
Cyclic Genetic Algorithm with Conditional Branching in
a Predator-Prey Scenario

Gary Parker

Computer Science
Connecticut College

New London, CT 06320
parker@conncoll.edu

Ivo Parashkevov
Computer Science

Connecticut College
New London, CT 06320

iipar@conncoll.edu

Abstract - In its traditional form, the cyclic genetic
algorithm (CGA) was found to be a successful method for
evolving single loop control programs for legged robots. Its
major limitation was the inability to allow for conditional
branching, which is required for the integration of sensor
inputs in the controller. In recent work, we extended the
capabilities of CGAs to evolve multi-loop programs with
conditional branching. The design proved successful for the
evolution of a controller that allowed a robot to efficiently
search for a static target in a square area. In this paper we
increase the complexity of the experiment and demonstrate
the capability of CGAs with conditional branching to
generate a controller for the predator in a predator-prey
scenario.

Keywords: Evolutionary robotics, learning control,
program generation, genetic algorithm, hexapod

1 Introduction
 Evolving controllers for autonomous legged robots
can reduce the time needed for initial program
development, but more importantly, is a means for learning
adaptive control in a changing environment. In past
research, control programs for legged robots have been
evolved using evolutionary computation to learn the
weights of an artificial neural network, genetic
programming, and cyclic genetic algorithms.

 One of the most common methods of learning robot
control is through the use of a genetic algorithm (or some
other form of evolutionary computation) to learn the
connection weights and/or architectures for artificial neural
networks [1]. Beer and Gallagher [2] demonstrated that
genetic algorithms can be used to evolve effective neural
networks, and successfully evolved chemo-taxis and
legged locomotion controllers. Floreanno and Mondada [3]
evolved neural networks to control homing and navigation
on a Khepera robot. The robot’s task was to navigate
through a corridor while performing obstacle avoidance
and locating a charging station before the robot’s batteries
lost power. Lund and Orazio [4] evolved a neural network
controller for a Khepera robot capable of avoiding walls
and obstacles in an enclosed area.

 Another method for learning robot control is through
the use of a genetic programming (GP). Busch et al. [5]
used GP to evolve robot controllers to produce gaits for
simulated robots. This system was able to produce gaits for
robots independent of their specific morphology. Lazarus
and Hu [6] used GP to integrate sensor input into the
development of controllers for simulated robots with
sensors that were performing wall-following and obstacle
avoidance tasks. Nordin et al [7] also evolved wall-
following agents which performed successfully both in
simulation and on a Khepera robot.

 The cyclic genetic algorithm (CGA) was developed
[8] with the purpose of facilitating the representation of
loops in the chromosome. As a variant of Holland's genetic
algorithm [9], it employs the same basic genetic operators –
selection, crossover, and mutation – and applies them to a
randomly generated set of solutions to a given problem, in
order to eventually obtain a set containing a near-optimal
solution. Traditionally, the genes of GA chromosomes
represent traits or parameters of the solution to a given
problem. In a CGA chromosome, the genes represent tasks
to be completed by the agent. These tasks could be single
actions, or sub-cycles of actions. In the latter case a gene is
divided in two distinct sections, the first representing the
action to be taken, and the second – the number of times
that the action is to be repeated. The entire set of genes in
the chromosome can be executed repetitively, in which
case the chromosome itself becomes a cycle. Thus, a CGA
allows for the implementation of loops on two different
levels.

 CGAs were successfully used in the past to evolve
single-loop robot leg cycles [8], gait cycles for hexapod
robots [10], and area coverage patterns [11]. However, they
were not suited to allow for dynamic changes of behavior
based on sensor information. To address that limitation we
developed the CGA with Conditional Branching
(CGA/CB), designed to evolve a multi-loop control
program that would switch from one loop to another
depending on changes of the environment [12]. The design
was successfully tested in simulation – we were able to
evolve a controller that could handle inputs from two
sensors.

Figure 1. CGA with Conditional Branching Chromosome and a detailed view of one of its segments. The example
chromosome shown contains 4 segments. Each segment is a loop.

2 Previous Work
 In our previous research [12], we addressed the
CGA’s major drawback and developed the CGA with
Conditional Branching (CGA/CB). It was designed to
evolve multi-loop programs that would switch from one
loop to another depending on sensor inputs. The method
was successfully tested in simulation: a robot controller
was evolved that enabled a hexapod robot to efficiently
find a stationary target in a square area.

