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ABSTRACT 

 
Gait generation for hexapod robots can be accomplished 
with a two-phase process, whereby leg cycles that effec-
tively provide thrust are learned and then the proper 
selection and coordination of these cycles needed to pro-
duce a gait are learned.  Genetic algorithms can be used 
to learn both the leg cycles and the coordination.  In pre-
vious work, this technique was used successfully to gen-
erate gaits for the ServoBot.  In this paper, we apply the 
techniques that were successful with the ServoBot to the 
Lynxmotion Hexapod II Robot.  Although physical dif-
ferences between the two robots required changes to the 
robot simulations, genetic algorithms and the two-phase 
successfully learned effective gaits. 
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multi-legged robot, cyclic, control 
 
 

1.  INTRODUCTION 
 
Autonomous robots can perform tasks that would be 
dangerous for humans. Examples of these tasks are mine-
sweeping, espionage, and exploration.  Because much of 
the terrain that might need to be covered is uneven, 
legged robots may be more appropriate than wheeled.  An 
effective method to move a legged robot forward is re-
quired to make the robot usable for the aforementioned 
tasks.  The generation of effective gaits for these robots is 
an issue and learning them saves initial programming and 
allows for adaptation to changes in robot capabilities.  A 
variety of methods have been used to generate gaits for 
robots.  Brooks used subsumption architectures to gener-
ate gaits [1].   Lewis,  Fagg,  and  Bekey  used  neural  net 
 

works [5].  Reinforcement learning was used by Earon, 
Barfoot, and D’Eleuterio [2].  Gallagher and Beer used 
genetic algorithms to develop a neural net to control a 
simulated cockroach [3]. 
 
In previous work, Parker evolved instructions for a con-
trol program that could be loaded directly into BASIC 
Stamp II controllers to produce gaits for a six-legged 
robot called a ServoBot [8].  This method was a two-
phase process.  The first phase was to use cyclic genetic 
algorithms to evolve programs, based on the individual 
physical characteristics of the leg, that produced cyclic 
movement.  These leg cycles were optimized to produce 
thrust to propel the robot forward.  A set of these leg 
cycle programs was developed for each leg.  The second 
phase in the process used genetic algorithms to coordinate 
the leg cycles produced in the first phase.  These were 
optimized to produce an effective gait for the robot.  The 
coordination program determined which leg cycles to use 
for each leg and instructed the leg program when to begin 
moving and when to stop the current leg cycle and begin 
it again.   
 
Applying the same two-phase gait generation process and 
the same leg learning and gait learning algorithms to the 
Lynxmotion Hexapod II Robot, another six-legged robot, 
did not produce effective gaits for the Hexapod II robot.  
This inadequate performance was the result of the 
physical differences between the ServoBot and the 
Hexapod II Robot.  Changes were made to the robot 
model being used for evolution and subsequent tests 
resulted in successful generation of gaits for the Hexapod 
II robot.  The same two-phase gait generation process 
worked well on both robot types once the models were 
changed to accommodate the robot differences. 



2.  THE ROBOT 
 
The robot used in this study is the Hexapod II Robot 
(Figure 1), sold by Lynxmotion, Inc..  The Hexapod II 
Robot is a six-legged robot with two degrees of freedom 
per leg.  Its legs are controlled by 7 Basic Stamp IIs, sold 
by Parallax, Inc., and 12 servomotors. 
 

   

 
Figure 1:  The Hexapod II robot configured with 7 BA-
SIC Stamp IIs. 
 
 

Six servomotors are directly attached to the legs of the 
robot, one per leg, to provide horizontal motion for each 
leg.  Six more servos are attached with push/pull rods to 
the legs, one per leg, to provide vertical motion for each 
leg.  Pulses sent to the servos cause them to move from 
their resting position to an angular position.  Because the 
servos are attached to the legs of the robot, when the 
servos move, the legs of the robot move.  A pulse must be 
sent to each servo every 25 ms to maintain positional 
control.  The length (duration) of the pulse dictates the 
angular position that the servo is to attain.  Servo motors 
can be positioned between 0 and 180 degrees and since 
the robot’s body results in the same restriction the angle 
of the attached servos that control the horizontal motion 
of the legs is between 0 degrees and 180 degrees.  Pulses 
between 20 and 2400 microseconds are sufficient to move 
these servos to both the maximum and minimum angles 
that they can attain, allowing the attached leg to move 
from one extreme horizontal position to the other.  A 
push/pull rod is attached to each leg and the servo 
controlling the vertical movement of the leg.  The rod 
restricts the vertical motion of the leg and the servo 
controlling the vertical motion of the leg to a tighter 
range.  Pulses between 20 and 2400 microseconds are 
sufficient to move these servos to both their maximum 
and minimum attainable angles, allowing the attached leg 
to move from one extreme vertical position to the other.  
Each servo is distinct, so the pulse required by one to 

