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abstract: Control automata for a small hexapod robot are generated by
a cyclic genetic algorithm. From these automata a Xilinx net list is synthe-
sized through a series of translations steps. The resulting implementation
is downloaded over the communication network of an experimental robot
colony. This recon�guration of the hexapod's \nervous system" is part of
a general environment for experimentation with multi-agent robotics. The
process described in this article supports investigations of dynamic adaptive
control.
keywords: genetic algorithm, robot, colony robotics, FPGA, adaptive
control.

1 Introduction

This paper describes an automated process by which the control modules|
realized as Xilinx xc030pc44 devices|for multiple robot agents are synthe-
sized and down-loaded over a local communication network. The process
involves a form of genetic algorithm generating locomotion control in very
simple hexapod agents. Frequent redesign of agent control is part of the
evolving design process. In addition, this infrastructure will be used dynam-
ically for adaptive and hierarchical control, multi-agent robotics experimen-
tation, and investigation of novel control technologies.

Designing a small, very inexpensive robot is central to this work. This
goal imposes numerous engineering challenges, not the least of which is to
discover how control distributes between individual agents and the governing
command/control system. This boundary is unlikely ever to be �xed, and
certainly not during early design phases. The table based FPGA con�gu-
ration has proven exible for experimenting with the on-board control we
have on our simple agents. In particular, they provide high numbers of con-
trol signals and high degrees of parallelism at the expense of a moderately
complicated compilation process.
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Two versions of a six legged robot are driven by either nitinol wire or
hobby servos. Variants of the controller contains submodules for locomotion,
twelve actuator drivers, network communication, and reinitialization. During
design phases, a basic downloading capability is needed to e�ciently explore
con�gurations of locomotion control. In the work described here, gait opti-
mizations are computed o�-line, with �tness evaluation through simulation.
Our �rst experimental task is to calibrate the simulation model by measuring
actual locomotion.

However, the system is destined for more dynamic use. The agents' lim-
ited local control capabilities must be recon�gured for tactical goals such as
\walk straight ahead" or \�nd a power source." Equally important, gait con-
trol must adapt to degradation and, possibly, failure of individual actuators.
Thus, recon�guration of on-board electronics is a fundamental function for
the governing system.

The input to the re-synthesis process is an automaton description gen-
erated by a cyclic genetic algorithm, as described in Section 2. Section 3
describes the host robot, which receives the re-synthesis output, as well as
the system infrastructure in which re-synthesis takes place. In Section 4 we
explain the re-synthesis steps,

In related research, Thompson uses FPGAs in a genetic programming
process [8]. A genetic algorithm mutates a con�guration bit stream for an
XC6200 until it implements an oscillator for a particular bit rate. This ap-
proach can be viewed as generating a program, where our GAs are generating
a dedicated design. In prior work on robot control, Thompson uses a �xed-
hardware sequencer to emulate a net list evolved by software [7]. The hard-
ware is evolved more directly, whereas the process we describe produces a
�nite-state machine implementation from which a net list is synthesized. Al-
though Thompson's controllers are simpler|2motors versus 12 actuators|it
they implement a reactive function for obstacle avoidance; the controllers we
generate do not have sensor feedback.

2 CGAs for hexapod gait optimization

Genetic Algorithms (GAs) are based on the laws of natural selection and
survival of the �ttest [4]. The basic algorithm consists of three operators:
selection, crossover, and mutation, that transform a randomly generated pop-
ulation into a near-optimal one. The individuals of the population are pos-
sible solutions to a problem, usually represented as �xed-length strings of
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bits called chromosomes. The genes of the chromosome are substrings that
characterize properties, or traits, of the solution. The survivability of the
individual depends on how a �tness measure compares with the other indi-
viduals in the population.

Cyclic genetic algorithms (CGAs) adapt basic GAs to develop cycles of
sequential instructions [5]. The genes of the chromosome are tasks that are
to be completed in a set amount of time. A typical chromosome consists of
an entry segment (for transition from rest to activity) an iterative segment
(for cyclic activity), and an exit segment (for transition back to a rest state).

