
World Automation Congress © 2010 TSI Press.

REAL-TIME AI IN XPILOT USING REINFORCEMENT LEARNING

MARTIN ALLEN, KRISTEN DIRMAIER & GARY PARKER
Computer Science Department,

Connecticut College,
New London, CT, USA

ABSTRACT—Reinforcement learning (RL) allows agents to learn a best-possible long-term course of action, based on immediate
positive and negative rewards. This approach enables real-time learning, since the agent constantly adjusts the value of actions taken,
eventually selecting that action with highest value in each environment-state it encounters. We investigate the use of the Q-learning
RL technique in an agent that learns to intelligently navigate the Xpilot video game environment in real time. We compare learning
performance for different reward and action models, and discuss the challenges of RL methods in such a reasonably complex domain.

Key Words: Reinforcement Learning, Real-time AI, Games, Xpilot

1. INTRODUCTION
Computer and video games are rapidly increasing in quality and complexity. As a result, there is

particular interest in the use of artificial intelligence (AI) to control game play. A major goal of such work
is allowing players to interact with intelligent game agents in real time. This requires the agents to be able
to change behavior or strategy based on interactions with their opponent or environment as they occur. A
useful test bed for game AI is the computer game Xpilot, in which player-agents control “spaceships” in a
simulated combat environment. The ultimate goal of our research is to develop a cooperative team of
Xpilot agents that learn to defeat enemies in real time. This paper discusses stage one of that process, which
is to create an agent that learns to intelligently roam around the space without crashing fatally into walls.

Incorporating real-time planning into AI game strategy has many challenges. Baumgarten et al. [1]
approach real-time learning in the DEFCON computer game by combining simulated annealing methods,
decision-tree learning and case-based reasoning. Stanley et al. [2], working with the NERO game, employ
an evolutionary neural approach, starting with simple networks and adding nodes and connections as the
game is played, allowing agents to evolve increasingly sophisticated behaviors in real time.

While these approaches allow for real-time learning, in both cases agents select strategies based on
predefined plans, with adjustments made after a game is completed. In our approach, on the other hand, we
develop an AI agent that learns and adjusts during actual game-play. We employ reinforcement learning
(RL), in which agents update long-term action-value functions based on short-term costs and rewards, and
work towards optimal policies [3]. In particular, we adopt the Q-learning approach, whereby agents learn
values for particular state-action pairs, based on outcomes in a stochastic environment [4].

An early application of RL methods to real-time control of a navigational agent is that of Madden and
Nolan [5], who use tabular Q-learning for automated vehicles. In the game domain, Sharma et al. [6] use a
case-based reinforcement learner (CARL) to learn strategies in the MadRTS video game. Neither approach
employs RL in an environment as complex as Xpilot, however. We next introduce the Xpilot game and
research platform version, Xpilot-AI. We then describe our RL approach, with results and conclusions so
far, based on two different models of behavioral reward. We conclude with notes on future work.

2. XPILOT AND XPILOT-AI
 Xpilot [7] is an open-source 2-D space combat game, similar in style to Atari Inc.’s game, Asteroids. It
can be played over a network or via the internet. Players control ships with available actions like shooting,
thrusting and turning. The object of the game is to obtain points by shooting and destroying enemy ships.
One major challenge is the frictionless environment and the life-like physics of the game. As well as trying
to avoid fire from enemy ships, the player must also avoid hitting the walls at high speeds. Backfire from
killing an enemy can also force the player’s ship into a wall. Thus, in combination with a large set of state
variables, Xpilot is an extremely challenging test-bed for both offline planning and real-time learning [8].
 Like most computer games, Xpilot comes with pre-programmed artificially intelligent agents to play
against. However, it also has a versatile programming interface, Xpilot-AI, allowing researchers to develop
their own AI agents, to compete against other computer-controlled agents or human players. In our work,

we used Xpilot-AI to experiment with reinforcement learning control of an automated ship-agent. We
employed a predefined game map, Simple, which is a relatively large open field. Our initial objective was
to develop and RL agent that could learn to intelligently roam around this map without running into walls.

