

Abstract—This paper discusses a new implementation of
embodied evolution that uses the concept of punctuated anytime
learning to increase the complexity of tasks that the learning
system can solve. The basic idea is that there is one population
of chromosomes per robot rather than one chromosome per
robot and reproduction between robots involves a combination
of two entire populations of chromosomes instead of the
recombination of two single chromosomes. The embodied
evolution with punctuated anytime learning system is compared
with embodied evolution alone and evolutionary computation
alone, as the three methods are used to solve a common
problem. The results show that this new learning system is
superior to the other methods for evolving colony robot control.

I. INTRODUCTION
HE concept of multi-robot systems is important to the
field of robotics because multiple robots can outperform

individual robots in terms of quality and efficiency and can
perform tasks that single robots cannot. For example, when
surveying an area, advantages to having a colony of robots
are that a team of robots can survey the area in parallel, the
mission would not necessarily fail of one or more robots fail,
and teams of small inexpensive robots can be less expensive
than one very expensive robot [1]. Some examples of tasks
that are performed efficiently by multi-robot teams are large
area searching, cleaning of hazardous waste, and object
transportation.

Evolutionary computation (EC) is a powerful tool,
borrowing concepts from heredity and natural selection, for
solving a wide range of problems, such as optimization or
classification. When applied to robotics, EC is proficient at
evolving behaviors that would be laborious to program and
offers a means of adaptability for robots. However, there are
issues concerned with the use of EC as a learning system for
robots.

One of the big issues with using EC to learn robot control is
where the learning should take place. Learning on a
simulation of the robot in its environment [2] is the fastest,
but requires a very accurate simulation and does not naturally
allow the system to adapt to chances in the robot. Evolving
the solution entirely on the robot [3] requires no simulation,
but takes significant time and energy since every potential
solution needs to be tested on the robot. A third method [4]
does most of the learning in simulation, but allows for the

Manuscript received March 7, 2007.
G.B. Parker is the Director of Computer Science at Connecticut College,

New London, CT, USA (e-mail: parker@conncoll.edu)
G.E. Fedynyshyn is a student in Computer Science at Connecticut College

(e-mail: gefed@conncoll.edu).

later generations to be done on the actual robot. Even with
fewer generations tested on the robot, there is much loss of
time and energy and the robot still has a very limited system
for adapting to changes.

To deal with the issue of where the evolution should take
place, punctuated anytime learning (PAL) was developed
[5,6]. The learning is done on a simulation, with periodic
tests performed on the actual robot. In this way, the tests on
the robot are minimized while allowing the learning system to
adapt to changes in the robot's capabilities and the
environment. PAL was shown to be effective in adapting
learned gaits for a hexapod robot where the robot's
capabilities were changing over time.

In this paper, we consider the use of EC to learn behaviors
for a colony of robots. There has been interesting previous
work in this area. Wu, Schultz, and Agah used EC to learn
control for a colony of micro air vehicles. The main focus of
their work was to develop a system to learn rule sets for
controlling the behavior of a team of micro air vehicles that
were continuously conducting surveillance of an area [1].
The learning mechanism used EC to evolve a rule set based
on a simulated environment, which could later be transferred
to the actual vehicles.

In an effort to have a system where the evolution can take
place on the robot as opposed to in simulation, a group from
Brandeis University developed the concept of embodied
evolution (EE) [7,8]. The idea behind EE is to have a large
population of robots, which are able to reproduce (i.e., share
genetic information) with one another, evolve in their task
environment without the help of EC running on a simulated
model. Embodied Evolution is defined by the Brandeis group
as “evolution taking place within a population of real robots
where evaluation, selection, and reproduction are carried out
by and between the robots in a distributed, asynchronous, and
autonomous manner” [7].

