
 
 

 

  

Abstract—This paper discusses a new implementation of 
embodied evolution that uses the concept of punctuated anytime 
learning to increase the complexity of tasks that the learning 
system can solve.  The basic idea is that there is one population 
of chromosomes per robot rather than one chromosome per 
robot and reproduction between robots involves a combination 
of two entire populations of chromosomes instead of the 
recombination of two single chromosomes.  The embodied 
evolution with punctuated anytime learning system is compared 
with embodied evolution alone and evolutionary computation 
alone, as the three methods are used to solve a common 
problem.  The results show that this new learning system is 
superior to the other methods for evolving colony robot control.    

I. INTRODUCTION 
HE concept of multi-robot systems is important to the 
field of robotics because multiple robots can outperform 

individual robots in terms of quality and efficiency and can 
perform tasks that single robots cannot.  For example, when 
surveying an area, advantages to having a colony of robots 
are that a team of robots can survey the area in parallel, the 
mission would not necessarily fail of one or more robots fail, 
and teams of small inexpensive robots can be less expensive 
than one very expensive robot [1].  Some examples of tasks 
that are performed efficiently by multi-robot teams are large 
area searching, cleaning of hazardous waste, and object 
transportation. 

Evolutionary computation (EC) is a powerful tool, 
borrowing concepts from heredity and natural selection, for 
solving a wide range of problems, such as optimization or 
classification.  When applied to robotics, EC is proficient at 
evolving behaviors that would be laborious to program and 
offers a means of adaptability for robots.  However, there are 
issues concerned with the use of EC as a learning system for 
robots.  

One of the big issues with using EC to learn robot control is 
where the learning should take place.  Learning on a 
simulation of the robot in its environment [2] is the fastest, 
but requires a very accurate simulation and does not naturally 
allow the system to adapt to chances in the robot.  Evolving 
the solution entirely on the robot [3] requires no simulation, 
but takes significant time and energy since every potential 
solution needs to be tested on the robot.  A third method [4] 
does most of the learning in simulation, but allows for the 
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later generations to be done on the actual robot.  Even with 
fewer generations tested on the robot, there is much loss of 
time and energy and the robot still has a very limited system 
for adapting to changes. 

To deal with the issue of where the evolution should take 
place, punctuated anytime learning (PAL) was developed 
[5,6].  The learning is done on a simulation, with periodic 
tests performed on the actual robot.  In this way, the tests on 
the robot are minimized while allowing the learning system to 
adapt to changes in the robot's capabilities and the 
environment.  PAL was shown to be effective in adapting 
learned gaits for a hexapod robot where the robot's 
capabilities were changing over time. 

In this paper, we consider the use of EC to learn behaviors 
for a colony of robots.  There has been interesting previous 
work in this area.  Wu, Schultz, and Agah used EC to learn 
control for a colony of micro air vehicles.  The main focus of 
their work was to develop a system to learn rule sets for 
controlling the behavior of a team of micro air vehicles that 
were continuously conducting surveillance of an area [1].  
The learning mechanism used EC to evolve a rule set based 
on a simulated environment, which could later be transferred 
to the actual vehicles. 

In an effort to have a system where the evolution can take 
place on the robot as opposed to in simulation, a group from 
Brandeis University developed the concept of embodied 
evolution (EE) [7,8].  The idea behind EE is to have a large 
population of robots, which are able to reproduce (i.e., share 
genetic information) with one another, evolve in their task 
environment without the help of EC running on a simulated 
model.  Embodied Evolution is defined by the Brandeis group 
as “evolution taking place within a population of real robots 
where evaluation, selection, and reproduction are carried out 
by and between the robots in a distributed, asynchronous, and 
autonomous manner” [7]. 

They evolved an artificial neural network on each robot to 
search an area for a light source.  When any two robots in the 
task environment come within a certain range of each other, 
they would transmit their genetic information to each other.  
As in traditional EC, the fitness of a robot was determined by 
how well it performed its task.  However, with EE, fitness 
(better referred to as energy) is constantly changing.  As a 
robot searched the task environment, its energy was slowly 
decremented.  Whenever a robot successfully found the light 
source, its energy was increased substantially.  The more 
proficient the robot was at finding the light source, the higher 
fitness it attained.   
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The concept of EE was a good use of the existent colony of 
robots to act as the individuals of a population of evolving 
solutions.  However, EE as originally described is not 
practical for the complicated tasks that an actual colony of 
robots will be employed to accomplish.  A colony of robots 
starting with randomly generated control solutions for a 
difficult task would use significant time and energy before 
they even approached a useful level of productivity.  In 
addition, problems that are difficult to solve typically take 
large populations of individuals for the evolution to be 
effective.  In the traditional EE model, each robot contains a 
single chromosome.  Offspring are produced when two 
robots’ genes are crossed to make new chromosomes for the 
next generation.  In the previous works presenting EE [7,8], 
eight robots were used to complete the relatively simple task 
of finding a light source.  Although effective with this simple 
task, we believe EE is not suitable for solving complex 
problems due to the EC requirements for large population 
sizes and slow initial learning curves. 

