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Abstract - In its traditional form, the cyclic genetic 
algorithm (CGA) was found to be a successful method for 
evolving single loop control programs for legged robots. Its 
major limitation was the inability to allow for conditional 
branching, which is required for the integration of sensor 
inputs in the controller. In recent work, we extended the 
capabilities of CGAs to evolve multi-loop programs with 
conditional branching. The design proved successful for the 
evolution of a controller that allowed a robot to efficiently 
search for a static target in a square area. In this paper we 
increase the complexity of the experiment and demonstrate 
the capability of CGAs with conditional branching to 
generate a controller for the predator in a predator-prey 
scenario. 
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1 Introduction 
  Evolving controllers for autonomous legged robots 
can reduce the time needed for initial program 
development, but more importantly, is a means for learning 
adaptive control in a changing environment. In past 
research, control programs for legged robots have been 
evolved using evolutionary computation to learn the 
weights of an artificial neural network, genetic 
programming, and cyclic genetic algorithms. 

 One of the most common methods of learning robot 
control is through the use of a genetic algorithm (or some 
other form of evolutionary computation) to learn the 
connection weights and/or architectures for artificial neural 
networks [1]. Beer and Gallagher [2] demonstrated that 
genetic algorithms can be used to evolve effective neural 
networks, and successfully evolved chemo-taxis and 
legged locomotion controllers. Floreanno and Mondada [3] 
evolved neural networks to control homing and navigation 
on a Khepera robot. The robot’s task was to navigate 
through a corridor while performing obstacle avoidance 
and locating a charging station before the robot’s batteries 
lost power. Lund and Orazio [4] evolved a neural network 
controller for a Khepera robot capable of avoiding walls 
and obstacles in an enclosed area.  

 Another method for learning robot control is through 
the use of a genetic programming (GP).  Busch et al. [5] 
used GP to evolve robot controllers to produce gaits for 
simulated robots. This system was able to produce gaits for 
robots independent of their specific morphology. Lazarus 
and Hu [6] used GP to integrate sensor input into the 
development of controllers for simulated robots with 
sensors that were performing wall-following and obstacle 
avoidance tasks. Nordin et al [7] also evolved wall-
following agents which performed successfully both in 
simulation and on a Khepera robot.  

 The cyclic genetic algorithm (CGA) was developed 
[8] with the purpose of facilitating the representation of 
loops in the chromosome. As a variant of Holland's genetic 
algorithm [9], it employs the same basic genetic operators – 
selection, crossover, and mutation – and applies them to a 
randomly generated set of solutions to a given problem, in 
order to eventually obtain a set containing a near-optimal 
solution. Traditionally, the genes of GA chromosomes 
represent traits or parameters of the solution to a given 
problem. In a CGA chromosome, the genes represent tasks 
to be completed by the agent. These tasks could be single 
actions, or sub-cycles of actions. In the latter case a gene is 
divided in two distinct sections, the first representing the 
action to be taken, and the second – the number of times 
that the action is to be repeated. The entire set of genes in 
the chromosome can be executed repetitively, in which 
case the chromosome itself becomes a cycle. Thus, a CGA 
allows for the implementation of loops on two different 
levels.  

 CGAs were successfully used in the past to evolve 
single-loop robot leg cycles [8], gait cycles for hexapod 
robots [10], and area coverage patterns [11]. However, they 
were not suited to allow for dynamic changes of behavior 
based on sensor information.  To address that limitation we 
developed the CGA with Conditional Branching 
(CGA/CB), designed to evolve a multi-loop control 
program that would switch from one loop to another 
depending on changes of the environment [12]. The design 
was successfully tested in simulation – we were able to 
evolve a controller that could handle inputs from two 
sensors.  



  

Figure 1. CGA with Conditional Branching Chromosome and a detailed view of one of its segments. The example 
chromosome shown contains 4 segments. Each segment is a loop. 

 

2 Previous Work 
 In our previous research [12], we addressed the 
CGA’s major drawback and developed the CGA with 
Conditional Branching (CGA/CB). It was designed to 
evolve multi-loop programs that would switch from one 
loop to another depending on sensor inputs. The method 
was successfully tested in simulation: a robot controller 
was evolved that enabled a hexapod robot to efficiently 
find a stationary target in a square area.  

 The chromosome was divided into separate segments 
(Figure 1, originally published in [12]). Each segment 
represented a control loop, a cycle that the robot repeated 
as long as the sensor inputs stayed the same. There was a 
segment for every possible combination of sensor inputs, 
and each segment was linked to all the others.  

 The segments, in turn, were divided into genes. Each 
gene was a simple loop, and was represented by a pair of 
integers.  The first integer determined which action was to 
be taken by the robot (all possible actions being listed in a 
table), and the other indicated the number of repetitions of 
that action. After executing one gene by performing the 
respective action the specified number of repetitions, the 
robot checked the state of its sensors. If the sensor inputs 
were the same, it continued with the next gene of the same 
segment.  If control reached the last gene, it simply started 
over with the first one – each segment was a loop. If the 
sensor inputs changed, the control jumped to the first gene 
of the segment that corresponded to those inputs.  