They evolved an artificial neural network on each robot to
search an area for a light source. When any two robots in the
task environment come within a certain range of each other,
they would transmit their genetic information to each other.
As in traditional EC, the fitness of a robot was determined by
how well it performed its task. However, with EE, fitness
(better referred to as energy) is constantly changing. As a
robot searched the task environment, its energy was slowly
decremented. Whenever a robot successfully found the light
source, its energy was increased substantially. The more
proficient the robot was at finding the light source, the higher
fitness it attained.

Enhancing Embodied Evolution with Punctuated Anytime Learning
Gary B. Parker, Member IEEE, and Gregory E. Fedynyshyn

T

The concept of EE was a good use of the existent colony of
robots to act as the individuals of a population of evolving
solutions. However, EE as originally described is not
practical for the complicated tasks that an actual colony of
robots will be employed to accomplish. A colony of robots
starting with randomly generated control solutions for a
difficult task would use significant time and energy before
they even approached a useful level of productivity. In
addition, problems that are difficult to solve typically take
large populations of individuals for the evolution to be
effective. In the traditional EE model, each robot contains a
single chromosome. Offspring are produced when two
robots’ genes are crossed to make new chromosomes for the
next generation. In the previous works presenting EE [7,8],
eight robots were used to complete the relatively simple task
of finding a light source. Although effective with this simple
task, we believe EE is not suitable for solving complex
problems due to the EC requirements for large population
sizes and slow initial learning curves.

In order to use the positive aspects of the EE concept
without the burden of contending with small population sizes
necessitating simple problems, we employ the concept of
PAL. Evolution takes place in simulation for each individual
robot. However, as robots reproduce in an EE sense, based
on their actual performance, entire populations of
chromosomes are used to produce a new population for the
mating pairs' offspring. In this case, EC on a simulation can
produce reasonable solutions in the initial learning phases
and EE reproduction will strengthen the solutions produced
based on the robots' actual performance. The result is a
learning system that can produce immediately productive
colony individuals that will continue to learn and adapt to
changes.

To test this concept, a contrived environment of eight
robots learning reasonable search patterns to find food was
developed. Tests were done to compare standard EE, EC
running in eight separate populations on each robot, and EE
with PAL. Tests in simulation confirm the validity of this
method.

Fig. 1. The task environment. The 12 food locations are shown as dots. The robot symbols are numbered, show direction of heading and sensor
location, and grow in size as their fitness (energy stored) grows.

II. SEARCH FOR STATIONARY PREY
The problem or task that the learning system was to solve

needed to be at a complexity level that would show a
distinction between the methods. The task selected was area
coverage. Stationary prey (deposits of food) were placed in
an evenly distributed pattern throughout the environment,
which was a 870 by 670 pixel rectangle. The food was placed
in only 12 locations and once eaten, took time to slowly
regenerate. This forced the robot to learn an effective area
coverage pattern to find sufficient food for survival. Each
robot had its own distinct food supply, but all the food was in
the same twelve locations. This ensured that all of the robots
were learning a similar task that was complicated enough to
show the distinction in the three methods. The task
environment is shown in Figure 1. Each robot, as it eats,
stores energy, which it burns as it moves around in the
environment. The robots are shown with their sensor spans.

As a visual aid, robots with more energy are displayed as
being larger. Each robot has two lines drawn in front of it, 30
degrees to either side of the direction it is facing, which
represent vision sensors. Robots can only see a short distance
(100 pixels). The robots are able to distinguish whether the
left, right, or both sensors are seeing either prey or a wall.
The left and right sensors both have a range of 45 degrees and
vision overlaps by 15 degrees in the middle (Figure 2).

Fig. 2. Vision Sensors

 The robots are faced with a “search for prey” scenario,

where robots are forced to evolve efficient search patterns to
prosper in the task environment. Once a prey is found, it
remains inactive for a certain period of time, forcing robots to
develop a search pattern that allows them to cover a large area
in a small amount of time. The prey is spaced equally
throughout the task environment to encourage the robot to
evolve to search the entire task environment for prey. The
movement of each robot is modeled after that of a hexapod

robot (ServoBot) using actual measurements. Turn rates,
taken from the ServoBot as it performs various turns, are used
to define the movement capabilities of the simulated robot.