move a leg to a certain position is different than the pulses 
required by the other servos to move the other legs to the 
same position.  Each servo also has a maximum number 
of degrees that it can change in a single pulse command 
(every 25 ms).  If the servo is instructed to turn further 
than it can in a single pulse, it will turn this maximum 
number of degrees and not attain the directed position 
during that pulse. 
 
The servomotors that control the horizontal movement of 
the legs of the ServoBot used in previous studies are 
attached to the legs with a push/pull rod, instead of a 
direct connection.  When these servos move, the spot on 
the leg where the push/pull rod is attached always remains 
a constant distance from where the rod is attached to the 
servo.  This causes the leg to have a range of motion that 
is limited by the linkage of the push/pull rod, and is thus 
much less than the 180 degree range of motion that the 
legs of the Hexapod II Robot have.  The ranges of 
horizontal motion of the ServoBot legs are between 45 
and 90 degrees.  This had significant implications in the 
study.  The servos that control the vertical movement of 
the legs are attached with push/pull rods, as with the 
Hexapod II Robot, so there is no difference between how 
they function on the two types of robots. 
 
Six of the Basic Stamp IIs are used to control the six 
different legs.  Each leg stamp sends (at 25 ms intervals) a 
pulse to each of the servos on the leg that it controls.  
These pulses are referred to as activations and a sequence 
of them are required to produce constant motion.  A cycle 
of these activations is needed to produce the leg cycles 
needed for a gait.  The stamps can each store a different 
cycle of activations to be sent sequentially to the servos 
they control.  The seventh BASIC stamp II is used to 
coordinate the legs.  It functions as a set of timers, 
instructing each of the other six stamps when to begin 
sending pulses to the servos and signaling each stamp 
when to restart their leg cycles.  These programs can be 
downloaded through a modified serial cable onto the 
stamps.   
 
 

3.  INCREMENTALLY EVOLVING GAITS 
 
The first phase of gait evolution involves generating in-
structions that move the legs of the robot and produce 
thrust to propel the robot forward.  While a set of instruc-
tions will move the leg for a period of time, in order for 
the leg to keep moving, it must repeat the instructions 
continuously [4].  Therefore, the instructions need to be 
suitable to be repeated.  The instructions are also analo-
gous to tasks, as opposed to traits.  For these reasons, 
Cyclic Genetic Algorithms (CGAs) are used for the first 
phase of the process of evolving gaits.  CGAs operate like 
ordinary genetic algorithms, using a form of selection, 
crossover, and mutation, but they differ in that the genes 



in the chromosomes represent tasks instead of traits.  
These tasks are completed in sequential order with the 
possibility that some portion of the chromosome can have 
tasks that are continually repeated.  Crossover in the re-
peat (cyclic) section is two-point crossover.  Two num-
bers representing gene positions are randomly selected 
and the new chromosome is formed by replacing the 
genes at the positions between those numbers in the first 
chromosome with the genes between those numbers in the 
second chromosome.  The genes of the chromosome 
represent the instructions for the movement of the robot’s 
legs.  The leg cycle chromosomes, displayed on the left in 
Figure 2, consist of eight genes, where each gene is an 
ordered triple of integers (ri, hi, vi).  The number of acti-
vations that a task is to take is represented by ri, hi is the 
activation (length of a pulse) to be sent to the servo con-
trolling the horizontal movement of a leg, and vi is the 
activation (length of a pulse) to be sent to the servo con-
trolling the vertical movement of a leg. 

 
((r0, h0, v0)   (n 
 (r1, h1, v1)   (c0, s0) 
 (r2, h2, v2)   (c1, s1) 
 (r3, h3, v3)   (c2, s2) 
 (r4, h4, v4)   (c3, s3) 
 (r5, h5, v5)   (c4, s4) 
 (r6, h6, v6)   (c5, s5)) 
 (r7, h7, v7)) 

 
Figure 2: Leg cycle chromosome on the left, coordination 
chromosome on the right. 
 

