

Evolving Gaits for the Lynxmotion Hexapod II Robot

DAVID TOTH

Computer Science, Worcester Polytechnic Institute
Worcester, MA 01609-2280, USA

toth@cs.wpi.edu, http://www.cs.wpi.edu/~toth

and

GARY PARKER
Computer Science

Connecticut College
New London, CT 06320, USA

parker@conncoll.edu, http://cs.conncoll.edu/parker

ABSTRACT

Gait generation for hexapod robots can be accomplished
with a two-phase process, whereby leg cycles that effec-
tively provide thrust are learned and then the proper
selection and coordination of these cycles needed to pro-
duce a gait are learned. Genetic algorithms can be used
to learn both the leg cycles and the coordination. In pre-
vious work, this technique was used successfully to gen-
erate gaits for the ServoBot. In this paper, we apply the
techniques that were successful with the ServoBot to the
Lynxmotion Hexapod II Robot. Although physical dif-
ferences between the two robots required changes to the
robot simulations, genetic algorithms and the two-phase
successfully learned effective gaits.

Keywords: robotics, genetic algorithms, gait, learning,
multi-legged robot, cyclic, control

1. INTRODUCTION

Autonomous robots can perform tasks that would be
dangerous for humans. Examples of these tasks are mine-
sweeping, espionage, and exploration. Because much of
the terrain that might need to be covered is uneven,
legged robots may be more appropriate than wheeled. An
effective method to move a legged robot forward is re-
quired to make the robot usable for the aforementioned
tasks. The generation of effective gaits for these robots is
an issue and learning them saves initial programming and
allows for adaptation to changes in robot capabilities. A
variety of methods have been used to generate gaits for
robots. Brooks used subsumption architectures to gener-
ate gaits [1]. Lewis, Fagg, and Bekey used neural net

works [5]. Reinforcement learning was used by Earon,
Barfoot, and D’Eleuterio [2]. Gallagher and Beer used
genetic algorithms to develop a neural net to control a
simulated cockroach [3].

In previous work, Parker evolved instructions for a con-
trol program that could be loaded directly into BASIC
Stamp II controllers to produce gaits for a six-legged
robot called a ServoBot [8]. This method was a two-
phase process. The first phase was to use cyclic genetic
algorithms to evolve programs, based on the individual
physical characteristics of the leg, that produced cyclic
movement. These leg cycles were optimized to produce
thrust to propel the robot forward. A set of these leg
cycle programs was developed for each leg. The second
phase in the process used genetic algorithms to coordinate
the leg cycles produced in the first phase. These were
optimized to produce an effective gait for the robot. The
coordination program determined which leg cycles to use
for each leg and instructed the leg program when to begin
moving and when to stop the current leg cycle and begin
it again.

Applying the same two-phase gait generation process and
the same leg learning and gait learning algorithms to the
Lynxmotion Hexapod II Robot, another six-legged robot,
did not produce effective gaits for the Hexapod II robot.
This inadequate performance was the result of the
physical differences between the ServoBot and the
Hexapod II Robot. Changes were made to the robot
model being used for evolution and subsequent tests
resulted in successful generation of gaits for the Hexapod
II robot. The same two-phase gait generation process
worked well on both robot types once the models were
changed to accommodate the robot differences.

2. THE ROBOT

The robot used in this study is the Hexapod II Robot
(Figure 1), sold by Lynxmotion, Inc.. The Hexapod II
Robot is a six-legged robot with two degrees of freedom
per leg. Its legs are controlled by 7 Basic Stamp IIs, sold
by Parallax, Inc., and 12 servomotors.

Figure 1: The Hexapod II robot configured with 7 BA-
SIC Stamp IIs.

Six servomotors are directly attached to the legs of the
robot, one per leg, to provide horizontal motion for each
leg. Six more servos are attached with push/pull rods to
the legs, one per leg, to provide vertical motion for each
leg. Pulses sent to the servos cause them to move from
their resting position to an angular position. Because the
servos are attached to the legs of the robot, when the
servos move, the legs of the robot move. A pulse must be
sent to each servo every 25 ms to maintain positional
control. The length (duration) of the pulse dictates the
angular position that the servo is to attain. Servo motors
can be positioned between 0 and 180 degrees and since
the robot’s body results in the same restriction the angle
of the attached servos that control the horizontal motion
of the legs is between 0 degrees and 180 degrees. Pulses
between 20 and 2400 microseconds are sufficient to move
these servos to both the maximum and minimum angles
that they can attain, allowing the attached leg to move
from one extreme horizontal position to the other. A
push/pull rod is attached to each leg and the servo
controlling the vertical movement of the leg. The rod
restricts the vertical motion of the leg and the servo
controlling the vertical motion of the leg to a tighter
range. Pulses between 20 and 2400 microseconds are
sufficient to move these servos to both their maximum
and minimum attainable angles, allowing the attached leg
to move from one extreme vertical position to the other.
Each servo is distinct, so the pulse required by one to

move a leg to a certain position is different than the pulses
required by the other servos to move the other legs to the
same position. Each servo also has a maximum number
of degrees that it can change in a single pulse command
(every 25 ms). If the servo is instructed to turn further
than it can in a single pulse, it will turn this maximum
number of degrees and not attain the directed position
during that pulse.