III. CYCLIC GENETIC ALGORITHMS
A cyclic genetic algorithm (CGA) is a variation on the

standard genetic algorithm [9] model, which is one of the
primary methods of EC. The CGA uses a chromosome to
define a series of actions rather than to define characteristics
of a solution [10]. Standard GAs typically use a chromosome
to define characteristics, such as speed or turn rate of a robot
or the weights of a neural network that the robot uses to
perform its task. A CGA differs in that its chromosomes are
made up of actions to be completed (such as control
instructions). The genes are usually made up of two parts, the
first defines an action to perform, and the second defines how
many times to repeat that action. For example a simple cyclic
chromosome could have four genes, each defining an action
and a number of repetitions for each action. When the robot
runs, it will loop through its chromosome and continually
perform the four actions until the robot is stopped.

CGAs can be setup so that different parts of the
chromosome are looped through in a cycle depending on
conditional statements (CGA with conditional branching
[11]). For example, if a robot sees a wall to the left, control
moves to the part of the gene that defines the actions and
repetitions for the robot when it sees a wall to the left. The
robot will then act based on that part of the gene until the
condition is no longer true, then it will go on to act based on
the section of the chromosome that defines actions for when
no walls are seen.

Fig. 3. The CGA chromosome used.

A CGA with conditional branching was used to evolve the

robots in this research. The chromosome is split up into eight
loop segments, each representing a different condition
(Figure 3). At the top layer, the condition pertains to whether
the robot senses prey or not. If it does not sense prey, it
determines what sensors are sensing a wall. Depending on
this, it will go into one of four cycles (loops) where it will
continually repeat four genes (action/repetition pairs) until
the sensor state changes.

Each of the four genes contains a direction bit, which
dictates whether the robot is moving forwards or backwards;
three action bits, which correspond to different degrees of
turn; and four repetition bits, which define how many times
the movement is repeated before moving to the next gene.
The robot will continue to loop through the same part of the
chromosome until the condition changes (sensor input
changes). The final chromosome was 256 bits long.

IV. THE APPLICATION OF EMBODIED EVOLUTION WITH
PUNCTUATED ANYTIME LEARNING

As in PAL, each robot contained a population of
chromosomes (in this case 32), which were constantly being
evolved in simulation as the robots performed its function
using the most fit chromosome in its population. Because this
research is simulating how the EE would work with real
robots, the internal GA that tests fitness based on a simulated
model does not perfectly reflect the movements of robots in
the real world. To simulate this slight inaccuracy, when
evolving with the GA, values for movement and direction
change were rounded so as to not match the actual values
used by the robots for movement. The GA working on the
simulation would send its results to the robot, which would
then perform EE in the task environment and improve the
simulated results to solve the problem of simulations being
intrinsically inconsistent with the real world.

The fitness tester for the GA worked by placing the robot in
the environment with 12 food items, then letting the robot run
for 1000 steps, or iterations. Each robot started with an
energy level of 350, with each movement decreasing the
energy by 1. If a robot found a food item, its energy was
increased by 250. At the end of the 1000 steps, the fitness
was defined to be the robot’s average energy level averaged
doubled over 10 of these trials. The GA then evolved using
standard crossover with a mutation rate of 0.03.

To test EE with PAL, modifications were made to the
simulation. For a pair of robots to be able to transmit genetic
information, in other words, in order for the Embodied GA to
work, several conditions had to be met by both robots. Both
robots had to be within a short range of each other. Both
robots also must have not recently exchanged information
with any other robots. This “breed timeout” was added to
ensure that robots only exchanged information once instead
of continuously, as robots may be within range for several
iterations. Since breeding decremented both robots’ energy
by 100, both needed to be able to support such a loss (i.e. both
must have an energy value of more than 100).