The second phase of gait generation is coordinating the 
leg cycles produced in the first phase to make the robot 
walk.  The coordination of the legs is not a task that is 
repeated cyclically, like the instructions used to generate 
leg cycles are.  The genes for the coordination chromo-
somes are analogous to traits, because they indicate what 
parameters are to be used, as opposed to tasks to be com-
pleted in a set amount of time.  Therefore, regular genetic 
algorithms are used for the coordination of the leg cycles.  
The coordination chromosome, displayed on the right in 
Figure 2, consists of 7 genes, where the first gene is an 
integer n which represents the number of activations in 
the gait cycle, and the remaining six genes are ordered 
pairs of numbers (ci, si) as displayed in the figure.   The 
time that a leg will begin moving is represented by ci and 
si indicates which of the set of generated leg cycles for 
that leg is used [8].   
 
 

4.  ROBOT DIFFERENCES FROM PREVIOUS 
STUDIES 

 
In previous work, Parker used Cyclic Genetic Algorithms 
to produce gaits for hexapod robots.  The robot used was 

the ServoBot, a six-legged robot that has two degrees of 
motion for each leg [6].  When these studies were done, 
pulses between 20 and 2400 microseconds were applied 
to the servomotors to move the robot’s legs [8].  This 
range of pulses was sufficient to move the legs from the 
full forward position to the full back position and the full 
up position to the full down position.  Measurements of 
the horizontal distance that the leg was from the full for-
ward position and the vertical distance from the full down 
position were taken for various pulses between 20 and 
2400.  The distance the leg was from the full forward 
position was then calculated for the remaining values 
between 20 and 2400, using a linear method, and the 
vertical distance from the full down position was calcu-
lated in the same manner.  For example, if a pulse of 200 
puts the leg 10 mm from the full forward position of the 
leg and a pulse of 400 puts the leg 20 mm from the full 
forward position of the leg, the model will assume that a 
pulse of 300 will put the leg 15 mm from the full forward 
position of the leg.  This worked well for determining the 
vertical position.  Because the legs of ServoBots have a 
range of horizontal motion significantly less than 180 
degrees, this was also reasonably accurate for determining 
the horizontal position.  Due to the push/pull rod linkage 
and the resultant restrictions on leg movement (maximum 
horizontal movement range of approximately 60 degrees), 
the leg operated in an area where the angular movement 
of the servo corresponded directly to the linear thrust 
provided by the leg.   This also allowed for a simple 
method of determining a leg’s maximum rate of move-
ment.   Although it was actually a maximum rate that the 
servo could change its angle, it could be measured on the 
robot as the maximum rate of the linear change in the leg.  
 
The legs of the Hexapod II Robot used in this study, 
however, may move 180 degrees horizontally because the 
servos moving them are attached directly instead of with 
push/pull rods like the ServoBot.  The angle from the full 
forward position was measured for pulses of 2, 200, 400, 
600, 800, 1000, 1200, 1400, 1600, 1800, 2000, 2200, and 
2400. The angle of the leg from the full forward position 
can be approximated with the same linear method used 
for approximating the distance from the full forward 
position of the leg for the ServoBot.  However, the 
distance from the leg's full forward position cannot be 
accurately approximated in the same linear manner 
because the sine and cosine functions, which need to be 
used to accurately calculate the position of the leg, are not 
linear.  Instead, the distance from the full forward position 
of the leg must be calculated using the angles that were 
approximated.  Because of this, the model of the legs used 
to learn efficient and effective leg cycles and the model of 
the robot used to learn gaits had to be modified to take 
into account the angles and calculate the distance of the 
leg from the full forward position based on the angle of 
the leg.  By the same line of reasoning, the maximum 
distance that a leg can move horizontally during one 



activation, which is a crucial part of the model, could not 
be accurately determined using the previous model.  This 
measurement, if calculated inaccurately, would likely 
cause the simulation to generate gaits that were not as 
effective as they could be.  Instead, the maximum angle 
that a leg can move was calculated and used in the model.  
The method for determining the vertical position did not 
need to be modified, because there is no difference in the 
way that the legs move vertically between the two types 
of robots. 
 