 The chromosome was divided into separate segments
(Figure 1, originally published in [12]). Each segment
represented a control loop, a cycle that the robot repeated
as long as the sensor inputs stayed the same. There was a
segment for every possible combination of sensor inputs,
and each segment was linked to all the others.

 The segments, in turn, were divided into genes. Each
gene was a simple loop, and was represented by a pair of
integers. The first integer determined which action was to
be taken by the robot (all possible actions being listed in a
table), and the other indicated the number of repetitions of
that action. After executing one gene by performing the
respective action the specified number of repetitions, the
robot checked the state of its sensors. If the sensor inputs
were the same, it continued with the next gene of the same
segment. If control reached the last gene, it simply started
over with the first one – each segment was a loop. If the
sensor inputs changed, the control jumped to the first gene
of the segment that corresponded to those inputs.

 This design was employed to evolve a controller of a
robot charged with the task of finding a randomly located
target in a square area. It was equipped with four sensors –

two to detect the presence of a wall, and two to detect the
target. In this previous research the two wall sensors were
implemented in the chromosome, as the simulation ended
as soon as the robot was able to find the target. Since we
needed a segment for all possible combinations of sensor
inputs, we had a total of four segments.

 After evolving 2048 generations, the fittest individual
was able to find the target with significantly fewer steps
than the fittest individual of the random population. It had
successfully learned to avoid the walls of the search area
and employed a zigzag motion that enabled it to maximize
the area covered by its sensors [12].

3 Simulation Details
 In extending our previous experiment, we kept many
of the simulation details the same. Instead of a static target,
however, we have another robot with a preprogrammed
controller that is actively trying to avoid the predator.

 The predator and the prey are a simulation of the
ServoBot, which was developed by David Brown at
Indiana University for legged robot and colony
experimentation. It is a small, inexpensive hexapod robot
constructed from Masonite (hard-pressed wood). Equipped
with a BASIC Stamp II for coordinating the motion of all
six legs, it has some of the characteristics of larger, more
complex robots.

 The simulation area is square with each wall 500 units
in length. There are no obstacles. The robots’ positions in
the simulation area are fully described by their X and Y
coordinates, as well as a number between 0 and 359 that

shows the direction of their heading; 0 means heading
South, 90 – East, 180 – North, and 270 – West.

 Both the predator and the prey are allowed to take one
of thirty-two possible actions or steps at a time. Each of
these steps represents one complete gait cycle [11,12],
defined as the timed and coordinated motion of the legs of
a robot such that the legs return to the positions from which
they began the motion. The resultant position of the agent
after executing a full gait cycle is a simulation of the
measured movements of an actual ServoBot. It is
calculated from a table of stored values that show the
change of the robot’s X and Y coordinates and heading. In
the table of values, fifteen of these gait cycles result in a
left turn, another fifteen result in a right turn, and one gait
is designed to move the robot straight forward. One
remaining option is for the robot to remain motionless for
the time it takes to complete a full gait cycle. In the
selection of gait cycles, the robot controller faces a trade-
off between large displacement and small rotation, or vice
versa.

 The predator is equipped with two types of sensors –
one that would enable it to detect the presence of a wall
and the other to detect the target. It has two sensors of each
type for a total of four. Since each sensor has two possible
states – 0 (inactive) and 1 (active), there are sixteen
possible combinations of sensor inputs. The activation
distance for each sensor is 80 units and the span of its
vision is 45 degrees. The two sensors of each type are
situated at the front of the predator, with their spans
overlapping by 10 degrees. Thus it has a total sight span of
80 degrees and can detect walls or the prey at a maximum
distance of 80 units away.

 The prey has a preprogrammed controller. The range
distance of its sensors is the same as that of the predator –
80 units. However, it is equipped with a span of 360
degrees of vision and is capable of identifying the exact
position of any object (the predator or a wall) relative to its
own position. This represents a significant advantage over
the predator, as the latter is only capable of estimating the
relative position of the objects, and its vision span is only
80 degrees. When in danger, the prey runs away from the
predator, and stays away from walls, so that it does not get
cornered. If it is near any object (the predator or a wall), it
will calculate the best escape path, and will take the action
that would take it as far away from that object as possible.
If it manages to escape and is in a state where it no longer
detects any object, it will still remember the direction of the
last object seen, and will take five more steps in the
opposite direction. After those five steps, unless there is a
new danger detected, the prey will not be “scared”
anymore. In that case, there is a 10% chance that it will
move with a random gait cycle. Otherwise it simply stands
still.