The servomotors that control the horizontal movement of
the legs of the ServoBot used in previous studies are
attached to the legs with a push/pull rod, instead of a
direct connection. When these servos move, the spot on
the leg where the push/pull rod is attached always remains
a constant distance from where the rod is attached to the
servo. This causes the leg to have a range of motion that
is limited by the linkage of the push/pull rod, and is thus
much less than the 180 degree range of motion that the
legs of the Hexapod II Robot have. The ranges of
horizontal motion of the ServoBot legs are between 45
and 90 degrees. This had significant implications in the
study. The servos that control the vertical movement of
the legs are attached with push/pull rods, as with the
Hexapod II Robot, so there is no difference between how
they function on the two types of robots.

Six of the Basic Stamp IIs are used to control the six
different legs. Each leg stamp sends (at 25 ms intervals) a
pulse to each of the servos on the leg that it controls.
These pulses are referred to as activations and a sequence
of them are required to produce constant motion. A cycle
of these activations is needed to produce the leg cycles
needed for a gait. The stamps can each store a different
cycle of activations to be sent sequentially to the servos
they control. The seventh BASIC stamp II is used to
coordinate the legs. It functions as a set of timers,
instructing each of the other six stamps when to begin
sending pulses to the servos and signaling each stamp
when to restart their leg cycles. These programs can be
downloaded through a modified serial cable onto the
stamps.

3. INCREMENTALLY EVOLVING GAITS

The first phase of gait evolution involves generating in-
structions that move the legs of the robot and produce
thrust to propel the robot forward. While a set of instruc-
tions will move the leg for a period of time, in order for
the leg to keep moving, it must repeat the instructions
continuously [4]. Therefore, the instructions need to be
suitable to be repeated. The instructions are also analo-
gous to tasks, as opposed to traits. For these reasons,
Cyclic Genetic Algorithms (CGAs) are used for the first
phase of the process of evolving gaits. CGAs operate like
ordinary genetic algorithms, using a form of selection,
crossover, and mutation, but they differ in that the genes

in the chromosomes represent tasks instead of traits.
These tasks are completed in sequential order with the
possibility that some portion of the chromosome can have
tasks that are continually repeated. Crossover in the re-
peat (cyclic) section is two-point crossover. Two num-
bers representing gene positions are randomly selected
and the new chromosome is formed by replacing the
genes at the positions between those numbers in the first
chromosome with the genes between those numbers in the
second chromosome. The genes of the chromosome
represent the instructions for the movement of the robot’s
legs. The leg cycle chromosomes, displayed on the left in
Figure 2, consist of eight genes, where each gene is an
ordered triple of integers (ri, hi, vi). The number of acti-
vations that a task is to take is represented by ri, hi is the
activation (length of a pulse) to be sent to the servo con-
trolling the horizontal movement of a leg, and vi is the
activation (length of a pulse) to be sent to the servo con-
trolling the vertical movement of a leg.

((r0, h0, v0) (n
 (r1, h1, v1) (c0, s0)
 (r2, h2, v2) (c1, s1)
 (r3, h3, v3) (c2, s2)
 (r4, h4, v4) (c3, s3)
 (r5, h5, v5) (c4, s4)
 (r6, h6, v6) (c5, s5))
 (r7, h7, v7))

Figure 2: Leg cycle chromosome on the left, coordination
chromosome on the right.

The second phase of gait generation is coordinating the
leg cycles produced in the first phase to make the robot
walk. The coordination of the legs is not a task that is
repeated cyclically, like the instructions used to generate
leg cycles are. The genes for the coordination chromo-
somes are analogous to traits, because they indicate what
parameters are to be used, as opposed to tasks to be com-
pleted in a set amount of time. Therefore, regular genetic
algorithms are used for the coordination of the leg cycles.
The coordination chromosome, displayed on the right in
Figure 2, consists of 7 genes, where the first gene is an
integer n which represents the number of activations in
the gait cycle, and the remaining six genes are ordered
pairs of numbers (ci, si) as displayed in the figure. The
time that a leg will begin moving is represented by ci and
si indicates which of the set of generated leg cycles for
that leg is used [8].

