Common to most of these previous works is that batteries 
were used as an on-board power supply and that robot 
behavior was preprogrammed.  In our previous work, we 
presented capacitors as a replacement for batteries used as an 
onboard power supply [9]. Capacitors are like batteries, 
except that they expend their charge and recharge much 
faster.  This property enables a more continuous pattern of 
behavior in robots as opposed to having them work and 
recharge for long periods of time.  In addition to facilitating 
continuous behavior, capacitors are effective for two other 
reasons: resistance to old age [4], and size/power.  In 
addition, our work is unique because robot behavior is not 
preprogrammed, but is learned through a means of 
computational intelligence.   

The work presented in this paper is the first of two 
segments of research in learning autonomous and 
self-sufficient robot behavior.  The research involves the 
learning of two separate but related tasks: area coverage as an 
assigned task while the robot is working, and navigation, for 
when the robot must find fuel.  We employ incremental 
learning of the two separate behaviors/tasks to learn the 
overall autonomous and self-sufficient behavior.  Learning 
behavior in incremental steps was proposed by de Garis [10] 
and is a widely used approach in evolutionary robotics [11].  
The navigation task was learned first and made a module 
available to the GA learning the area coverage task.  This 
incremental approach was necessary, as opposed to learning 
both tasks at once, because each behavior is complicated in of 
itself and the pattern of area coverage is highly dependant on 
the ability of the robot to effectively navigate and find fuel.  
The main focus of this paper is on learning the navigation 
behavior module. 

The navigational task required that the robot travel directly 
and efficiently towards the charging station.  Numerous 
studies exist addressing learning navigational behavior.  
Mondada and Floreano developed Khepera, a miniature 
mobile robot, to study the evolution of control structures and 
had the robot perform, among other tasks, navigation and 
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obstacle avoidance [5].  The controller consisted of an 
artificial neural network.  Its weights were evolved using a 
combination of neural networks and standard genetic 
algorithms with fitness scaling and “biased mutations" [12].  
Tuci, Quinn, and Harvey used a Khepera robot that was 
placed in an arena with the task to navigate towards/search 
for a target placed at one end of the arena [13].  No obstacle 
avoidance was implemented to help during the navigation; if 
the robot crashed into a wall, the trial was terminated.  They 
used a neural network controller with fixed-connection 
weights and “leaky integrator” neurons, and a simple genetic 
algorithm for learning.  At the National University of 
Singapore, controller evolution was studied using an 
incremental approach on a Khepera robot doing navigation 
and obstacle avoidance [14].  The goal was to test this 
incremental approach by first creating a neural controller for 
the mobile robot to perform straight navigation while 
avoiding obstacles and then later extend it to a wall following 
behavior.  Ram, Arkin, Boone, and Pearce applied genetic 
algorithms to the learning of robot navigation behaviors for 
reactive control systems [15].  The task to be performed was 
navigation of dynamic environments.  Only simulation results 
were obtained.  In our work, we report the use of a cyclic 
genetic algorithm to learn the navigation task for a hexapod 
robot.   The learning takes place in simulation and the 
viability of the resulting solution is tested on the actual robot. 

II. CYCLIC GENETIC ALGORITHM (CGA) 
The cyclic genetic algorithm (CGA) [16], a variant of 

Holland’s genetic algorithm (GA) [17], was developed for 
automatic code generation for cyclic control problems.  The 
genes in a CGA chromosome are tasks to be completed by the 
agent, as opposed to being traits of a solution as in the 
traditional GA.  While still employing the same evolutionary 
processes, a CGA is distinct in that it contains a list of 
instructions, which could include loops to facilitate the 
repetition of a sequence of tasks (as shown in Fig. 1) in its 
chromosome.   The tasks can be single actions or sub-cycles 
of actions and the entire chromosome can be executed 
repeatedly for a specified number of times; thus there are 
multiple levels of looping involved. 