 

In order to use the positive aspects of the EE concept 
without the burden of contending with small population sizes 
necessitating simple problems, we employ the concept of 
PAL.  Evolution takes place in simulation for each individual 
robot.  However, as robots reproduce in an EE sense, based 
on their actual performance, entire populations of 
chromosomes are used to produce a new population for the 
mating pairs' offspring.  In this case, EC on a simulation can 
produce reasonable solutions in the initial learning phases 
and EE reproduction will strengthen the solutions produced 
based on the robots' actual performance.  The result is a 
learning system that can produce immediately productive 
colony individuals that will continue to learn and adapt to 
changes. 

To test this concept, a contrived environment of eight 
robots learning reasonable search patterns to find food was 
developed.  Tests were done to compare standard EE, EC 
running in eight separate populations on each robot, and EE 
with PAL.  Tests in simulation confirm the validity of this 
method. 

 
 

Fig. 1. The task environment.  The 12 food locations are shown as dots.  The robot symbols are numbered, show direction of heading and sensor 
location, and grow in size as their fitness (energy stored) grows. 



 
 

 

II. SEARCH FOR STATIONARY PREY 
The problem or task that the learning system was to solve 

needed to be at a complexity level that would show a 
distinction between the methods.  The task selected was area 
coverage.  Stationary prey (deposits of food) were placed in 
an evenly distributed pattern throughout the environment, 
which was a 870 by 670 pixel rectangle.  The food was placed 
in only 12 locations and once eaten, took time to slowly 
regenerate.  This forced the robot to learn an effective area 
coverage pattern to find sufficient food for survival.  Each 
robot had its own distinct food supply, but all the food was in 
the same twelve locations.  This ensured that all of the robots 
were learning a similar task that was complicated enough to 
show the distinction in the three methods.  The task 
environment is shown in Figure 1.  Each robot, as it eats, 
stores energy, which it burns as it moves around in the 
environment.  The robots are shown with their sensor spans. 

As a visual aid, robots with more energy are displayed as 
being larger.  Each robot has two lines drawn in front of it, 30 
degrees to either side of the direction it is facing, which 
represent vision sensors.  Robots can only see a short distance 
(100 pixels).  The robots are able to distinguish whether the 
left, right, or both sensors are seeing either prey or a wall.  
The left and right sensors both have a range of 45 degrees and 
vision overlaps by 15 degrees in the middle (Figure 2). 
 

 
 

Fig. 2. Vision Sensors 

 
 The robots are faced with a “search for prey” scenario, 

where robots are forced to evolve efficient search patterns to 
prosper in the task environment.  Once a prey is found, it 
remains inactive for a certain period of time, forcing robots to 
develop a search pattern that allows them to cover a large area 
in a small amount of time.  The prey is spaced equally 
throughout the task environment to encourage the robot to 
evolve to search the entire task environment for prey.  The 
movement of each robot is modeled after that of a hexapod 

robot (ServoBot) using actual measurements.  Turn rates, 
taken from the ServoBot as it performs various turns, are used 
to define the movement capabilities of the simulated robot. 

III. CYCLIC GENETIC ALGORITHMS 
A cyclic genetic algorithm (CGA) is a variation on the 

standard genetic algorithm [9] model, which is one of the 
primary methods of EC.  The CGA uses a chromosome to 
define a series of actions rather than to define characteristics 
of a solution [10].  Standard GAs typically use a chromosome 
to define characteristics, such as speed or turn rate of a robot 
or the weights of a neural network that the robot uses to 
perform its task.  A CGA differs in that its chromosomes are 
made up of actions to be completed (such as control 
instructions).  The genes are usually made up of two parts, the 
first defines an action to perform, and the second defines how 
many times to repeat that action.  For example a simple cyclic 
chromosome could have four genes, each defining an action 
and a number of repetitions for each action.  When the robot 
runs, it will loop through its chromosome and continually 
perform the four actions until the robot is stopped. 