4. ROBOT DIFFERENCES FROM PREVIOUS
STUDIES

In previous work, Parker used Cyclic Genetic Algorithms
to produce gaits for hexapod robots. The robot used was

the ServoBot, a six-legged robot that has two degrees of
motion for each leg [6]. When these studies were done,
pulses between 20 and 2400 microseconds were applied
to the servomotors to move the robot’s legs [8]. This
range of pulses was sufficient to move the legs from the
full forward position to the full back position and the full
up position to the full down position. Measurements of
the horizontal distance that the leg was from the full for-
ward position and the vertical distance from the full down
position were taken for various pulses between 20 and
2400. The distance the leg was from the full forward
position was then calculated for the remaining values
between 20 and 2400, using a linear method, and the
vertical distance from the full down position was calcu-
lated in the same manner. For example, if a pulse of 200
puts the leg 10 mm from the full forward position of the
leg and a pulse of 400 puts the leg 20 mm from the full
forward position of the leg, the model will assume that a
pulse of 300 will put the leg 15 mm from the full forward
position of the leg. This worked well for determining the
vertical position. Because the legs of ServoBots have a
range of horizontal motion significantly less than 180
degrees, this was also reasonably accurate for determining
the horizontal position. Due to the push/pull rod linkage
and the resultant restrictions on leg movement (maximum
horizontal movement range of approximately 60 degrees),
the leg operated in an area where the angular movement
of the servo corresponded directly to the linear thrust
provided by the leg. This also allowed for a simple
method of determining a leg’s maximum rate of move-
ment. Although it was actually a maximum rate that the
servo could change its angle, it could be measured on the
robot as the maximum rate of the linear change in the leg.

The legs of the Hexapod II Robot used in this study,
however, may move 180 degrees horizontally because the
servos moving them are attached directly instead of with
push/pull rods like the ServoBot. The angle from the full
forward position was measured for pulses of 2, 200, 400,
600, 800, 1000, 1200, 1400, 1600, 1800, 2000, 2200, and
2400. The angle of the leg from the full forward position
can be approximated with the same linear method used
for approximating the distance from the full forward
position of the leg for the ServoBot. However, the
distance from the leg's full forward position cannot be
accurately approximated in the same linear manner
because the sine and cosine functions, which need to be
used to accurately calculate the position of the leg, are not
linear. Instead, the distance from the full forward position
of the leg must be calculated using the angles that were
approximated. Because of this, the model of the legs used
to learn efficient and effective leg cycles and the model of
the robot used to learn gaits had to be modified to take
into account the angles and calculate the distance of the
leg from the full forward position based on the angle of
the leg. By the same line of reasoning, the maximum
distance that a leg can move horizontally during one

activation, which is a crucial part of the model, could not
be accurately determined using the previous model. This
measurement, if calculated inaccurately, would likely
cause the simulation to generate gaits that were not as
effective as they could be. Instead, the maximum angle
that a leg can move was calculated and used in the model.
The method for determining the vertical position did not
need to be modified, because there is no difference in the
way that the legs move vertically between the two types
of robots.

5. METHOD

The work of Parker was reproduced, and three
simulations of how various parts of a ServoBot would
work were developed [8]. The first simulation developed
leg cycles to produce thrust to move the robot forward.
For each leg, a population of 64 random leg cycle
chromosomes, which represented the instruction a leg
would receive, was generated. Each of these
chromosomes was evaluated and given a score based on
the thrust that the leg would produce by repeating the
cycle of instructions in the chromosome five times. The
total thrust was divided by the number of activations used
to produce it. After each of the chromosomes was
evaluated, the best one was placed unmodified into the
next generation. The other 63 chromosomes that would
make up the rest of the population for the next generation
were determined by stochastically selecting pairs of
chromosomes based on their fitness and evolving them
using the crossover methods described previously, with
each bit in the new chromosomes having a 1/300 chance
of mutation. This simulation was run for 500 generations,
with the best chromosomes being saved to a file. After
running the simulation on five distinct starting
populations, the best leg cycle chromosomes were
analyzed to determine an optimal number of activations
needed to produce a leg cycle for each leg. This number
was then used to create a set of leg cycles with different
cycle lengths (numbers of activations to produce the leg
cycle) for each leg. The range of the cycle lengths of
these produced gait cycles was from the optimum minus
10 to the optimum plus 10.