 

5.  METHOD 
 
The work of Parker was reproduced, and three 
simulations of how various parts of a ServoBot would 
work were developed [8].  The first simulation developed 
leg cycles to produce thrust to move the robot forward.  
For each leg, a population of 64 random leg cycle 
chromosomes, which represented the instruction a leg 
would receive, was generated.  Each of these 
chromosomes was evaluated and given a score based on 
the thrust that the leg would produce by repeating the 
cycle of instructions in the chromosome five times.  The 
total thrust was divided by the number of activations used 
to produce it.  After each of the chromosomes was 
evaluated, the best one was placed unmodified into the 
next generation.  The other 63 chromosomes that would 
make up the rest of the population for the next generation 
were determined by stochastically selecting pairs of 
chromosomes based on their fitness and evolving them 
using the crossover methods described previously, with 
each bit in the new chromosomes having a 1/300 chance 
of mutation.  This simulation was run for 500 generations, 
with the best chromosomes being saved to a file.  After 
running the simulation on five distinct starting 
populations, the best leg cycle chromosomes were 
analyzed to determine an optimal number of activations 
needed to produce a leg cycle for each leg.   This number 
was then used to create a set of leg cycles with different 
cycle lengths (numbers of activations to produce the leg 
cycle) for each leg.   The range of the cycle lengths of 
these produced gait cycles was from the optimum minus 
10 to the optimum plus 10.   
 
The second simulation produced leg cycles with numbers 
of activations equal to each number in the desired range.  
A population of 64 random leg cycle chromosomes was 
generated, again representing the instructions a leg would 
receive, for each leg.  The chromosomes were evaluated 
almost the same way they were in the first simulation, but 
with encouragement given for chromosomes to have a 
number of activations equal to the average number in the 
desired range from the first simulation.  The simulation 
was run for 500 generations. If the fittest chromosome at 
the end of the 500 generations did not contain a number 
of activations in the desired range from the first simula-

tion, then that phase of the second simulation was run 
again until the fittest chromosome contained a number of 
activations in the desired range.  The fittest chromosome 
and the population of the 500th generation were saved, 
and the number of activations was considered to be the 
desired length.  In the next phase of the second simula-
tion, one was subtracted from the desired length.  The 
simulation took the existing population and ran again for 
200 generations, encouraging the chromosomes to contain 
a number of activations equal to the desired length.  The 
simulation continued running, each time subtracting one 
from the desired length and running for 200 generations, 
beginning with the current population and encouraging 
the chromosomes to have a number of activations equal to 
the desired length.  When the desired length fell below the 
lower number in the range of activations, the saved popu-
lation from the first phase was restored, as was the desired 
length.  The simulation then added one to the desired 
length, took the existing population and ran again for 200 
generations, encouraging the chromosomes to contain a 
number of activations equal to the desired length.  The 
simulation continued running, each time adding one from 
the desired length and running for 200 generations, be-
ginning with the current population and encouraging the 
chromosomes to have a number of activations equal to the 
desired length.  When the desired length reached the 
upper limit of the range, the fittest chromosome for each 
desired length was written to a file.  This resulted in a set 
of varying length leg cycles for each leg. 
 
The third simulation coordinated the leg cycles produced 
by the second simulation in order to produce an effective 
gait for the robot.  A random population of 64 
coordination chromosomes was produced with each 
chromosome consisting of a number of activations to 
perform in producing the gait and six pairs of numbers.  
These six pairs of numbers, one for each leg, designated 
which leg cycle should be used from the second 
simulation and what time that leg should begin moving.  
The simulation then determined how much forward 
progress the robot would make for a chromosome, based 
on the following rules:  

1. A timer would start, beginning at 0, and increment by 1 
until it reached the number of activations to perform, 
which equaled the integer specified by the first gene in the 
coordination chromosome.  Then it would reset to 0.  This 
process would be repeated until the timer had increased 
500 times. 

2. Each leg would start moving when the timer reached 
the number specified by the ci value of the gene corre-
sponding to the leg, in the coordination chromosome. 

3. Each leg would move one activation per increment of 
the timer, as instructed by its leg cycle.  If the leg had no 
more instructions to perform before the timer reset to 0, it 
would stop moving.  If the leg still had more instructions 



to perform when the timer was reset, it would not do 
them, but instead start from the beginning of its instruc-
tions. 

The score for each chromosome was equal to the forward 
progress the robot would make in 500 activations.  This 
simulation was run for 2000 generations, with the next 
generation being produced the same way it was in the 
other two simulations.  The fittest chromosome for gen-
erations 0, 50, 100, 200, 500, 1000, and 2000 was written 
to a file. 
 