CGAs are particularly useful for problems that require the 
learning of cyclic and repetitive behavior, such as actual or 
simulated robot movement.  When considering the cyclic 
nature of autonomous and self-sufficient robots, the CGA is 
particularly ideal.  The CGA was used to evolve single-loop 
programs for robotic control of gait cycles for hexapod robots 
[16,18].  In these problems, a large portion of the 
chromosome was composed of a single loop, as the 
chromosome was structured to complete one repetitive 
overall task.  However, when introducing dynamic sensor 
input based on changes in the environment and the need for 
differing overall tasks, a single loop was inadequate.  To 
address this issue, a CGA with conditional branching [19], 
where a multi-loop control program was evolved such that it 

would branch to specified loops in response to sensor inputs, 
was developed. 
 

 
 

Fig 1. GA and CGA chromosomes. 
 

In further work [20], the gene structure of the CGA 
chromosome was modified so that the implementation of a 
system of conditional branching was feasible for a problem 
with many sensors.  The key difference was that the robot 
used did not just learn what actions had to be executed with 
branching tests occurring automatically between such 
actions.  Instead, the CGA also had to learn when to execute 
sensor branching tests, what sensors to test, and what 
chromosome segment to jump to in the case of a change in 
detected sensor input.  By learning to conduct its own 
branching in this way, the more significant branch 
conditionals could be executed, thus reducing the total 
number of loops/segments needed in the chromosome.  As a 
result, the total number of loops/segments in the chromosome 
could be set independently from the total number of sensors 
used, rather than creating a loop/segment for every single 
sensor input combination.  Such a multi-loop CGA with 
conditional branching is used in this work to learn the robot 
tasks of area coverage and navigation. 

III. EXPERIMENTAL FRAMEWORK OF THE DUAL-TASK 
SELF-SUFFICIENT PROBLEM 

The robot used in this research was the ServoBot, which 
was developed by David Braun at Indiana University for 
legged robot and colony robotics experimentation.  It is a 
small, inexpensive hexapod robot constructed out of 
Masonite, which is a type of hard-pressed wood.  Each of the 
six legs has two degrees of freedom as well as two servos 
which provide forward thrust and vertical movement.  The 
ServoBot was originally constructed to be capable of carrying 
its own power supply in the form of one 9V battery and 4 AA 
batteries.  The 4 AA batteries power the 12 servos, while the 
9V battery powers the onboard BASIC Stamp II 
microcontroller (which controls the robot).   

It was determined in previous research [9] that supplying 
the power to the colony should not involve non-rechargeable 



 
 

 

batteries since they only supply power for a limited period of 
time.  A solution using capacitors was developed that 
included a total capacitance of 150F and a 4.6V (limitation 
due to the high capacitance capacitors used) level of charge.  
The higher the capacitance is, the higher the level of power 
the capacitors can hold at any voltage.  When charged/used, 
the capacitors voltage level goes up/down.  However, when 
being supplied/used at a level of charge beyond 4.6V, the 
capacitors voltage would increase/decrease very fast and was 
not as reliable a source of power for the servos. 

Given this implementation, the capacitors would expend 
their charge by powering the servomotors and would 
recharge by connecting to a power station, which was a flat 
piece of wood (Fig. 2), with two metal plates connected to a 
power supply that was laid against one of the walls of the 
colony space.  Future research will deal with supplying power 
to the power station through solar panels instead of a 
regulated power source.  Recharging was facilitated by the 
robot’s two metallic probes that extend outwards 7 inches in 
front of it and are connected to the capacitors.  When these 
wires were placed in contact with the metal plates of the 
charging station, they would recharge the capacitors.   

 

 
 
Fig 2.  The robot and its metallic probes, power station with its metal plates, 
and light source.  Six pairs of capacitors to power the ServoBot are mounted 
under the robot. 
 

In order to decrease the charge time, the power supply was 
set at a voltage level higher that the capacitors maximum 
accepted voltage and the process was stopped when the 
maximum accepted voltage was reached.  It was possible to 
significantly decrease the charge time in this way since the 
graph of Voltage vs. Time for charging a capacitor is an 
exponential graph.  Tests were done to determine the run time 
and charge time for our specific capacitor configuration when 
the capacitors were charged at 4.6V.  It was determined that 
for the task of walking for approximately 3 minutes the 
ServoBot had a charge time of 2min 20sec and had a run time 
of 2min 50sec [9].   

