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Abstract: A robust obstacle avoidance control program was developed for a mobile robot in the context of tight, dynamic 
indoor environments. Deep Learning was applied in order to produce a refined classifier for decision making. 
The network was trained on low quality raw RGB images. A fine-tuning approach was taken in order to 
leverage pre-learned parameters from another network and to speed up learning time. The robot successfully 
learned to avoid obstacles as it drove autonomously in a tight classroom/laboratory setting.   

1 INTRODUCTION 

The field of Deep Learning consists of algorithms that 
learn using massive artificial neural network 
architectures. Most Deep Learning models are built 
with the intent of processing images. Some of these 
architectures are capable of outperforming humans in 
tasks like classifying objects, which simply means 
differentiating one object from other objects (dog vs. 
wolf, e.g.). In this paper, we present an application of 
Deep Learning to the concept of autonomous driving 
for a TurtleBot type robot within a tight 
classroom/laboratory setting based strictly on images. 
The robot was able to successfully and autonomously 
drive without hitting obstacles within the 
environment. 

Krizhevsky, Sutskever, and Hinton (2012) put 
forth a foundational paper in regards to Deep 
Learning. They developed a neural network with 60 
million parameters and 650,000 neurons. This 
network had 5 convolutional layers along with a few 
pooling layers and 3 fully connected layers including 
a final output layer of 1000 outputs. At the time, they 
achieved a top-5 classification (of the 1000 classes) 
error rate of only 15.3% compared to a much higher 
second-place error rate of 26.2%. This paper 
contributed to the discussion of the importance of 
depth in neural networks by noting that removal of a 
single hidden layer dropped the top-1 classification 
error rate by 2%.   

                                                                                              
a http://cs.conncoll.edu/parker 

Szegedy et al. (2014) entered the ILSVRC 
challenge with a 22 layer deep network nicknamed 
GoogLeNet – in part because most of the engineers 
and research scientists on the team worked for Google 
at the time. The team won the competition with 12 
times fewer parameters than Krizhevsky’s deep 
network and obtained an impressive 6.66% error rate 
for top-5 classification. Following the pattern of 
improvements, He, Zhang, Ren, and Sun (2015) of 
Microsoft Research used a 19 layer deep neural 
network for the task and obtained an accuracy of 
4.94% for top-5 classification. This was a landmark 
accomplishment as it is purported to be the first to 
beat human level performance (5.1%) for the 
ImageNet dataset.  

The most relevant dataset to our research is that of 
CIFAR10 from the Canadian Institute for Advanced 
Research (Krizhevsky, 2009b). Alex Krizhevsky 
outlined the use of this dataset when he developed it 
in 2009 for his Master’s Thesis during his time at the 
University of Toronto (Krizhevsky, 2009a). Prior to 
this, tiny images on the scale of 32 x 32 were not 
easily labeled for classification tasks in regards to 
algorithms like Deep Learning. The CIFAR10 dataset 
includes 10 different classes: airplane, automobile, 
bird, cat, deer, dog, frog, horse, ship, and truck. The 
classes are set up in a way to be mutually exclusive. 
For example, automobile and truck are completely 
different categories. Krizhevsky developed different 
deep neural network models in 2010 to run training 
with the dataset. At the time he obtained the highest 



accuracy using this dataset as his best model 
classified objects correctly with a success rate of 
78.9% (Krizhevsky, 2010).  Since then, Mishkin and 
Matas have obtained 94.16% accuracy on the 
CIFAR10 dataset (Mishkin and Matas, 2016). 
Whereas, Springenberg et al. have obtained 95.59% 
accuracy (Springenberg, Dosovitskiy, Brox, and 
Riedmiller, 2015), and the current best performance 
is by Graham with an accuracy of 96.53% using max 
pooling (Graham, 2014).  

There has been strong interest in using the 
TurtleBot platform for obstacle detection and 
avoidance. Boucher used the Point Cloud Library and 
depth information along with plane detection 
algorithms to build methods of obstacle avoidance 
(Boucher, 2012). High curvature edge detection was 
used to locate boundaries between the ground and 
objects that rest on the ground. Other researchers have 
considered the use of Deep Learning for the purpose 
of obstacle avoidance using the TurtleBot platform.  