When the simulations were run using the measurements 
from the ServoBot, they predicted that the robot would 
make a good amount of forward progress and walk with a 
tripod gait.  When the gaits generated by the simulations 
were tested on the ServoBot, they caused the ServoBot to 
move forward well, and it moved with a desirable tripod 
gait.  When the same simulations were run using the 
measurements from Hexapod II Robot, they also 
predicted that the robot would make significant forward 
progress and walk with a tripod gait.  However, when the 
gaits generated were tested on the robot, they often 
caused the Hexapod II Robot to turn, and thus make very 
little forward progress from its starting position.  The 
simulations were then adapted using a new model with 
angles and trigonometric functions to calculate the 
horizontal distance a leg was from the full forward 
position.  These simulations will henceforth be referred to 
as the angular simulations, and the unmodified 
simulations will be referred to as the normal simulations.  
The Hexapod II Robot was measured again to determine 
the angles of the servos when pulses of length 2, 200, 
400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000, 
2200, and 2400 were applied.  The maximum angle that 
the servos could move during an activation was calculated 
and the new simulations were then run using the 
measurements for the Hexapod II Robot.  The angular 
simulations produced gaits that they predicted would be 
tripod gaits, and they predicted that the robot would make 
even more forward progress using the gaits generated by 
it than by the ones generated by the normal simulations. 
 
 
6.  RESULTS 
 
Two sets of leg cycles (each set was made up of a leg 
cycle for each leg) were evolved using a CGA.  One set 
was learned using the normal simulation and the other 
was learned using the angular simulation.  The leg cycles 
were then used by a standard GA to evolve gaits.  Each of 
the learning sessions was performed five times.  In all 
cases, the learning curves were similar for the normal and 
angular simulations and produced what appeared to be 
proper gaits.  Figure 3 shows a comparison of the normal 
and angular simulation learning curves for several inter-
mediate solutions as the gaits evolved. 

 
Figure 3: Average (standard error bars are shown) 

predicted progress for both simulation types. 
 
 
These same five sets of solutions were then tested on the 
actual robot.   Figure 4 shows the average (with standard 
error bars) results of these tests.  As can be observed, 
these results are significantly different than the predicted 
results.  Comparing the predicted to the actual for the 
angular simulation shows similar learning curves, but the 
actual has less forward progress than predicted.  This is 
probably due to the fact that the simulation was not physi-
cally accurate.  The servos were not affected by load, the 
legs were considered off the ground as soon as they were 
1 mm up resulting in no negative friction when the legs 
were repositioning for another thrust, there was no slip-
page when the legs were on the ground predicting maxi-
mum thrust output when they were moving back, and the 
legs did not run into each other on the extremes.  The 
normal simulation actual results have these same differ-
ences, but they have other significant problems.  The legs 
do not move as predicted because the simulation is not 
accurate.  The normal simulation does not accurately take 
into account what will happen when the legs are closer to 
their extremes.  The result was unpredicted behavior.  The 
output in the lower generations was not significantly 
affected because all the gaits were bad and any success 
was mostly random.  By the later generations, the evolu-
tion is perfecting the gait with an inaccurate simulation.  
The resulting gaits have drag where it is not expected, 
which reduces their forward movement plus causes them 
to veer off course.  Both resulted in degraded perform-
ance.   Observations of the actual robots during these tests 
revealed that the controller produced using the angular 
simulation were reasonable gaits that were tripod in na-
ture.  Although the gaits generated using the normal simu-
lations tended to be tripod in nature, they had lateral 
movement caused by legs dragging in the extremes, which 
produced slow curved tracks over the ground. 
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Figure 4:  Average actual progress for both simulation types. 

 
 

7   CONCLUSIONS 
 
Gaits for the Lynxmotion Hexapod II Robot can be 
learned using a two-phase process of evolving leg cycles 
with CGAs and evolving gait cycles with normal genetic 
algorithms.  The gaits are significantly more effective, 
causing the robot to make more forward progress, when 
the simulations used to generate them calculate the hori-
zontal position of the legs using trigonometric functions 
and angles rather than just distance. Future work could 
involve including other physical factors in the simulation 
to get the actual and predicted results to better coincide.  
In addition, work could be done to modify the simulation 
to penalize the robot for legs colliding with each other, a 
problem not encountered with the ServoBot due to the 
limited range of horizontal motion of its legs.  Another 
experiment could be to re-measure the ServoBot and 
generate gaits for it using the angular simulations to see if 
they produce more effective gaits than the ones produced 
using normal simulations. 
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