In order for this self-sufficient system to be effective, we 
devised a control scheme that allowed the ServoBot to 

effectively make use of it [21].  A voltage sensor (a 
microcontroller [PIC 12F675] functioning as an 
Analog-to-Digital voltage converter [ADC]) was placed on 
the robot so that it could tell when it was time to charge, when 
it was charging, and when charging was complete.  
Additionally, the robot needed sensors to be able to 
autonomously find and travel to the power station to recharge 
on its own.  Light sensors (two CdS [cadmium sulfide] 
photocells) and a source were installed for this purpose.  The 
information from these two sensors was made available to 
onboard BASIC Stamp II controllers so that they could guide 
robot behavior towards self-sufficiency.  

IV. LEARNING THE NAVIGATION TASK AS PART OF A 
SELF-SUFFICIENT FRAMEWORK 

This research involved evolving a multi-loop control 
program using a CGA with conditional branching in 
simulation.  This program was to direct a simulated hexapod 
colony robot towards effectively completing the dual 
self-sufficient tasks of area coverage (i.e. work) and 
navigation (i.e. finding fuel).  In this paper, we report the 
successful completion of a control program for navigation.  
The simulation was defined in such a way that it realistically 
and accurately represented the physical colony robot, colony 
space, and self-sufficient power supply system.  In this way, 
any evolved behavior in simulation could be transferred to the 
physical system with minimal discrepancies. 

A. The Simulation Details  
The simulation was modeled after the ServoBot -- the 

nature of its gait cycles.  In this paper, we consider a gait 
cycle as a full step cycle where the legs have gone through all 
the positions in a step and have returned to their original 
position.  On the physical robot, the standard gait, or walking 
style, is made up of a control sequence which is a list of 
activations that the on-board controller will continually 
repeat.  Each activation controls the instantaneous movement 
of the 12 servo actuators.   

In previous work, a repeated sequence of these activations 
was evolved with a cyclic genetic algorithm to produce an 
optimal gait (in terms of speed) for a specific ServoBot [18]; 
the gait generated for our test was a tripod gait.  The tripod 
gait is where legs 0, 3, & 4 (right-front, left-middle, and 
right-back) alternate with legs 1, 2, & 5 in providing the thrust 
for forward movement.  While one set of legs is providing 
thrust, the other set is repositioning for its next thrust. 

Differing degrees of turn were provided in the gait cycle 
through the use of affecters.  These affecters could interrupt 
(in differing degrees) activations to the thrust actuators for 
either the left or right side of the robot.  In addition to left and 
right turn gaits, there was also a four extra preprogrammed 
gaits: no movement, straight backwards, left rotate, and right 
rotate.  In all, a total of 16 different gait cycles were used. 

Each turn gait cycle was measured for rate of turn and 
displacement.  The form on measurement consisted of a list of 



 
 

 

three numbers: F, T, and ΔH.  F was the distance in 
centimeters that the moved forward.  The F axis was defined 
as the heading of the robot before movement.  T was the 
distance traveled left or right.  The T axis was defined as a 
perpendicular to the F axis.  Left movement resulted in a 
negative T, right in a positive T.  ΔH was a measurement (in 
degrees) of the change in heading from the start heading F 
axis to the heading after execution of the gait cycles.  Left was 
negative, right was positive.  A diagram of F, T, and ΔH 
measurement is shown in Fig. 3.  Turn rates, defined using F, 
T, and ΔH; were stored for each gait cycle.  Figure 4 shows 
the 16 gait cycle measurements. 
 

 
 
Fig 3. Gait Cycle Turn Measurements.  The left diagram shows F and T.   F is 
the distance moved forward (relative to the start position heading).  T is the 
distance moved in the turn direction (perpendicular to the start position 
heading).  The right diagram shows ΔH, which is the change in heading from 
before to after turn execution. 
 

The robot’s gait cycle measurements were used in the 
simulation to calculate moves by the simulated robot.  The 
robot’s position in the simulation area was fully described by 
its xy coordinates, as well as a number between 0 and 359 
showing the direction of its heading.  Motion was determined 
by applying each gait cycle from the chromosome one at a 
time.  Using the current xy position and heading of the robot, 
a new position was calculated by applying the forward (F) 
and left/right (T) movements stored for that gait cycle.  The 
new heading was an addition of the current heading and the 
gait cycle heading change (ΔH).   