Tai, Li, and Liu used depth images as the only 
input into the deep network for training purposes (Tai, 
Li, and Liu, 2016). They discretized control 
commands with outputs such as: “go-
straightforward”, “turning-half-right”, “turning-full-
right”, etc. The depth image was from a Kinect 
camera with dimensions of 640 x 480. This image 
was downsampled to 160 x 120. Three stages of 
processing were done where the layering was ordered 
as such: convolution, activation, pooling. The first 
convolution layer used 32 convolution kernels, each 
of size 5 x 5. The final layer included a fully-
connected layer with outputs for each discretized 
movement decision. In all trials, the robot never 
collided with obstacles, and the accuracy obtained 
after training in relation to the testing set was 80.2%. 
Their network was trained only on 1104 depth 
images. The environment used in this dataset seems 
fairly straightforward – meaning that the only 
“obstacles” seems to be walls or pillars. The 
environment was not dynamic. Tai and Liu produced 
another paper related to the previous paper (Tai and 
Liu, 2016). Instead of a real-world environment, this 
was tested in a simulated environment provided by 
the TurtleBot platform, called Gazebo. Different 
types of corridor environments were tested and 
learned. A reinforcement learning technique called Q-
learning was paired with the power of Deep Learning. 
The robot, once again, used depth images and the 
training was done using Caffe.  Other deep 
reinforcement learning research included real-world 
evaluation on a TurtleBot (Tai, Paolo, and Liu, 2017), 
using dueling deep double Q networks trained to learn 
obstacle avoidance (Xie, Wang, Markham, and 

Trigoni, 2017), and using a fully connected NN to 
map to Q-values for obstacle avoidance (Wu, 
Esfahani, Yuan, and Wang, 2019). 

Tai, Li, and Liu (2017) applied Deep Learning 
using several convolutional neural network layers to 
process depth images in order to learn obstacle 
avoidance for a TurtleBot in the real world.  This is 
very similar to our work, except they used depth 
images, the obstacles were just a corridor, and they 
train from scratch instead of using transfer learning as 
we did. 

Our research provides a distinctive approach in 
comparison to these works. Research like Boucher’s 
does not consider higher level learning, but instead 
builds upon advanced expert systems, which can 
detect differentials in the ground plane. By focusing 
on Deep Learning, our research allows a pattern based 
learning approach that is more general and one which 
does not need to be explicitly programmed. While Tai 
et al. used Deep Learning, their dataset was limited 
with just over 1100 images. We built our own dataset 
to have over 30,000 images, increasing the size of the 
effective dataset by about 28 times. The environment 
for our research is more complex than just the flat 
surfaces of walls and columns. As in Xie’s work, in 
our research the learning was done on a dataset that 
was based on raw monocular RGB images.  This 
opens the door to further research with cameras that 
do not have depth. Moreover, the sizes of the images 
used in our research were dramatically smaller, which 
also opens up the door for faster training and a speed 
up in forward propagation.  Lastly, similar to a few of 
these works, the results of our work were tested in the 
real world as opposed to a simulated environment. 

2 DEEP LEARNING 

Consider a standard feed-forward artificial neural 
network that is fully connected between each layer 
being used to process a 100 x 100 pixel image. With 
3 color channels, we would have 100 x 100 x 3 or 
30,000 inputs to our neural network. This is a large 
number of inputs for a standard neural network to 
process.  Deep Learning directly addresses this 
limitation.  

The convolution layer passes convolution 
windows over the image to produce new images that 
are smaller. The number of images produced can be 
specified by the programmer. Each new image will be 
accompanied by a convolution kernel signifying the 
weights. Instead of sending all input values from layer 
to layer, deep networks are designed to take regions 
or subsamples of inputs. For images this means that 



instead of sending all pixels in the entire image as 
inputs, different neurons will only take regions of the 
image as inputs – full connectivity is reduced to local 
connectivity. We take an image and extract local 
regions of depth 3 for the color channels along with 
their respective pixel values and input them into a 
neuron. Supposing that our local receptive fields are 
of size 5 x 5, this neuron takes in an input of 
dimensions 5 x 5 x 3 for that particular portion of the 
3 color channel image. The local receptive fields can 
be seen as small windows that slide over our image, 
where the number of panes on the window is 
predefined. These panes help determine what features 
under the window we want to extract, and over time 
these features are better refined. The weighted 
windows are commonly called kernels. Depending on 
the type of kernel, different features of the image may 
be highlighted, such as blurring and sharpening. In 
this way, networks can develop identification of 
complex patterns in datasets just by applying kernel 
filters. Deep networks develop these kernels through 
training without being explicitly programmed to do 
so. The only supervision is from a loss function in the 
output layer denoting how close the network’s 
prediction was to the actual value of the image. 
Through training, these kernels become more fine-
grained to reduce the loss function’s output.  