3. THE Q-LEARNING APPROACH
 In reinforcement learning (RL), agents acquire and improve skills based on immediate rewards, both
positive and negative, when performing actions in a given environment. Over time, such learning methods
seek guide polices of action in order to maximize long-term reward. The learner is not told which actions to
take, but instead must discover those yielding highest reward, by trying them repeatedly over time. Thus,
the RL learning model generally consists of the following components: (i) an agent, (ii) a set of actions,
(iii) a state space, (iv) a set of rewards received for taking actions in a given state, and (v) a policy of
action, adjusted over time. Assuming that the agent can observe the current system state directly, the goal
is to learn a policy (a function from states s to action-choices) that maximizes long-term expected reward.
 The particular technique used here is called Q-learning [4]. In this approach, the agent uses immediate
rewards to adjust a value function, Q(s, a), which assigns a particular numeric score to given state-action
pairs (s, a). When not exploring alternative courses of action, the agent follows the best policy learned so
far, simply by observing the immediate state s, and choosing the action a such that Q(s, a) is maximized.
The agent initially has no information about the environment. It begins by taking random actions and
receiving rewards for those actions. Eventually, by adjusting the Q-value function based on those rewards,
it learns to take the actions that yield the true highest value for that state, given expected future states.
 One strength of this sort of approach is that it only updates values and policies based on the actual
states and rewards it actually happens to encounter. Thus, it is able to compare the expected utility of the
available actions without always requiring a model of the entire environment. This is useful when the
environment is highly complex, as it is in a game like Xpilot.

4. REINFORCEMENT LEARNING IN XPILOT

 In some ways, Xpilot is ideally suited for a reinforcement learning approach. The game is frame-based,
so that each moment of play corresponds to an individual state of the overall system. The player (human or
AI) is polled at each frame for an action selection, and the resulting next frame is calculated based on that
action and the relatively complex underlying game physics. The challenge, from the point of view of our
research, is to choose a state representation that simplifies the highly complex game dynamics, and to select
a possible set of actions over which the agent will learn a policy. Further, we must assign a state-by-state
(frame- by-frame) reward function to action outcomes, in a way that reinforces the behavior we want our
agents to learn, namely safe navigation through the game map. Furthermore, we want our agent to end up
moving realistically, in the sense that it behaves somewhat like what we would expect from an intelligent
human player, moving back and forth across the screen while avoiding crashes into walls.

4.1 States
 One of the most difficult aspects of reinforcement learning is abstracting the state space. In order to
learn successfully, the agent’s state space must be large enough to properly represent important features of
the environment, containing enough variables (and the right ones) to distinguish between environment
states for which the value-maximizing output policy will be relevantly distinct. At the same time, since RL
works only via repeated reinforcement based on immediate rewards—especially in the presence of noisy,
stochastic state transitions—this state-space must not be so large that the agent cannot visit all of the states
several times, or cannot easily compute, store and access its Q-value function. Unfortunately, in its basic
form, Xpilot-AI contains so many state variables, all readily available to an agent if so desired, that its full
state-space is far too large to expect effective learning to be feasible.
 Thus, the state space we chose to use was made up of 384 states. The state variables and their
possible values can be seen in Table I. The current state information was stored in an array of integer
values, and consisted of a single 6-valued variable to keep track of the ship’s range of speed (from not
moving to very rapid), 4 binary variables to track the ship’s location with respect to the map’s walls, and 2
binary variables to track if the agent is alive and whether or not it has recently crashed. The Speed variable
was separated into 6 discrete ranges, with values from 0 to 35, corresponding to different possible ship
speeds within the Xpilot game; thus, for instance, if the Xpilot ship was travelling at any Xpilot game speed

Table I. The state space is made up of 384 states, with 7 possible state variables. ``Range'' indicates
the possible value proper to Xpilot itself (if defined), while ``Value'' is how that variable is
represented in the RL agent's own representation of the environment

from 5–9 inclusive, the agent would represent this fact by setting its Speed variable to value 10. It is also
important to note that the binary Near Wall variables are set as a function of the speed. The faster the agent
is moving, the further ahead it checks to determine whether or not it is near a wall, and the further it can be
from a wall and still set the corresponding variable to True (1). This is to make sure that the agent has
enough time to turn away from the wall before crashing into it. Also, we note that it is possible, particularly
in corners of the arena, to have more than one Near Wall variable set to True.