 

 
 
Fig 4. The robot capabilities for each of the 16 gait cycles.  For each gait 
cycle, the first number indicates the gait cycle type, and the remaining list of 
three numbers represents F, T, and ΔH respectively.  Gaits 0-5 are the right 
turn gait cycles and gaits 8-13 are the left turn gait cycles.  Gait 6 is the right 
rotate gait cycle, gait 14 is the left rotate cycle, gait 7 is the no movement gait 
cycle and gait 15 is the straight backwards gait cycle. 
 

The simulated robot would move and operate within the 
simulation area (500x500 units).  A simulated power station 
was positioned at the coordinate (500,250) and covering the y 
range of 225-275.  This simulated power station represents 

the size and placement of the actual power station.  In order 
for the simulated robot to use the power station, its simulated 
wires, which extend out 45 units in front of it, must make 
contact with the power station while the robot is angled 
between 45 and 135 degrees (the robot center cannot get 
within 25 units of a wall, in which case the run would halt).  
The required angle is a realistic property of charging because 
the physical robot’s probes cannot touch the power stations 
plated at an extreme angle.  Further, the power station is 
marked by a powerful light source that only illuminates a 
certain area of the simulated colony space, as specified in Fig. 
5.  The light emanates from two point coordinates ((500,240) 
(500,260)) which are near the power station.  They can only 
be seen/sensed by the robot from a point in the illuminated 
area, and only when either of the two light sources fall under 
the robot’s sensor’s vision.  The actual distribution of light 
was measured in the physical colony space and the simulated 
light distribution is a relatively accurate representation of it. 

 

 
Fig 5. The simulated colony space. 

 
The robot is equipped with three types of sensors – one that 

would enable it to detect the presence of a wall, one a direct 
beam of light from a light source, and one that would enable it 
to detect whether or not it had power below a certain 
threshold.  The simulated robot has both left and right light 
and obstacle avoidance sensors, as well as one power sensor 
for a total of five sensors.  Each sensor has two possible 
states: 0 (inactive) and 1 (active).   The simulated thresholds 
used in delineating membership in such states have been 
specifically set to correspond with values determined through 
experimentation on the physical robot.  In terms of the object 
avoidance sensors, the activation distance is 95.5 units, 
meaning that these sensors can sense a wall 95.5 units away.  
Also, the span of each of the object avoidance sensor’s vision 
is 45 degrees.  Since the left and right sensors are situated at 



 
 

 

the front of the robot, with their spans overlapping by 10 
degrees, a total span of 80 degrees is provided.  These sensors 
are important because avoiding walls is necessary to survival 
- contact with a wall will automatically end the life of the 
robot.  In terms of light sensors, the activation distance is 
infinite, meaning that once the front of the robot is in line with 
the light source, a light signal is detected.  The span of the 
light sensor’s vision is 80 degrees.  Since the two sensors are 
situated at the front of the robot, with their spans overlapping 
by 40 degrees, a total span of 120 degree is provided.  Lastly, 
the robot’s power sensor senses when the robot’s capacitor 
power level is below the lower power threshold.  The lower 
power threshold signifies the power-level below which the 
robot is in danger of not having enough power to move.   

The quantities of power usage and thresholds were all 
approximated from observations of the actual robot and its 
capacitors.  Among the quantities measured were the power 
usage per gait cycle, the empty power threshold, the low 
power threshold, and the high power threshold.  In terms of 
the power usage per cycle, unless the robot remains 
motionless, it will expend a constant 0.0209V of charge.  The 
empty power threshold was set at 2.7V and marks the power 
level below which the robot will not have enough power to 
execute another gait cycle.  The low power threshold was set 
at 4V.  The high power threshold is 5V and marks the amount 
of energy attained just after completing a charging routine at 
the charging station.  A charging routine is a preprogrammed 
routine in which the robot connects with the power station 
(while its power level is below the lower threshold level), 
recharges up to the high threshold level, executes 4 straight 
backwards gait cycles (which can be executed only at this 
time) and then resumes its area coverage task.  