Pooling is applied to each one of the convolution 
images.  Deep networks are stacked in such a way as 
to include many different types of layers. A general 
strategy is to follow a convolution layer with a type 
of layer called a pooling layer. The convolution layer 
is responsible for learning the lower level features of 
an image, such as edges. The pooling layer seeks to 
detect a higher level understanding of the lower level 
features from the convolution layers. Pooling is also 
good for building invariance to local translations. 
This means that even if the input region is slightly 
translated, most of the pooled output values will not 
change. By employing max pooling (defined below), 
dominant features, or regions with the largest values, 
can be extracted and fed into later layers of the 
network. Along with this benefit, the image is also 
reduced dramatically because it is downsampled in 
one of three ways:  
1) Max pooling – The maximum pixel value is 

chosen out of a rectangular region of pixels. 
2) Min pooling – The minimum pixel value is chosen 

out of a rectangular region of pixels. 
3) Average pooling – The average pixel value is 

chosen out of a rectangular region of pixels. 
Reducing the size of the image dramatically cuts 
down on the amount of processing needed to train the 
higher level features of the network. In terms of 

processing, the idea is similar to convolution as we 
still pass a window over our image.  

Convolution and pooling dominate the discussion 
about types of network layers. However, there are a 
few other types of layers that were used in this 
research.  

The Rectified Linear Unit (RLU) layer 
(Krizhevsky, Sutskever, and Hinton, 2012) has 
recently grown in popularity. Many researchers 
consider this over using the sigmoid activation 
function. In fact, Alex Krizhevsky et al. were able to 
accelerate convergence in their training by a factor of 
6 times in relation to the sigmoid activation function 
using this function. This is a fairly straightforward 
operation: the function takes a numerical input X and 
returns it if it is positive, otherwise it returns -1 * X. 
This effectively eliminates negative inputs and boosts 
computation time since complex computations such 
as exponentiation are not needed.  

The Local Response Normalization layer 
(Krizhevsky, Sutskever, and Hinton, 2012) imitates 
biological lateral inhibition – excited neurons have 
the capability of subduing neighbor neurons. A neural 
“message” is amplified and focused by this 
differential in neuron excitement. These layers allow 
neuron’s with large activation values to be much 
more influential than other neurons. Following the 
pattern of feature recognition in every layer, these 
layers allow significant features to “survive” deeper 
into the network.   

The fully connected layer, which is like any 
regular multi-layered perceptron, is generally the 
final layer if it’s used in a network. The outputs of the 
neurons in this layer are the actual outputs of the 
network. Connected to this layer is the loss layer 
where the network compares desired outputs to actual 
outputs, and the learning is initiated here in terms of 
gradient descent updates.  

3 THE ROBOT 

The robot used for this research (Figure 1) was the 
“Deep Learning Robot” from Autonomous.   Its basic 
functionality is essentially equivalent to that of the 
TurtleBot platform. The robot includes an Asus Xtion 
Pro 3D Depth Camera, a microphone embedded in the 
camera, and a speaker. A Kobuki mobile base allows 
it to rotate and move in any direction on the ground 
plane. Most importantly, it is equipped with an Nvidia 
Tegra TK1, which allows us to carry out Deep 
Learning computations on a GPU instead of having to 
resort to extremely long wait times for training with a 
CPU. This is its main difference from a regular 



TurtleBot. While the Tegra TK1 is a powerful mobile 
processor, it only has 2GB of memory. This is 
problematic for training very deep networks because 
holding too many parameters in memory causes the 
robot to crash. While training, the robot is unstable 
because of this limited memory so running multiple 
programs at the same time is to be avoided.  

The robot comes equipped with the Deep 
Learning frameworks of Google TensorFlow, Torch, 
Theano, and Caffe (we used Caffe), and CUDA and 
cuDNN are provided for implementing Deep 
Learning on GPUs and for speeding up that 
computation. This robot is virtually a computer in 
itself, and it allows us to treat it as such as it is very 
compatible with Ubuntu 14.04. The TurtleBot 
framework works hand in hand with the Robot 
Operating System (ROS), which is used to control the 
robot and to have access to all information coming 
from any of the robot’s sensors. ROS is an “open-
source, meta-operating system” which allows 
hardware abstraction, low-level control and message 
passing between different modules/processes. 

 

 
Figure 1: Photograph of the Deep Learning Robot.    