CGAs can be setup so that different parts of the 
chromosome are looped through in a cycle depending on 
conditional statements (CGA with conditional branching 
[11]).  For example, if a robot sees a wall to the left, control 
moves to the part of the gene that defines the actions and 
repetitions for the robot when it sees a wall to the left.  The 
robot will then act based on that part of the gene until the 
condition is no longer true, then it will go on to act based on 
the section of the chromosome that defines actions for when 
no walls are seen. 

 

 
Fig. 3.  The CGA chromosome used. 

 
A CGA with conditional branching was used to evolve the 

robots in this research.  The chromosome is split up into eight 
loop segments, each representing a different condition 
(Figure 3).  At the top layer, the condition pertains to whether 
the robot senses prey or not.  If it does not sense prey, it 
determines what sensors are sensing a wall.  Depending on 
this, it will go into one of four cycles (loops) where it will 
continually repeat four genes (action/repetition pairs) until 
the sensor state changes.   



 
 

 

Each of the four genes contains a direction bit, which 
dictates whether the robot is moving forwards or backwards; 
three action bits, which correspond to different degrees of 
turn; and four repetition bits, which define how many times 
the movement is repeated before moving to the next gene.  
The robot will continue to loop through the same part of the 
chromosome until the condition changes (sensor input 
changes).  The final chromosome was 256 bits long. 

IV. THE APPLICATION OF EMBODIED EVOLUTION WITH                                       
PUNCTUATED ANYTIME LEARNING 

As in PAL, each robot contained a population of 
chromosomes (in this case 32), which were constantly being 
evolved in simulation as the robots performed its function 
using the most fit chromosome in its population.  Because this 
research is simulating how the EE would work with real 
robots, the internal GA that tests fitness based on a simulated 
model does not perfectly reflect the movements of robots in 
the real world.  To simulate this slight inaccuracy, when 
evolving with the GA, values for movement and direction 
change were rounded so as to not match the actual values 
used by the robots for movement.  The GA working on the 
simulation would send its results to the robot, which would 
then perform EE in the task environment and improve the 
simulated results to solve the problem of simulations being 
intrinsically inconsistent with the real world. 

The fitness tester for the GA worked by placing the robot in 
the environment with 12 food items, then letting the robot run 
for 1000 steps, or iterations.  Each robot started with an 
energy level of 350, with each movement decreasing the 
energy by 1.  If a robot found a food item, its energy was 
increased by 250.  At the end of the 1000 steps, the fitness 
was defined to be the robot’s average energy level averaged 
doubled over 10 of these trials.  The GA then evolved using 
standard crossover with a mutation rate of 0.03. 

To test EE with PAL, modifications were made to the 
simulation.  For a pair of robots to be able to transmit genetic 
information, in other words, in order for the Embodied GA to 
work, several conditions had to be met by both robots.  Both 
robots had to be within a short range of each other.  Both 
robots also must have not recently exchanged information 
with any other robots.  This “breed timeout” was added to 
ensure that robots only exchanged information once instead 
of continuously, as robots may be within range for several 
iterations.  Since breeding decremented both robots’ energy 
by 100, both needed to be able to support such a loss (i.e. both 
must have an energy value of more than 100).   

The chance of two robots breeding upon being in breeding 
range was dependent on the energy levels of the two robots so 
that a robot with a high energy would be more likely to breed 
with a robot with low energy and less likely to breed with a 
robot with high energy.  The chance of breeding was 
determined probabilistically by comparing the energy level of 
the higher energy robot with the lower energy robot.  One 
minus the fraction of the lower energy value over the higher 

energy value is the probability any two robots will breed 
when they come within breeding proximity of each other, 
thus allowing better solutions to resist having their population 
changed while encouraging weaker solutions to exchange 
genetic information with other robots.  If the two robots did 
not succeed in breeding, both would remain unable to breed 
for a period of time so as to not repeatedly try and mate with 
the same robot as long as they stayed within breeding range of 
each other. 

Once all the conditions were met, the two robots would 
combine their populations of chromosomes to make a single 
population of 64 chromosomes.  The 64 chromosomes would 
be evolved on the simulated model using standard GA 
techniques, including crossover and mutation, ensuring the 
two populations are thoroughly mixed together.  Out of the 
two robots, the one with the higher energy would keep its 
population while the one with lower energy would be given 
the 32 most fit chromosomes from the population of 64, the 
fitness would be determined as is described above, by 
running the robot for 1000 steps over 10 trials and doubling 
the average energy.  The new robot would then have its 
energy level reset to 350 to simulate the birth of a new robot. 