The second simulation produced leg cycles with numbers
of activations equal to each number in the desired range.
A population of 64 random leg cycle chromosomes was
generated, again representing the instructions a leg would
receive, for each leg. The chromosomes were evaluated
almost the same way they were in the first simulation, but
with encouragement given for chromosomes to have a
number of activations equal to the average number in the
desired range from the first simulation. The simulation
was run for 500 generations. If the fittest chromosome at
the end of the 500 generations did not contain a number
of activations in the desired range from the first simula-

tion, then that phase of the second simulation was run
again until the fittest chromosome contained a number of
activations in the desired range. The fittest chromosome
and the population of the 500th generation were saved,
and the number of activations was considered to be the
desired length. In the next phase of the second simula-
tion, one was subtracted from the desired length. The
simulation took the existing population and ran again for
200 generations, encouraging the chromosomes to contain
a number of activations equal to the desired length. The
simulation continued running, each time subtracting one
from the desired length and running for 200 generations,
beginning with the current population and encouraging
the chromosomes to have a number of activations equal to
the desired length. When the desired length fell below the
lower number in the range of activations, the saved popu-
lation from the first phase was restored, as was the desired
length. The simulation then added one to the desired
length, took the existing population and ran again for 200
generations, encouraging the chromosomes to contain a
number of activations equal to the desired length. The
simulation continued running, each time adding one from
the desired length and running for 200 generations, be-
ginning with the current population and encouraging the
chromosomes to have a number of activations equal to the
desired length. When the desired length reached the
upper limit of the range, the fittest chromosome for each
desired length was written to a file. This resulted in a set
of varying length leg cycles for each leg.

The third simulation coordinated the leg cycles produced
by the second simulation in order to produce an effective
gait for the robot. A random population of 64
coordination chromosomes was produced with each
chromosome consisting of a number of activations to
perform in producing the gait and six pairs of numbers.
These six pairs of numbers, one for each leg, designated
which leg cycle should be used from the second
simulation and what time that leg should begin moving.
The simulation then determined how much forward
progress the robot would make for a chromosome, based
on the following rules:

1. A timer would start, beginning at 0, and increment by 1
until it reached the number of activations to perform,
which equaled the integer specified by the first gene in the
coordination chromosome. Then it would reset to 0. This
process would be repeated until the timer had increased
500 times.

2. Each leg would start moving when the timer reached
the number specified by the ci value of the gene corre-
sponding to the leg, in the coordination chromosome.

3. Each leg would move one activation per increment of
the timer, as instructed by its leg cycle. If the leg had no
more instructions to perform before the timer reset to 0, it
would stop moving. If the leg still had more instructions

to perform when the timer was reset, it would not do
them, but instead start from the beginning of its instruc-
tions.

The score for each chromosome was equal to the forward
progress the robot would make in 500 activations. This
simulation was run for 2000 generations, with the next
generation being produced the same way it was in the
other two simulations. The fittest chromosome for gen-
erations 0, 50, 100, 200, 500, 1000, and 2000 was written
to a file.

When the simulations were run using the measurements
from the ServoBot, they predicted that the robot would
make a good amount of forward progress and walk with a
tripod gait. When the gaits generated by the simulations
were tested on the ServoBot, they caused the ServoBot to
move forward well, and it moved with a desirable tripod
gait. When the same simulations were run using the
measurements from Hexapod II Robot, they also
predicted that the robot would make significant forward
progress and walk with a tripod gait. However, when the
gaits generated were tested on the robot, they often
caused the Hexapod II Robot to turn, and thus make very
little forward progress from its starting position. The
simulations were then adapted using a new model with
angles and trigonometric functions to calculate the
horizontal distance a leg was from the full forward
position. These simulations will henceforth be referred to
as the angular simulations, and the unmodified
simulations will be referred to as the normal simulations.
The Hexapod II Robot was measured again to determine
the angles of the servos when pulses of length 2, 200,
400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000,
2200, and 2400 were applied. The maximum angle that
the servos could move during an activation was calculated
and the new simulations were then run using the
measurements for the Hexapod II Robot. The angular
simulations produced gaits that they predicted would be
tripod gaits, and they predicted that the robot would make
even more forward progress using the gaits generated by
it than by the ones generated by the normal simulations.

6. RESULTS

Two sets of leg cycles (each set was made up of a leg
cycle for each leg) were evolved using a CGA. One set
was learned using the normal simulation and the other
was learned using the angular simulation. The leg cycles
were then used by a standard GA to evolve gaits. Each of
the learning sessions was performed five times. In all
cases, the learning curves were similar for the normal and
angular simulations and produced what appeared to be
proper gaits. Figure 3 shows a comparison of the normal
and angular simulation learning curves for several inter-
mediate solutions as the gaits evolved.