 Thus modeled, the prey is superior to the predator.
However, if the predator evolves the ability to chase it well
enough, it will keep decreasing the distance between them
whenever the prey has to make a turn, and will eventually
be able to capture it. A “capture” occurs when the prey is
within the span of vision of the predator and is 10 units or
less away from it.

 The predator and the prey started each simulation run
from random positions. The simulation ended as soon as
the predator captured the prey or took more than the
maximum limit of 400 steps.

4 Evolution
 In order to successfully capture the prey, the predator
needed to learn two major patterns of behavior – searching
and chasing. The evolution of the latter, however, was
contingent on the successful evolution of the former, as the
predator would never have the chance to learn to chase the
prey if it could not find it often enough. To ensure that the
predator did in fact find the prey often (and early) enough,
we used an incremental approach to learning. The control
program to search was learned first [12]. The resultant best
individual was then used to generate a population to
continue evolution to learn both search and capture.

Figure 2. The chromosome, with its 16 segments. Each
segment consists of four genes that are to be executed

consecutively. Each gene contains information about the
action and the number of repetitions it is to be performed.

4.1 Chromosome
 The chromosome of each individual consisted of
sixteen segments (Figure 2, from [12]), as there were
sixteen possible combinations of sensor inputs. Twelve of
the segments were randomly generated for every individual
in all initial populations. The remaining four were taken
from the chromosome of the individual that performed best
after the evolution of the search in our previous work.
Thus, for the sensor inputs equivalent to
no_object_detected, left_wall_only, right_wall_only,
left_and_right_wall_only each individual had the same
four segments before training began. However, all sixteen
segments were subject to mutation and crossover, so all
sixteen of them were evolved.

 To keep the design of the chromosome consistent,
each segment had four genes. Each gene was 8 bits long (5
bits to represent the action number and 3 bits to represent
the number of repetitions). As a result, each segment was
32 bits; the chromosome had a total of 512 bits.

4.2 Training
 Training was done on five populations, each
consisting of 256 individuals, with chromosomes initially
created as described above. Evolution was carried out for
10240 generations. Each individual was evaluated ten
times, from ten randomly generated starting positions. All
individuals from the same generation ran the simulation
from the same ten positions. The fittest individual from
each generation was automatically included in the next
generation of training. The rest were produced through the
application of the CGA operators. The populations at
periodic generations from 0 up to 10240 were saved during
training.

4.3 Fitness Function
 The fitness score was assigned to each individual
based on its average performance over all ten runs of the
simulation. To evaluate the performance of the predator for
each simulation run, we took the maximum number of
steps the predator was allowed to take (400), and
subtracted the number of actual steps taken when the prey
was not in sight. In case of a capture, we added a capture
bonus of 125. The final result was raised to the power of
1.5 to amplify the differences between different
individuals. The resulting function gave credit for chasing
the prey since no points were subtracted if the prey was in
sight after a given step. It gave a very high bonus for a
capture, which was the eventual goal. In addition, an
individual ended up receiving more points for fast, as
opposed to slow captures, as slow captures usually meant
more steps taken with the prey out of sight.

0

10

20

30

40

50

60

70

80

0 2000 4000 6000 8000 10000

Generations

C
ap

tu
re

 P
re

se
nt

ag
e

 Figure 3. Learning curve for five tests of the CGA in learning predator control for the predator-prey problem,

expressed in terms of the capture rate of the best individual for the respective generation. The bold line shows the average
of all five tests.

5 Results
 The results of all five runs, plus the average are
shown in Figure 3. These are tests using stored data at
each of the specified generations that were run after the
training was complete. The plot shows the percentage of
captures of the best individual for each of the five
populations at each of the training generations where the
population of solutions was saved. The results show the
success of the training system as all five tests result in
significant improvements in the control program as training
continues. The initial random programs resulted in a

capture an average of less than one percent of the time.
After training, the control program that was generated
resulted in an average capture rate of over 50 percent.