Chromosomes contain global inhibitors and coordinators. For example,
in our gait controllers, an inhibitor prevents tandem legs from doing the same
thing at the same time; a coordinator works on a single leg, ensuring it is
down whenever it moves backward. These constraints are learned by the
CGA during training; no advanced knowledge of how they should be applied
is given.

The genetic operators used in CGAs are standard. Selection is based
stochastically on �tness which is, in our case, determined by the distance
traveled by a robot using that individual's controller. Crossover and mu-
tation take place either between the genes or internal to the genes of the
individual. A non-standard additional operator is the gene-by-gene evalua-
tor that determines the �tness of each gene sequentially and eliminates those
that show marked decrease in performance from their predecessors.

Figure 1 depicts the chromosome generated by a CGA for forward motion
on a level surface. We draw it as a transition system|actually it is just a
sequence of 16-bit strings|whose states show the status of the 12 actuators,
one horizontal and one vertical for each of the six legs. The number in the
center is the duration of that state. For the Stiquito robot (described in the
next section) the full leg thrust takes 10 time units. The CGA discovered
that thrusting only 9 units made the movement smoother because the time
to lift then drop the leg takes 9 in the current thrust cycle and would just
hit the ground before the alternate thrust cycle. It sacri�ces using its full
throw to get better e�ciency in the cycle. The CGA eliminated entry and
exit segments as unnecessary for this gait.

3 The colony framework and robot hosts

MARE (MultiAgent Robotic Environment) is an infrastructure under devel-
opment for experimenting with multi-agent robotics. It is a tool set for
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Figure 1: CGA generated chromosome for the Stiquito Hexapod

exploring the coordinated use of many small robotic agents of very limited
capability to perform larger functions. It is also an environment for inves-
tigating novel control technologies, collective behavior, and neuroscience, as
described elsewhere [1]. Currently, MARE serves as a laboratory for re�ning
individual robot agents, where the principal design goal is to develop inex-
pensive, relatively simple, and easily reproducible robots. There are three
levels in the system's structure, as depicted in Figure 2.

The user level is an application domain for experiment design and ex-
ecution. It monitors the global status of the colony, schedules tasks, and
provides virtual capabilities not physically present on the agents, such as
positional awareness. The user level also contains a simulation environment,
providing, among other data, a visualization of aggregate behavior. However,
�tness evaluation for the CGA was not done using this simulator, but with
a special purpose model.

The colony level is the command and control layer. It implements com-
munication and positioning subsystems and serves as the interface between
the agents themselves and the user level. It hides the low level characteristics
a particular agent from the user's view, when that is desired. However, it
also provides access to those details when the work requires it.

The agent level consists of the on-board electronics of each agent. For the
two agents described below components at this level include a Xilinx 3030,
an EEPROM, and a Xilinx communications pod. Embedded in the Xilinx
chip are functional modules for communication and control (�g. 4).
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Figure 3: Servobot (left) and Stiquitto II (right)
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3.1 The agents

Stiquito II (TM) is a nitinol actuated robot developed for the low-cost study
of hexapod robots in a colony setting [2]. The robot is constructed from
spring steel wire, aluminum tubing and polystyrene plastic. The wire is bent
to form the legs for a plastic body. The aluminum tubing is used to attach
the nitinol `muscles' to the body and legs. Stiquito's mechanical structure
imposes signi�cant constraints on the on-board controller module's size (two
inches by six inches) and weight (40{60 grams).

Standard digital signals are used to gate a FET driving the nitinol actu-
ators (Fig. 2). Heat resulting from current ow causes the nitinol wires to
contract, moving the legs. When cool, the spring-wire legs return to a neu-
tral position, stretching the nitinol as they do. Within the control module,
the individual leg drivers use a variable duty cycle to moderate power to the
actuators.

Since the Stiquito II has a very limited payload capacity, we use a grid
system to supply power. The system is similar to the way bumper cars at an
amusement park are powered: the robots have contact brushes connecting
them to a copper plate that serves as the oor of the colony and a metal
screen is suspended above the oor.

The control module needs I/O ports to drive at least 12 actuators, various
sensors, and a communications interface. In addition to exibility, I/O pin
capacity and cost were signi�cant factors in the choice of FPGA technology
for the module.