V. LEARNING THE NAVIGATION MODULE 
In order to learn the navigation task, a multi-loop CGA 

with conditional branching was used; a type that learns 
jumping from one loop to another, which was designed to 
handle many sensor input combinations [20].  Multiple loops 
were needed because different overall tasks of repetitive 
behavior were required for different sensors inputs as there 
were such behaviors as turning in a circle until light is sensed, 
and moving towards the light.  The correct jumping between 
such types of sub-tasks needed to be learned.  As a result, a 
chromosome had to be developed that would have a sufficient 
number of loops to cover each sub-task; in addition, there had 
to be a sufficient number of instructions in each loop to create 
enough gait cycle movement and/or conditional branch tests 
to make the loop function effective.  However, while the 
number of loops and instructions in the loops had to be 
determined to be large enough for the problem, they could not 
be so large that the CGA could not converge on a good 
solution. 

Each chromosome consisted of 8 genes, and each gene 
(Fig. 6) consisted of a 2 bit number followed by four 7 bit 
numbers.  The gene represented a “for” loop with the two bit 

number specifying how many times the loop should be 
executed; the possible values being 01 (once), 10 (twice), 11 
(three times) and 00 (infinite).  The four 7 bit numbers 
represented the instructions in the loop.   
 

 
Fig 6. The structure of a gene.  This example shows the two different 
instruction types. 
 

The flow of the fitness evaluation of a chromosome would 
begin, in general, by completing the list of instructions in the 
first gene, or “for” loop.  As the algorithm finished executing 
each instruction, it went on to the next instruction in the “for” 
loop, unless a branch condition instruction in the gene sent 
the point of execution to another gene.  Additionally, as the 
algorithm finished executing a gene, it went on to the 
beginning of the next gene.  In the case that the algorithm 
finished executing the last gene, control returned to the 
beginning of the first gene. The algorithm would continue 
until the run terminated.  In order to avoid infinite branching, 
after 32 consecutive branches without a gait cycle instruction, 
the simulation run was set to halt.   

Within this flow of execution of instructions, two types of 
instructions could be executed.  The first is an instruction 
which directs the robot to move a specific gait cycle.  In this 
case, the robot moves according to the displacement and 
rotation of the gait.  The second is a conditional branching 
instruction, which tests specific sensors (Fig. 7) for their input 
states.  If the sensor tests are positive, the chromosome 
section that controls the robot changes to a beginning of the 
gene specified in the instruction.  Otherwise, the conditional 
branch instruction is passed, and the next instruction in the 
gene is executed. 

   

 
                           Fig 7. The eight sensor state tests.        
 

For each 7-bit instruction, the first bit represented whether 
or not the instruction was a conditional branching test or if it 
represented a gait cycle to be executed.  If it was a 0, then the 
next 4 bits would signify the one of 16 gait cycles to be 
executed (although the straight backwards gait cycle could 
only be executed after a charging routine).  Otherwise, if it 



 
 

 

was a 1, then the next 3 bits would signify one of 8 combined 
sensor input combinations/states that were designed with 
respect to their relevance towards useful comparisons 
between sensor types.  The 8 sensor combinations are listed in 
Figure 7.  The 3 bits after the conditional signified the address 
of one of the 8 segments to which a jump would be executed 
if the actual sensor states matched the conditional sensor state 
combination.  

The actual training procedure was as follows.  Five 
populations on 256 randomly generated individuals were 
created.  Evolution was carried out for 1024 generations.  For 
each generation each individual was assigned the same 10 
randomly generated starting positions.  Then each individual 
was evaluated starting from the 10 randomly generated 
starting positions.  The fitness of each individual was based 
on its average performance in the 10 runs.  The final average 
was raised to the 1.5 power to amplify fitness differences 
between individuals in a population.   After each individual 
had been evaluated and assigned a fitness value, the 
individual with the best fitness was automatically included in 
the next generation.  The remaining individuals were 
produced through the application of the three standard 
genetic operators, namely, selection, crossover and mutation.  
The populations at periodic generations from 0 up to 1024 
were saved during the evolution. 