 This design was employed to evolve a controller of a 
robot charged with the task of finding a randomly located 
target in a square area. It was equipped with four sensors – 

two to detect the presence of a wall, and two to detect the 
target. In this previous research the two wall sensors were 
implemented in the chromosome, as the simulation ended 
as soon as the robot was able to find the target. Since we 
needed a segment for all possible combinations of sensor 
inputs, we had a total of four segments. 

 After evolving 2048 generations, the fittest individual 
was able to find the target with significantly fewer steps 
than the fittest individual of the random population. It had 
successfully learned to avoid the walls of the search area 
and employed a zigzag motion that enabled it to maximize 
the area covered by its sensors [12]. 

3 Simulation Details 
 In extending our previous experiment, we kept many 
of the simulation details the same. Instead of a static target, 
however, we have another robot with a preprogrammed 
controller that is actively trying to avoid the predator.  

 The predator and the prey are a simulation of the 
ServoBot, which was developed by David Brown at 
Indiana University for legged robot and colony 
experimentation. It is a small, inexpensive hexapod robot 
constructed from Masonite (hard-pressed wood). Equipped 
with a BASIC Stamp II for coordinating the motion of all 
six legs, it has some of the characteristics of larger, more 
complex robots.  

 The simulation area is square with each wall 500 units 
in length. There are no obstacles. The robots’ positions in 
the simulation area are fully described by their X and Y 
coordinates, as well as a number between 0 and 359 that 



shows the direction of their heading; 0 means heading 
South, 90 – East, 180 – North, and 270 – West.  

 Both the predator and the prey are allowed to take one 
of thirty-two possible actions or steps at a time. Each of 
these steps represents one complete gait cycle [11,12], 
defined as the timed and coordinated motion of the legs of 
a robot such that the legs return to the positions from which 
they began the motion. The resultant position of the agent 
after executing a full gait cycle is a simulation of the 
measured movements of an actual ServoBot. It is 
calculated from a table of stored values that show the 
change of the robot’s X and Y coordinates and heading. In 
the table of values, fifteen of these gait cycles result in a 
left turn, another fifteen result in a right turn, and one gait 
is designed to move the robot straight forward. One 
remaining option is for the robot to remain motionless for 
the time it takes to complete a full gait cycle.  In the 
selection of gait cycles, the robot controller faces a trade-
off between large displacement and small rotation, or vice 
versa.  

 The predator is equipped with two types of sensors – 
one that would enable it to detect the presence of a wall 
and the other to detect the target. It has two sensors of each 
type for a total of four. Since each sensor has two possible 
states – 0 (inactive) and 1 (active), there are sixteen 
possible combinations of sensor inputs. The activation 
distance for each sensor is 80 units and the span of its 
vision is 45 degrees. The two sensors of each type are 
situated at the front of the predator, with their spans 
overlapping by 10 degrees. Thus it has a total sight span of 
80 degrees and can detect walls or the prey at a maximum 
distance of 80 units away. 

 The prey has a preprogrammed controller. The range 
distance of its sensors is the same as that of the predator – 
80 units. However, it is equipped with a span of 360 
degrees of vision and is capable of identifying the exact 
position of any object (the predator or a wall) relative to its 
own position. This represents a significant advantage over 
the predator, as the latter is only capable of estimating the 
relative position of the objects, and its vision span is only 
80 degrees. When in danger, the prey runs away from the 
predator, and stays away from walls, so that it does not get 
cornered.  If it is near any object (the predator or a wall), it 
will calculate the best escape path, and will take the action 
that would take it as far away from that object as possible. 
If it manages to escape and is in a state where it no longer 
detects any object, it will still remember the direction of the 
last object seen, and will take five more steps in the 
opposite direction. After those five steps, unless there is a 
new danger detected, the prey will not be “scared” 
anymore. In that case, there is a 10% chance that it will 
move with a random gait cycle. Otherwise it simply stands 
still.  

 Thus modeled, the prey is superior to the predator. 
However, if the predator evolves the ability to chase it well 
enough, it will keep decreasing the distance between them 
whenever the prey has to make a turn, and will eventually 
be able to capture it. A “capture” occurs when the prey is 
within the span of vision of the predator and is 10 units or 
less away from it.  

 The predator and the prey started each simulation run 
from random positions. The simulation ended as soon as 
the predator captured the prey or took more than the 
maximum limit of 400 steps.   

4 Evolution 
 In order to successfully capture the prey, the predator 
needed to learn two major patterns of behavior – searching 
and chasing. The evolution of the latter, however, was 
contingent on the successful evolution of the former, as the 
predator would never have the chance to learn to chase the 
prey if it could not find it often enough. To ensure that the 
predator did in fact find the prey often (and early) enough, 
we used an incremental approach to learning.  The control 
program to search was learned first [12]. The resultant best 
individual was then used to generate a population to 
continue evolution to learn both search and capture. 