4 OBSTACLE AVOIDANCE 

The problem scenario is that of training a deep neural 
network to learn autonomous driving of a vehicle in a 
tight, chaotic room/office environment. To test the 
functionality and success of the program, the 
performance of the robot was compared to the end 
goals. The end goals are primarily that the TurtleBot 
should autonomously follow an approximately 
rectangular path in a tight environment without 

colliding into obstacles. A description of this 
environment is provided below. 

4.1 Environment 

The Robotics Lab with obstacles in the room provides 
a reasonably complex environment for our tests.  
Figure 2 demonstrates this approximate environment 
set up. The approximate rectangular path that was 
configured was the perimeter of a long lab table. This 
table only has 3 planes of support on the underside; 
otherwise there are gaps underneath the table. White 
rectangles with dark borders are lab tables. The north 
and south sides of the tables are solid (2 of the planes 
of support), whereas the east and west sides have 
gaps.  The gap size is large enough for the robot to be 
able to drive through, but chairs (white circles with 
dark borders) were placed in those locations. The total 
radii of the chairs are larger than the circles shown 
because the feet of the chairs extend out further.  
There is no gap for the robot to move in between 
neighbouring chairs (in most cases). The dark brown 
rectangle (southwest corner of the lab) is a colony 
space – boxed off area of the lab that may be used for 
other experiments, but there are borders (one foot 
high solid walls) that the robot would need to avoid 
hitting. The golden rectangles (north and south walls 
of the lab) denote cabinets which the robot must also 
avoid. The red rectangle in the middle of the figure 
shows the path around the center table that the robot 
must follow or the general path it needs to go in on its 
way as it avoids chairs, tables, boxes, etc. In separate 
runs this path must be completed in both clockwise 
and counter clockwise directions.  
 
 

 
 
Figure 2: A visual of the environment with lab tables, 
chairs, and cabinets. Images are provided below to 
help understand this environment even more.  The top 
of the drawing is approximately north.    
 



One can see from Figure 3 that the gaps were 
closed with moveable round chairs. Each chair has 5 
rounded legs and a circular stump. The chair heights 
can be adjusted and the orientation can change 360 
degrees for both the base and the actual seating. 
Sample images are provided in the Figures 1, 3, and 
4 to visualize different possible orientations for the 
chairs. These were chosen as the main objects of 
interest because they are not solid – there is clearly a 
good amount of gap area in between the legs. This 
allows for complexity in defining what an obstacle is 
and what and obstacle is not. The robot must not 
simply learn to follow the color of the carpet because 
even the gaps reveal the carpet.  

 
 

 
Figure 3: Photograph showing chairs and spacing.    

The camera for the robot faces down at about 40 
degrees from the vertical position, so it is important 
to design an environment that is complex enough, in 
terms of objects close to the ground, to be a problem 
of interest. To highlight the point of this experiment, 
if the environment was built only using cardboard or 
other flat material as the main obstacle in the 
environment, then there would be a fairly 
straightforward solution. There would not be much 
variety, apart from lighting conditions, as to what 
material needed to be avoided. By using the chairs, 
the environment was more natural and complex.  Not 
only were the chairs not solid surfaces, they were 
typically moved by students overnight. While they 
might be in the same relative location, the orientations 
were completely different each time. This adds 
complexity to the problem because it is not easy for a 
pattern to be developed since the orientation keeps 
changing. This means that for obstacle avoidance to 
be successful the deep neural network necessarily 

needs to develop an “understanding” that chairs are to 
be avoided. With enough gaps in between chairs and 
the legs of the chairs having significant gaps, the 
robot will still see the carpeted area. Thus, it cannot 
just develop a control program to follow a carpeted 
area, but instead needs a more complex pattern to be 
recognized from the dataset. 

 

  
 

  
 
Figure 4: The images above demonstrate various obstacle 
avoidance scenarios. 

It is important to establish guidelines as far as 
environmental set up because there may be scenarios 
that are impossible for the robot to solve. In our 
research, we dealt with two.  In the first, if there is 
enough of a gap between two chairs the robot may 
make the decision to go straight instead of turning 
away from the chairs. In the second, if the robot is 
facing a cabinet directly head on. Even for a human 
with limited peripheral vision, it would be impossible 



to know which direction to turn. There is no way to 
have metaknowledge about which direction contains 
an obstacle and which does not. This is not a fair 
scenario to include in the dataset. To solve the former 
of the two issues, the environment included chairs 
that were placed close enough to have a small enough 
gap that the robot would not be able to fit through. To 
solve the latter of the two scenarios, cabineted areas 
included an open cabinet that swivelled to a direction 
the robot was supposed to avoid. Not only does this 
add more chaos to the environment (there are various 
different items in the cabinets which adds to the 
complexity of developing a pattern), but it also 
establishes rough guidelines as to the correct path. 