To assign a fitness value to a single individual for a single 
run, the following procedure was used.  The robot would start 
with a power level set at the low power threshold of 4V and a  

relatively low maximum of 200 steps in order to induce it to 
waste little time and travel straight towards the power station.  
Its goal to would be to connect with the charging station or to 
get as close to it as possible (without getting within 25 units 
of the wall) before the run was terminated.  The robot got the 
maximum fitness for reaching the charging station.  If the 
robot did not reach the power station it received a fitness 
value related to its proximity to the power station so that the 
closer the robot was, the higher its fitness rating.  In this latter 
case, the proximity distance was square-rooted in order to 
amplify the reward received at closer distances.    

Termination of a run and the assignment of a fitness value 
could occur for any of four reasons: the power-station was 
reached, the maximum number of steps (e.g. gait cycles) were 
taken, the robot got within 25 units of a wall (collision with 
the wall), and the power level of the robot dropped below the 
empty power threshold of 2.7V.   

VI.  RESULTS 
For each of the 5 tests (each with a population that was 

initially randomly generated), population details were stored 
at the 0, 1, 32, 64, 128, 256, 384, 512, 768, and 1024 
generations.  Tests were conducted, such that the populations 
at each of these generations were evaluated at 100 randomly 
generated start positions.  The best individual fitness 
(averaged over the 100 trials) from each population at each 
stored generation was recorded (Fig. 8). 

 

 
Fig 8. Fitness of the power seeking module.  Each line represents the fitness of one of 5 populations; the bold line shows the average of the 5.  The best 
individual at each generation for each population was saved and individuals from selected generations were tested on a series of common staring positions.  



 
 

 

Observations of the robots in simulation and in the actual 
colony space revealed that the CGA had learned reasonable 
solutions.  In each population, the individual with the best 
fitness would make a few turns if its sensors did not sense any 
light.  If the individual was in one of the dark areas, it would 
circle until it moved out of the dark area or ran out of steps.  If 
the individual robot sensed light, it would travel directly 
towards the power station such that it would continuously 
make minimal left turns until its left light sensor did not sense 
any light, switch to making minimal right turns until its right 
light sensor did not sense anything, and carry on in this 
manner back-and-forth.  The resulting repetitive cyclic 
behavior was carried out until the power station area was 
reached. 

It is evident from the results of all five runs of the 
navigation module that the population fitness average 
reached a relatively high point after several hundred 
generations and improved only modestly after that to a high at 
1024 generations.  Observations of the simulated robot 
revealed that its behavioral improvement was commonly 
characterized by its increasingly immediate and direct routes 
to the power station – although this improvement was more 
drastic in early generations than in latter ones.  The best 
solution produced in simulation was downloaded to the actual 
robot.  Observations of its behavior verified that the CGA 
learned solution was effective on the physical robot operating 
in the actual colony space. 

VII. CONCLUSIONS 
The use of a multi-loop CGA with conditional branching 

was shown to be an effective learning method for learning the 
navigation task and tests on the actual robot confirmed that 
the navigation control program produced a reasonable track 
over the ground for the robot to locate the charging station.  
This successful navigation behavior that was developed could 
be used later in learning the work segment of the 
self-sufficient behavior. 

While our experiment was specific to our colony setup, we 
believe that our approach to a self-sufficient system has 
general relevance and can be replicated on other colony area 
systems.  The use of capacitors and a charging station is 
readily applicable to small and light weight robots in which 
short run/charge times are desired. 

There is much future work that can be accomplished in 
developing our self-sufficient approach.  Improved capacitors 
rated at 2.7v and 100F are now available and would greatly 
improve the ability of the capacitors to hold concentrated 
charge at higher voltage levels.  They could increase the 
robot’s work cycle time of a self-sufficient task.  Using solar 
or wind energy to power the charging station could make the 
entire system self-sufficient.    We also believe that issues 
with multiple robot interaction in a self-sufficient system 
should be addressed.  Numerous behavioral relationships 
such as cooperation and competition could be exhibited. 
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