 

 
Figure 2. The chromosome, with its 16 segments. Each 
segment consists of four genes that are to be executed 

consecutively. Each gene contains information about the 
action and the number of repetitions it is to be performed.  

 
4.1 Chromosome 
 The chromosome of each individual consisted of 
sixteen segments (Figure 2, from [12]), as there were 
sixteen possible combinations  of sensor inputs. Twelve of 
the segments were randomly generated for every individual 
in all initial populations. The remaining four were taken 
from the chromosome of the individual that performed best 
after the evolution of the search in our previous work. 
Thus, for the sensor inputs equivalent to 
no_object_detected, left_wall_only, right_wall_only, 
left_and_right_wall_only each individual had the same 
four segments before training began. However, all sixteen 
segments were subject to mutation and crossover, so all 
sixteen of them were evolved.  



 To keep the design of the chromosome consistent, 
each segment had four genes. Each gene was 8 bits long (5 
bits to represent the action number and 3 bits to represent 
the number of repetitions). As a result, each segment was 
32 bits; the chromosome had a total of 512 bits.  

4.2  Training 
 Training was done on five populations, each 
consisting of 256 individuals, with chromosomes initially 
created as described above. Evolution was carried out for 
10240 generations. Each individual was evaluated ten 
times, from ten randomly generated starting positions. All 
individuals from the same generation ran the simulation 
from the same ten positions. The fittest individual from 
each generation was automatically included in the next 
generation of training. The rest were produced through the 
application of the CGA operators. The populations at 
periodic generations from 0 up to 10240 were saved during 
training. 

4.3 Fitness Function 
 The fitness score was assigned to each individual 
based on its average performance over all ten runs of the 
simulation. To evaluate the performance of the predator for 
each simulation run, we took the maximum number of 
steps the predator was allowed to take (400), and 
subtracted the number of actual steps taken when the prey 
was not in sight. In case of a capture, we added a capture 
bonus of 125. The final result was raised to the power of 
1.5 to amplify the differences between different 
individuals. The resulting function gave credit for chasing 
the prey since no points were subtracted if the prey was in 
sight after a given step. It gave a very high bonus for a 
capture, which was the eventual goal. In addition, an 
individual ended up receiving more points for fast, as 
opposed to slow captures, as slow captures usually meant 
more steps taken with the prey out of sight.  
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  Figure 3. Learning curve for five tests of the CGA in learning predator control for the predator-prey problem, 

expressed in terms of the capture rate of the best individual for the respective generation. The bold line shows the average 
of all five tests. 

 
 
 



5 Results 
 The results of all five runs, plus the average are 
shown in Figure 3.  These are tests using stored data at 
each of the specified generations that were run after the 
training was complete.  The plot shows the percentage of 
captures of the best individual for each of the five 
populations at each of the training generations where the 
population of solutions was saved.  The results show the 
success of the training system as all five tests result in 
significant improvements in the control program as training 
continues. The initial random programs resulted in a 

capture an average of less than one percent of the time. 
After training, the control program that was generated 
resulted in an average capture rate of over 50 percent. 

 The predator quickly learns to go after the prey when 
the prey is right in front of it. This explains the fact that it 
is able to score a few captures (out of a hundred trials) 
rather early in the course of the evolution. These captures 
are mainly due to fortuitous circumstances, such as when 
the prey runs into the predator head on and has no time to 
turn around and start running away.  

  

        
Figure 4. The predator (lightly shaded) goes after the prey as soon as its sensors are able to detect it and stays with 

it as it turns. 

 

  



 In later generations, the predator learns to chase the 
prey effectively as the latter changes directions. Figure 4 
shows an example of a portion of a run where the predator 
successfully follows the prey. Its response to the sensor 
inputs is finely tuned so that its trajectory matches that of 
the prey.  

 The best individual obtained using our design method 
captured the prey 68 times out of a hundred. Although not 
a perfect solution, this controller is a dramatic 
improvement over the initial population. 

6 Conclusions 
 Our results demonstrate that the CGA/CB design is 
viable for relatively complex tasks. The predator in our 
predator-prey scenario learned to chase and improved 
dramatically in its ability to capture the prey, despite the 
latter's superiority. The CGA/CB is capable of generating a 
multi-loop program for robot control and we speculate that 
it can be used for other applications that require multi-loop 
programs where there is a known limit to the number of 
loops. 

 One limitation of the CGA/CB is that it requires a 
segment of the chromosome that fully describes the 
behavior of the agent for any given combination of sensor 
inputs. The fact that the size of the chromosome grows 
exponentially as we increase the number of sensors to 
integrate makes us believe that there is great room for 
improvement on the way sensor inputs are handled. One 
possibility for future work would include the use of a 
neural network, in conjunction to the CGA/CB, that would 
map more than one combination of sensor inputs to the 
same segment of the chromosome. Such a design would 
require evolution of chromosome segments that can be 
applicable for more than one situation. 
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