 The predator quickly learns to go after the prey when
the prey is right in front of it. This explains the fact that it
is able to score a few captures (out of a hundred trials)
rather early in the course of the evolution. These captures
are mainly due to fortuitous circumstances, such as when
the prey runs into the predator head on and has no time to
turn around and start running away.

Figure 4. The predator (lightly shaded) goes after the prey as soon as its sensors are able to detect it and stays with

it as it turns.

 In later generations, the predator learns to chase the
prey effectively as the latter changes directions. Figure 4
shows an example of a portion of a run where the predator
successfully follows the prey. Its response to the sensor
inputs is finely tuned so that its trajectory matches that of
the prey.

 The best individual obtained using our design method
captured the prey 68 times out of a hundred. Although not
a perfect solution, this controller is a dramatic
improvement over the initial population.

6 Conclusions
 Our results demonstrate that the CGA/CB design is
viable for relatively complex tasks. The predator in our
predator-prey scenario learned to chase and improved
dramatically in its ability to capture the prey, despite the
latter's superiority. The CGA/CB is capable of generating a
multi-loop program for robot control and we speculate that
it can be used for other applications that require multi-loop
programs where there is a known limit to the number of
loops.

 One limitation of the CGA/CB is that it requires a
segment of the chromosome that fully describes the
behavior of the agent for any given combination of sensor
inputs. The fact that the size of the chromosome grows
exponentially as we increase the number of sensors to
integrate makes us believe that there is great room for
improvement on the way sensor inputs are handled. One
possibility for future work would include the use of a
neural network, in conjunction to the CGA/CB, that would
map more than one combination of sensor inputs to the
same segment of the chromosome. Such a design would
require evolution of chromosome segments that can be
applicable for more than one situation.

References
[1] X. Yao, “Evolving artificial neural networks,” Proc.
IEEE, Vol. 87, No. 9, 1999, pp.1423-1447.

[2] R. D. Beer and J. C. Gallagher, “Evolving Dynamical
Neural Networks For Adaptive Behavior,” Adaptive
Behavior, Vol. 1, No. 1, 1992, pp. 91-122.

[3] D. Floreano and F. Mondada, "Evolution of Homing
Navigation in a Real Mobile Robot," IEEE Transactions on

Systems, Man and Cybernetics, Vol. 26, No. 3, 1996, pp
396-407.

[4] H. H. Lund and O. Miglino, “From Simulated to Real
Robots,” Proc. IEEE Third International Conference on
Evolutionary Computation, NJ, 1996.

[5] J. Busch, J. Ziegler, C. Aue, A. Ross, D. Sawitzki,
and W. Banzhaf, “Automatic Generation of Control
Programs for Walking Robots Using Genetic
Programming,” EuroGP 2002, LNCS 2278, 2002, pp. 258-
267.

[6] C. Lazarus and H. Hu, “Using Genetic Programming
to Evolve Robot Behaviours,” Proc. Third British
Conference on Autonomous Mobile Robotics &
Autonomous Systems, Manchester, UK 2001.

[7] P. Nordin, W. Banzhaf, and M. Brameier, “Evolution
of a World Model for a Miniature Robot using Genetic
Programming,” Robotics and Autonomous Systems, Vol.
25, 1998, pp. 105-116.

[8] G. B. Parker, “Evolving Leg Cycles to Produce
Hexapod Gaits,” Proc. World Automation Congress, Vol.
10, Robotic and Manufacturing Systems, 2000, pp. 250-
255.

[9] J. H. Holland, Adaptation in Natural and Artificial
Systems, Ann Arbor, MI, The University of Michigan
Press, 1975.

[10] G. B. Parker and G. J. E. Rawlins “Cyclic Genetic
Algorithms for the Locomotion of Hexapod Robots,” Proc.
World Automation Congress, Vol. 3, Robotic and
Manufacturing Systems, 1996, pp. 617-622.

[11] G. B. Parker, “Learning Control Cycles for Area
coverage with Cyclic Genetic Algorithms,” Proc. Second
WSES International Conference on Evolutionary
Computation, 2001, pp. 283-289.

[12] G. B. Parker, I. I. Parashkevov, H. J. Blumenthal, and
T. W. Guildman, “Cyclic Genetic Algorithms for Evolving
Multi-Loop Control Programs,” Proceedings of the World
Automation Congress (WAC 2004), June 2004.