Chairs, cabinets, and tables were not the only 
obstacles to avoid. A few images in the dataset 
included small cardboard boxes. A good amount of 
the dataset included the borders of a colony space 
environment. It was important to include obstacles 
like this in order to confirm that the concept of 
obstacle avoidance was being abstracted instead of 
the robot only avoiding black colored objects (the 
black chairs). It is also significant to note that students 
used the lab throughout the day and night, so 
conditions of the carpet changed while the dataset 
was being developed. For example, coins were found 
laid out on the ground near a turn in the path on one 
day. On another day, shreds of paper were at different 
locations on the path. We decided not to remove some 

of these items while building the dataset because it 
only adds to the diversity in what we might consider 
edge cases. 

4.2 Dataset Collection 

During data collection the robot was controlled 
remotely by a user on a keyboard (connected through 
a computer on Bluetooth) as it was driven around the 
lab following the path in both directions. The robot 
maintained continuous forward movement as the 
operator designated left, right, or straight.  To 
increase the diversity of the dataset, different starting 
points were chosen and hard scenarios such as being 
close to walls were considered. Overall, 30,754 
images were collected and labelled.  

The script processed about 10 images per second, 
but not every image was saved. While no time record 
was kept, an estimated 1.5 – 2 hours were spent on 
trial runs and collections. In the initial testing 
conditions, we found that there were edge cases that 
were missing, so more data was added over time. By 
default, the images from the Asus Xtion Pro are of 
dimension 640 x 480. While this would provide a 
great amount of detail to train on, it would take an 
incredible amount of processing power and time to 
train to a significant accuracy. For our deep network 
we downsample this image to 64 x 64  (Figure 5).

 
 

 

 

 

 

 

 
Figure 5: Reducing the image resolution from 640 x 480 to 64 x 64. 

 
 
 
 



5 DEVELOPMENT OF DEEP 
NEURAL NET 
ARCHITECTURE 

We initially started by using an imitation of Alex 
Krizhevsky’s deep network architecture to solve the 
CIFAR10 dataset.  The plan was to augment this 
network with our own dataset. We obtained about 
74% accuracy for that dataset. We took the weights 
of the network from it having learned the CIFAR10 
data, and then fine-tuned it for our own purpose – 
obstacle avoidance while driving autonomously. 

The thought for fine-tuning was inspired from the 
notion that the lower level features detected by the 
network are general enough to be applied to the 
problem of obstacle detection. Intuitively, there is a 
large difference between detecting an airplane and 
detecting a dog or a cat. However, Krizhevsky’s 
network is capable of differentiating between the two 
based on the same kernel weights. That seems to be a 
large area of coverage for the type of data provided. 
The other thought here was that Krizhevsky’s 
network was trained on 32 x 32 dimension images. 
Since our images will be 64 x 64 pixels, we may 
expect that there will be a boost in accuracy. 

The complete network used for this research is 
shown in Figure 6.  It is split into three lines to ease 
the visualization. We can see that there are 3 
iterations of the layer combinations of convolution, 
pooling, and normalization. Note that the fine-tuning 
of the network is evident from the visual. The layer 
“ip1Tweak” is labeled as such because the final layer 
of Krizhevsky’s network was removed and replaced 
with an inner product (“ip”), or also considered fully 
connected, layer that only had 3 outputs. This is 
signified by the value 3 above the ip1Tweak layer in 
the visual. The 3 outputs correspond to the decision 
making of the TurtleBot in terms of autonomous 
driving directions. The original network included 32 
convolution kernels for the first convolution, 32 
convolution kernels for the second convolution, and 
64 convolution kernels for the last one. We can also 
see how each convolution layer is immediately 
followed by a pooling layer. Every convolution layer 
also includes a rectified linear unit attached to it. 
Local Response Normalization also appears to be an 
effective addition to this network, as it augments the 
outputs of 2 of the 3 pooling layers. The dataset was 
split as such for the final network: 23,065 images for 
training and 7,689 images for testing – a 75% training 
split of the entire dataset.  

 
 

 
Figure 6: The final architecture for the deep network. This is inspired by the architecture for solving the CIFAR10 
dataset. The rectangles represent layers.  The octagons represent data. 