Figure 3: Average (standard error bars are shown)

predicted progress for both simulation types.

These same five sets of solutions were then tested on the
actual robot. Figure 4 shows the average (with standard
error bars) results of these tests. As can be observed,
these results are significantly different than the predicted
results. Comparing the predicted to the actual for the
angular simulation shows similar learning curves, but the
actual has less forward progress than predicted. This is
probably due to the fact that the simulation was not physi-
cally accurate. The servos were not affected by load, the
legs were considered off the ground as soon as they were
1 mm up resulting in no negative friction when the legs
were repositioning for another thrust, there was no slip-
page when the legs were on the ground predicting maxi-
mum thrust output when they were moving back, and the
legs did not run into each other on the extremes. The
normal simulation actual results have these same differ-
ences, but they have other significant problems. The legs
do not move as predicted because the simulation is not
accurate. The normal simulation does not accurately take
into account what will happen when the legs are closer to
their extremes. The result was unpredicted behavior. The
output in the lower generations was not significantly
affected because all the gaits were bad and any success
was mostly random. By the later generations, the evolu-
tion is perfecting the gait with an inaccurate simulation.
The resulting gaits have drag where it is not expected,
which reduces their forward movement plus causes them
to veer off course. Both resulted in degraded perform-
ance. Observations of the actual robots during these tests
revealed that the controller produced using the angular
simulation were reasonable gaits that were tripod in na-
ture. Although the gaits generated using the normal simu-
lations tended to be tripod in nature, they had lateral
movement caused by legs dragging in the extremes, which
produced slow curved tracks over the ground.

0

500

1000

1500

2000

2500

3000

3500

4000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Generation

F
o

rw
ar

d
 P

ro
g

re
ss

 (
m

m
)

Norm al
Angular

Figure 4: Average actual progress for both simulation types.

7 CONCLUSIONS

Gaits for the Lynxmotion Hexapod II Robot can be
learned using a two-phase process of evolving leg cycles
with CGAs and evolving gait cycles with normal genetic
algorithms. The gaits are significantly more effective,
causing the robot to make more forward progress, when
the simulations used to generate them calculate the hori-
zontal position of the legs using trigonometric functions
and angles rather than just distance. Future work could
involve including other physical factors in the simulation
to get the actual and predicted results to better coincide.
In addition, work could be done to modify the simulation
to penalize the robot for legs colliding with each other, a
problem not encountered with the ServoBot due to the
limited range of horizontal motion of its legs. Another
experiment could be to re-measure the ServoBot and
generate gaits for it using the angular simulations to see if
they produce more effective gaits than the ones produced
using normal simulations.

REFERENCES

[1] Brooks, R., A Robot that Walks; Emergent Behaviors
from a Carefully Evolved Network, Neural Computation,
Vol. 1, No. 2, 1989, pp. 253–262.

[2] Earon, E., Barfoot, T. and D’Eleuterio, G, A Step in
The Right Direction: Learning Hexapod Gaits Through
Reinforcement, International Symposium on Robotics
(ISR), 2000.
[3] Gallagher, J. and Beer, R., Application of Evolved
Locomotion Controllers to a Hexapod Robot, Technical
Report CES-94-7, Department of Computer Engineering
and Science, Case Western Reserve University, 1994.
[4] Larochelle, K., Dashnaw, S., and Parker, G. B., Gait
Evolution for a Hexapod Robot, Proceedings of the
Fourth International Symposium on Soft Computing and
Intelligent Systems for Industry, 2001.
[5] Lewis, M, Fagg, A., and Bekey, G., Genetic Algo-
rithms for Gait Synthesis in a Hexapod Robot, Recent
Trends in Mobile Robots (Y. Zheng Ed.), World Scien-
tific Press, 1994.
[6] Parker, G. B., Braun, D., and Cyliax, I., Evolving
Hexapod Gaits Using A Cyclic Genetic Algorithm, Pro-
ceedings of the IASTED International Conference on
Artificial Intelligence and Soft Computing, 1997, pp. 141-
144.
[7] Parker, G. B., Evolving Leg Cycles to Produce Hexa-
pod Gaits, Proceedings of the World Automation Con-
gress (WAC2000), Vol. 10, 2000, pp. 250-255.
[8] Parker, G. B., The Incremental Evolution of Gaits for
Hexapod Robots, Proceedings of the Genetic and
Evolutionary Computation Conference, 2001, pp. 1114-
1121.

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

G enerations

F
o

rw
ar

d
 P

ro
g

re
ss

 (
m

m
)

Norm al
A ngu lar