The Servobot prototype uses hobby servo actuators in place of nitinol.
Dimensions of Servobot are roughly four times those Stiquito II. It and can
carry much more weight, including its own power supply. It is also con-
siderably more rugged and forgiving, making it a good host for preliminary
experimentation. By intention, the control architecture is similar to that of
Stiquito II, the di�erence being in the leg driver interfaces.

The leg drivers for the Servobot produce a pulse width modulated signal
driving the hobby servos, which expect a pulse repetition rate of 20ms. A
pulse width of 1.0 to 2.0 ms is linearly mapped to a angular motion of �45�

to 45�. The angular motion of the servos translates to nonlinear motion
in the legs, allowing the servo to supply more torque at the extents of the
servo rotation, hence maximal force at the extremes of the leg motion. The
advantage is that when the leg is down, the weight of the robot is on the
servo shaft and not producing a torque against the servo.
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Figure 5: Overview of design ow

is implemented as a �nite state machine, control-state numbers are allocated
sequentially. Transition into a state pre-loads a count-down timer with the
duration of the state. When the counter reaches zero, a transition is enabled.

Activation is implemented by a digital signal presented to the actuator
driver. For both Stiquito and Servobot, there are two activation states from
the gait generator: forward (down) motion and return-to-rest. Based on this
signal, the agent-speci�c driver performs the signal conditioning for the given
actuator, as described in Section 3.

5 Design ow

Figure 5 shows the information ow between the CGA output and agent
controller. The cga2pl function translates a representation of the chromosome
to an FSM described in the PLPL hardware description language [6]. PLPL is
a vintage HDL o�ering enough features to generate state machines of medium
complexity. Figure 6 shows a fragment of the resulting syntax. Omitted from
the listing are signal declarations and intermediate states of the control FSM
and counter. Since PLPL is a tool for designing PLDs, the FSM hardware
description is mapped into sum-of-products form and optimized by the PLPL
system.

Another translator, pl2xnf, takes the minimized sum of products represen-
tation into a gate level description in Xilinx's net-list format, XNF. This gait
submodule is then merged with the components of the static architecture,
ctr4 and pads.

The top-level controller design, ctr4, was created using Diglog, a schematic-

9



... CASE (state[2:0])

BEGIN

0) BEGIN 5) BEGIN

IF (ena * hzero) THEN IF (ena * hzero) THEN

BEGIN BEGIN

state[2:0] = 1; state[2:0] = 0;

hold[2:0] = 4; hold[2:0] = 0;

END; END;

ELSE ... ELSE

state[2:0] = 0; state[2:0] = 5;

r1v = 1; l1h = 1; r2h = 1; END;

l2v = 1; r3v = 1; l3h = 1;

END;

END;

... CASE (hold[2:0])

BEGIN

0) BEGIN 4) BEGIN

IF (/ena) THEN hold[2:0] = 0; IF (ena) THEN

hzero = 1; ... hold[2:0] = 3;

END; ELSE

hold[2:0] = 4; hzero = 0;

END;

Figure 6: Fragments of the PLPL design for the gait FSM shown in Figure 1

capture editor and simulation system developed by Caltech [3]. A library of
Xilinx compatible primitive gates was developed, together with a translator
from Diglog's NTK net-list format to XNF. This is ntk2xnf in �gure 5.

The IO bu�er and pin assignments are implemented in a separate PLPL
submodule, pads, in order to facilitate re-targeting to a di�erent FPGA. This
module is processed in the same manner as the gait. Although pin assignment
is known to interfere with routing in large FPGAs, this has not yet become
a problem in our controller.

Once the design has been merged and attened by xnfmrg, the tools in
Xilinx's XACT environment are used to map the design into a Xilinx FPGA
con�guration bit-stream. We are using a xc3030pc44 in our controller be-
cause of it's small (44 pin) PLCC package size and because this family of
parts also has an internal crystal oscillator, which we use to drive a ceramic
resonator at 480Khz to get the bit clock for the USART and the global clock
used throughout the FPGA.