 
The hyperparameters were:  

• testing iterations: 100; basically how many 
forward passes the test will carry out. 

• batch size: 77; this is for batch gradient descent 
– notice that batch size * testing iterations will 
cover the entire testing dataset.  

• base learning rate: 0.001  
• momentum: 0.9 
• weight decay: 0.004 
• learning rate policy: fixed 
• maximum training iterations: 15,000 
• testing interval: 150; testing will be carried out 

every 150 training iterations. 
These hyperparameters were determined through 

several experiments in order to find the desired level 
of accuracy and performance. Some of these 
parameters are surely subjective. For example, we 
considered testing interval to be much less than it 
usually is for large networks (on the order of 1000). 
The reason for making this a small value is so that we 
can analyze shifts in learning in a decent amount of 
time instead of having to wait for over half an hour. 
The number of maximum iterations was chosen as an 
estimation of the number of epochs the network may 
have needed to stabilize. The batch size of the training 
data is 77 images, thus we would need about 300 
iterations to cover the whole training dataset. Hence, 
the number for maximum iterations was established 
as 15,000 in order for the network to go through about 
50 epochs. 

6 RESULTS FOR AUTONOMOUS 
DRIVING  

Starting with a Krizhevsky network trained on the 
CIFAR10 dataset and replacing the final layer with a 
tweaked fully connected layer, we ran the Deep 
Learning neural network on 30,000 images generated 
for the obstacle avoidance problem.  The network was 
able to obtain an accuracy of about 92% after 15,000 
iterations (Figure 7). It took the network about 200 
iterations to get to the 84% accuracy mark and around 
2000 iterations to achieve an accuracy of 90%.  Ten 
different test runs in the actual environment were 
completed where the robot was reversed after a 
completion of a lap in order to complete the lap in the 
both directions. The robot did, although rarely, 
slightly graze against the leg of a chair or a cardboard 
box. However, this did not change the trajectory of 
the robot and it was still able to complete its course. 

For this reason, these rare occurrences were not 
considered as major events for hitting an obstacle.  

One could argue that the turning angle for the 
robot is the only issue here since this is such a tight 
environment. Though the network made the right 
decision, the movement of the physical robot may 
have been slightly too much. This can be corrected 
with very small tweaks in the values of turning radii 
for the different decisions, however this does not 
reflect on or add to the discussion about the 
performance of the deep network in itself. 

 
Figure 7: The performance of the network in relation to 
iterations for the fine-tuned Krizhevsky network trained 
with over 30,000 images. The first 15,000 iterations are 
shown.  It took about 200 iterations to get to the 84% mark 
and by 15,000 it was at 92% accuracy. 
       .    

6.1 Visual Analysis of Results 

While observing the robot during particular situations 
of interest we noted that it routinely performed the 
correct action. The scenario of the open cabinet was 
not a challenge for the robot (Figure 1 and Figure 4 
top left). As previously mentioned, this helped 
augment the robots path learning. We observed that 
the robot was successfully able to navigate the tight 
corridor and move away from chair obstacles (Figure 
4 top images) and the border of the colony space, 
which showed that the robot learned to avoid more 
than just the chairs (Figure 4 right images). Although, 
the cardboard box was seldom included in the original 
training dataset, the robot clearly had pattern 
recognition broad enough to be able to avoid it 
(Figure 4 bottom left).  Figure 8 shows three 
examples of the output of the neural network. 
 



 
left 0, straight 0, right 1 

 

 
left 0.73, straight 0.27, right 0 

 

 
left 0.02, straight 0.96, right 0.02 

 
Figure 8: A sampling of scenarios where the neural network 
made live decisions and the outputs of the NN are shown 
for each (they will total 1.0).  The NN will have the robot 
turn right in the top scenario, left in the middle, and straight 
in the bottom.     

7 CONCLUSIONS 

The approach of fine-tuning Krizhevsky’s network 
that solved the CIFAR10 dataset was highly 
successful. The robot effectively avoided obstacles in 
the original room where the dataset was collected. 
The robot also avoided colliding into other obstacles 
that were not part of the dataset – the deep network 
did not solely focus on chairs and cabinets as the only 
obstacles to avoid. In regard to accuracy, this 
approach seems more successful than the previous 
approaches that utilized depth. In the future, different 
dimensions (other than 64x64) may be considered. It 
would be valuable to potentially find a definable 
relationship between the image dimension and 
network accuracy. 
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