The chance of two robots breeding upon being in breeding
range was dependent on the energy levels of the two robots so
that a robot with a high energy would be more likely to breed
with a robot with low energy and less likely to breed with a
robot with high energy. The chance of breeding was
determined probabilistically by comparing the energy level of
the higher energy robot with the lower energy robot. One
minus the fraction of the lower energy value over the higher

energy value is the probability any two robots will breed
when they come within breeding proximity of each other,
thus allowing better solutions to resist having their population
changed while encouraging weaker solutions to exchange
genetic information with other robots. If the two robots did
not succeed in breeding, both would remain unable to breed
for a period of time so as to not repeatedly try and mate with
the same robot as long as they stayed within breeding range of
each other.

Once all the conditions were met, the two robots would
combine their populations of chromosomes to make a single
population of 64 chromosomes. The 64 chromosomes would
be evolved on the simulated model using standard GA
techniques, including crossover and mutation, ensuring the
two populations are thoroughly mixed together. Out of the
two robots, the one with the higher energy would keep its
population while the one with lower energy would be given
the 32 most fit chromosomes from the population of 64, the
fitness would be determined as is described above, by
running the robot for 1000 steps over 10 trials and doubling
the average energy. The new robot would then have its
energy level reset to 350 to simulate the birth of a new robot.

V. RESULTS
Three tests, each with five runs, were performed to

determine the validity of EE with PAL. In the first test, each
robot ran a CGA that evolved its own behavior. In the second
test, EE, using a single chromosome on each robot, was used.
In the third test, EE with PAL was used.

Figure 4: Results of CGA with no EE between robots.

Each test was run for 20,000 steps. For the normal GA,

this means that the 32-chromosome populations on each robot
were independently evolved for a total of 200 generations, as
the learning is being performed in the background while the

robots perform tasks based on their current solution in the
task environment. To simulate this background learning, the
GA evolved one generation every 100 steps. For the EE, it
means that the robots are allowed to roam the environment for
20,000 steps, with EE occurring asynchronously whenever
two robots came within breeding distance of each other. For
EE with PAL, this means that the robots roam their task
environment performing EE asynchronously whenever two
robots come within breeding range of each other for 20,000
steps, during which, the populations on the robots are updated
every 100 steps by the PAL. While the robots are evolving,
the learning system saves the fittest robot controller for each
of the eight robots every 500 iterations (steps).

Figure 5: Results of EE with one chromosome per robot.

Fig. 6. Result of combined EE with PAL compared to with the other two
methods.

Graphs showing the average improvement in fitness over
time of the five runs for each test were produced. They
include the Nadaraya-Watson kernel regression estimated
line to show the general trend of fitness over time. Both the
lone CGA (Figure 4) and the lone EE (Figure 5) show some
degree of improvement. However, the EE with PAL graph
(Figure 6) shows that, not only did using both together
provide a solution with the highest overall fitness, but that the
results were more consistent than the other methods (this can
be seen by comparing the distances of the actual points from
the regression line).

Fig. 7. Path of robot using best chromosome found after 20000 steps using
the CGA alone.

Fig. 8. Path of robot using best chromosome found by EE with one
chromosome per robot after 20000 steps.

Observations of the paths of the robots using the evolved

controllers confirm that the EE with PAL produced superior
control programs. The robots evolved using the CGA or EE
alone tend to search a smaller total area while the EE with

PAL robot was able to cover much more ground and find
more prey. Typical paths are shown in Figures 7, 8 and 9. In
the CGA-only model, the robot moves in a circular pattern
that includes many small loops, which do not accomplish
much in terms of searching, but waste energy (Figure 7). The
path found using EE with one chromosome per robot (Figure
8) was able to find a solution similar to the CGA running
alone in the sense that it moves in a primarily circular search
path. In addition it managed to smooth out the tiny, useless
loops. However, the total area covered by the robot is more
or less as limited as the solution when using the CGA by
itself.