V. RESULTS 
Three tests, each with five runs, were performed to 

determine the validity of EE with PAL.  In the first test, each 
robot ran a CGA that evolved its own behavior.  In the second 
test, EE, using a single chromosome on each robot, was used.  
In the third test, EE with PAL was used. 

 
Figure 4: Results of CGA with no EE between robots. 

 
 
Each test was run for 20,000 steps.  For the normal GA, 

this means that the 32-chromosome populations on each robot 
were independently evolved for a total of 200 generations, as 
the learning is being performed in the background while the 



 
 

 

robots perform tasks based on their current solution in the 
task environment.  To simulate this background learning, the 
GA evolved one generation every 100 steps.  For the EE, it 
means that the robots are allowed to roam the environment for 
20,000 steps, with EE occurring asynchronously whenever 
two robots came within breeding distance of each other.  For 
EE with PAL, this means that the robots roam their task 
environment performing EE asynchronously whenever two 
robots come within breeding range of each other for 20,000 
steps, during which, the populations on the robots are updated 
every 100 steps by the PAL.  While the robots are evolving, 
the learning system saves the fittest robot controller for each 
of the eight robots every 500 iterations (steps). 

 
Figure 5: Results of EE with one chromosome per robot. 

 
Fig. 6. Result of combined EE with PAL compared to with the other two 
methods. 

 

Graphs showing the average improvement in fitness over 
time of the five runs for each test were produced.  They 
include the Nadaraya-Watson kernel regression estimated 
line to show the general trend of fitness over time.  Both the 
lone CGA (Figure 4) and the lone EE (Figure 5) show some 
degree of improvement.  However, the EE with PAL graph 
(Figure 6) shows that, not only did using both together 
provide a solution with the highest overall fitness, but that the 
results were more consistent than the other methods (this can 
be seen by comparing the distances of the actual points from 
the regression line). 

 

 
 

Fig. 7.  Path of robot using best chromosome found after 20000 steps using 
the CGA alone. 
 

 
 
Fig. 8. Path of robot using best chromosome found by EE with one 
chromosome per robot after 20000 steps. 

 
 
Observations of the paths of the robots using the evolved 

controllers confirm that the EE with PAL produced superior 
control programs.  The robots evolved using the CGA or EE 
alone tend to search a smaller total area while the EE with 



 
 

 

PAL robot was able to cover much more ground and find 
more prey.  Typical paths are shown in Figures 7, 8 and 9.  In 
the CGA-only model, the robot moves in a circular pattern 
that includes many small loops, which do not accomplish 
much in terms of searching, but waste energy (Figure 7).  The 
path found using EE with one chromosome per robot (Figure 
8) was able to find a solution similar to the CGA running 
alone in the sense that it moves in a primarily circular search 
path.  In addition it managed to smooth out the tiny, useless 
loops.  However, the total area covered by the robot is more 
or less as limited as the solution when using the CGA by 
itself. 

The results found using a combination of EE with PAL 
(Figure 9) showed a more robust search path, covering more 
ground over less time than either of the other two solutions.  
Instead of looping around the same area over and over, it is 
able to search the entire area.  The previous two solutions also 
leave many prey items completely untouched, which the 
combination of the EE with PAL only miss a few of the total 
prey items.  Had the prey been placed randomly rather than at 
specific, evenly-spaced locations, the solution using the EE 
with PAL would likely perform even better than the solutions 
using either EE with one chromosome per robot or using the 
CGA without any EE. 

 

 
 

Fig. 9.  Path of robot evolved using EE with PAL. 
 

VI. CONCLUSION 
Using a combination of embodied evolution with 

punctuated anytime learning on a CGA produces better 
results than using either EE or the CGA by itself and allows 
for the asynchronous and autonomous properties that are 
characteristic of embodied evolution.  This new learning 
method for autonomous robots combines the strengths of EE 
and PAL to produce a means of evolving controllers for a 
colony of robots as they perform complex tasks. 

The work presented in this paper was intended to show the 
benefit of this system without the complications of robot 
interaction.  In future work, the tests will be altered to 
simulate an actual colony environment where a group of 
robots are working to perform a similar task.  Examples 
would be jobs such as moving supplies from one location to 
another while avoiding obstacles or searching for and 
gathering objects in a specific location.  Further research will 
involve tests on a colony of actual robots.  The robots in the 
simulation were based on actual robots so as to minimize the 
effort required to accomplish this expansion.  Although tested 
using a CGA for the form of EC, we believe that this method 
is equally viable for any form of EC which is being used to 
evolve controllers for robots working in a colony. 
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