Once the design has been placed and routed, the bit-�le is downloaded
using the Xchecker serial download cable and pod provided by Xilinx [9]. This
cable interfaces with a Sun Unix Workstation and a programming jumper on
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the robot controller PCB in Figure 5.

6 Summary and directions

We are working toward developing means to adapt basic functions in the
presence of stress. In a working colony, each robot would have a gait tuned
to both it's tactical goals and physical characteristics. As the performance
changes due to damage and aging, the colony-level control might download
a new gait to compensate. CGAs have been shown to be e�ective at produc-
ing and altering gaits in response to degraded capabilities in the robot [5].
However, we do not yet know whether this approach to performance tuning
can be accomplished in real time or, instead, must be done o�-line using a
simulator for �tness evaluation.

A hexapod walking gait is a complex activity. We are also looking at
CGAs to optimize control at �ner granularities. A single leg, or an individual
actuator driver might be tuned to compensate for degradation.

Two successive control states in Figure 1 have identical con�gurations.
Actually, the underlying genes di�er, but the coordinators and inhibitors
make them look the same. Merging the states improves the FSM repre-
sentation but does not change the e�ciency of the gait; hence, there is no
selection pressure to evolve. We would expect to make such implementation
optimizations during the re-synthesis process.

Dynamic recon�guration over the colony network is in development. We
are looking at IR modems, RF modems, and signaling over the power grid.
The approach we take is a three-step process of downloading the new con�g-
uration to the on-board EEPROM, verifying its consistency, and �nally caus-
ing a re-initialization event to reload the FPGA. For the family we presently
use, the total image is 2778 bytes and the dynamic portion of the con�gura-
tion is roughly 40 per cent of this image. A download takes 92 seconds over
our extremely inexpensive 300 baud IR channel. At 9600 baud it would be
about 3 seconds, but even this throughput is marginal for colony applications.

We are, of course, looking at partially recon�gurable FPGAs. The more
interesting engineering question is whether we should convert to a static chro-
mosome interpreter, and thus eliminate the entire re-synthesis step. With
four bits per gene to represent the next-state function, only 100 bits are
needed to transmit the information content of Figure 1. This solution is
inappropriate at this stage of our work, because both the mechanical and
hardware architecture of the agent is still evolving. Since we will also be re-
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con�guring actuator drivers, communication drivers, and other submodules
of the controller, we believe that resynthesis is more exible, and ultimately
has comparable throughput characteristics. Should the robot design become
more stable, it may be that communication overhead can be reduced by
re-programming rather than re-synthesis.
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A Poster materials

An HTML summary of this paper can be accessed at

http://www.cs.indiana.edu/hmg/FPGA97/Main.html

B Data �les

Data �les supporting this report can be found at:

ftp://ftp.cs.indiana.edu/pub/hmg/tr494.tar.Z is a compressed
archive of data sources.

ftp://ftp.cs.indiana.edu/pub/hmg/tr494.zip is a compressed archive
of the data sources in an alternate format.

ftp://ftp.cs.indiana.edu/pub/goo/PLD/plpl.tar.Z is a compressed
archive of PLD assembler used.

These data will be maintained for at least one year after the publication
date of this technical report. If there are problems accessing the data, or
other information is needed, please contact the �rst author.

The following is a general description of the archived data.

Static Design (XNF netlists)

Data/ctr4.xnf { module for the basic contrller architecture
Data/pads.xnf { IO pads for the speci�c FPGA implementation

Programs

Data/cga2pl.c { this program converts the CGA into a HDL description
Data/gabuild { script to build a CGA derived object

CGA Data { various gaits that have been tested

Data/cga-exact10 Data/cga-exact10-5 Data/cga-exact5

Data/cga-exact5-2x Data/cga-round10 Data/cga-round10-5

Data/cga g2 0 Data/cga g2 10 Data/cga g2 100

Data/cga g2 1000 Data/cga g2 200 Data/cga g2 2000
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Data/cga g2 500 Data/cga g2 5000 Data/cga m 100

Data/cga m 2000 Data/cga m 500 Data/cga m 5000

Data/cga m 5000r
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