The results found using a combination of EE with PAL
(Figure 9) showed a more robust search path, covering more
ground over less time than either of the other two solutions.
Instead of looping around the same area over and over, it is
able to search the entire area. The previous two solutions also
leave many prey items completely untouched, which the
combination of the EE with PAL only miss a few of the total
prey items. Had the prey been placed randomly rather than at
specific, evenly-spaced locations, the solution using the EE
with PAL would likely perform even better than the solutions
using either EE with one chromosome per robot or using the
CGA without any EE.

Fig. 9. Path of robot evolved using EE with PAL.

VI. CONCLUSION
Using a combination of embodied evolution with

punctuated anytime learning on a CGA produces better
results than using either EE or the CGA by itself and allows
for the asynchronous and autonomous properties that are
characteristic of embodied evolution. This new learning
method for autonomous robots combines the strengths of EE
and PAL to produce a means of evolving controllers for a
colony of robots as they perform complex tasks.

The work presented in this paper was intended to show the
benefit of this system without the complications of robot
interaction. In future work, the tests will be altered to
simulate an actual colony environment where a group of
robots are working to perform a similar task. Examples
would be jobs such as moving supplies from one location to
another while avoiding obstacles or searching for and
gathering objects in a specific location. Further research will
involve tests on a colony of actual robots. The robots in the
simulation were based on actual robots so as to minimize the
effort required to accomplish this expansion. Although tested
using a CGA for the form of EC, we believe that this method
is equally viable for any form of EC which is being used to
evolve controllers for robots working in a colony.

REFERENCES
[1] A. Wu, A.Schultz, Alan C., and A. Agah, (1999). Evolving Control for

Distributed Micro Air Vehicles, Proceedings of the IEEE 1999
International Symposium on Computation Intelligence in Robotics and
Automation, Monterey, CA, 1999.

[2] W.-P. Lee, J. Hallam, and H. Lund, (1997). Applying Genetic
Programming to Evolve Behavior Primitives and Arbitrators for Mobile
Robots, Proceedings of IEEE Fourth International Conference on
Evolutionary Computation, Indianapolis, IN, 1997.

[3] F. Mondada and D. Floreano, (1995). Evolution of Neural Control
Structures: Some Experiments on Mobile Robots, Robotics and
Autonomous Systems 16, 1995, 183-195.

[4] O. Miglino, H. Lund, and S. Nolfi, (1995). Evolving Mobile Robots in
Simulated and Real Environments, Technical Report, Institute of
Psychology, CNR, Rome, 1995.

[5] G. Parker, (2000). Co-Evolving Model Parameters for Anytime
Learning in Evolutionary Robotics, Robotics and Autonomous Systems
33, 2000, 13–30.

[6] G. Parker, (2002). Punctuated Anytime Learning for Hexapod Gait
Generation, Proceedings of the 2002 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2002). October
2002

[7] S. Ficici, R. Watson, and J. Pollack, (1999). Embodied Evolution: A
Response to Challenges in Evolutionary Robotics, Proceedings of the
Eighth European Workshop on Learning Robots.

[8] R. Watson, S. Ficici, and J. Pollack, (2002). Embodied Evolution:
Distributing an Evolutionary Algorithm in a Population of Robots.
Robotics and Autonomous Systems 39/1, 2002, 1-18.

[9] J. Holland, (1975). Adaptation in Natural and Artificial Systems,
University of Michigan Press, Ann Arbor, MI.

[10] G. Parker and G. Rawlins, (1996). Cyclic Genetic Algorithms for the
Locomotion of Hexapod Robots, Proceedings of the World Automation
Congress (WAC '96), Volume 3, Robotic and Manufacturing Systems.
May 1996.

[11] G. Parker, I. Parashkevov, H. Blumenthal, and T. Guildman, (2004).
Cyclic Genetic Algorithms for Evolving Multi-Loop Control Programs,
Proceedings of the World Automation Congress (WAC 2004). June
2004.