4.2 Actions

 Again, the full set of Xpilot game actions was somewhat too large for our purposes. In addition, they
were often simpler than desired, and were supplemented by compound combinations of atomic actions.
Thus, we used a set of 19 complex actions that included turning in one of eight possible cardinal directions,
turning thrust on or off, or combining a turn with a thrust; we also included a “do-nothing” (NOP) action.
 As indicated in the previous section, the agent does not keep track of its heading or tracking, i.e., the
direction in which the ship’s nose is pointed or the direction of its flight path; thus, the Turn action in our
RL experiments calculates the heading and number of degrees needed to turn in order to point in the one of
the eight cardinal directions—where North represents the wall on the top of the screen—and returns the
corresponding Xpilot game command to properly execute the desired rotation. For example, if the chosen
action is Turn North, the agent calculates its current heading and uses this value to determine the number of
degrees needed be facing up toward the top of the screen. We note that as things stand now, there is no
maximum value set to the number of degrees a ship can rotate in a single frame; each turn thus executes
instantly, something that is not always the case in human-guided play, where Xpilot runtime options can be
set to restrict turning to something like 15◦ at a time in any direction.
 In order to ensure that our state space and action choices were indeed useful bases for a learning agent,
we hand-designed a deterministic-control test agent that acted on a predetermined set of Q-values for each
action in a given state, without ever changing those values. The Q-values, in turn, were based on the actions
we felt the agent should take in each state, based on play-testing of the game mechanics. For example, it
would seem logical that if the agent were flying directly at the North wall the best action would be to turn
South and thrust to avoid crashing. Thus, when the agent was in the state s = Near North Wall, we assigned
the action a = Turn South and Thrust a positive Q-value, and gave all other actions a value of 0. As it
turned out, our hand-coded agent was able to sustain indefinitely long flights around the game arena,
thrusting and turning constantly to maintain a safe distance from walls, turning out of corners properly, and
generally mimicking a competent human player. We were thus able to show that the state space and action
set were in principle descriptive enough for an agent that could learn how to navigate the space effectively.

4.3 Rewards
 The final and arguably most important part of reinforcement learning is the reward function, since RL
agents work to maximize the expected total of this value, with no other marker of “success” or “failure” in
learning. Thus, the reward function in an RL domain has to be chosen carefully, so that the maximal value
policy an agent actually learns corresponds to the intelligent behaviors expected in, and appropriate to, that
domain. Often, this is a non-trivial endeavor, especially when system dynamics are complicated, or
outcomes of actions are difficult to evaluate on a relative numerical scale.

Table II. Reward values for the two structures, R1 and R2.

 We tested several reward functions. The two that form the basis of the results in this paper we will call
R1 and R2 (Table II). The first of these reward-structures, R1, includes five possible conditions:

• The agent crashes into a wall; the large negative penalty of r = −1000 reflects how undesirable that is.
• The agent is not moving at all; the reward r = 0, so the agent can not achieve a value-maximizing
policy by simply floating safely in its starting position on the game screen
• The agent is near one or more walls; here, reward decreases as number of walls increases, reflecting
increased danger. Note that if an agent is not moving, then the speed-based Near Wall state variable is
always False; thus, motionless agents gain no reward, no matter their relative position on the map.

The second reward-structure, R2, includes everything given by R1, with two new possibilities.
• To dissuade agents from rotating constantly (which had no effect on original reward-structure, R1), a
penalty of r = −5 was added for any action other than thrusting or doing nothing; this is an example of
the use of the reward function to generate “natural” and “intelligent” behavior, since a human player
will not usually flip the ship about uselessly as it flies along its path.
• To encourage agents not simply to fly very slowly in an effort to avoid crashing (at low enough
speeds, a ship can bounce off a wall unharmed), a reward of 0.2 times its Xpilot velocity was added.

At each frame of the game, an agent’s last state, s, and action, a, are evaluated based on current conditions,
as given in the relevant reward-table. For each reward-condition that is true, the given value is added to
total reward. This sum is the agent’s final reward, r, for the Q-value update equation.

5. RESULTS AND ANALYSIS
 Using the state and action sets outlined, in combination with the two reward-structures described, we
tested a pair of distinct agents, running them for several tens of thousands of Xpilot games each. We now
describe our results, both in terms of qualitative fit to the idea of “natural” or “intelligent” navigation, and
in terms of quantitative reward-maximization.

5.1. Qualitative Results
 We observed three main things in our testing. The first, as already described, was that the relatively
simple state space and action set chosen were well enough designed to learn the desired policy. This is
shown by the fact that the deterministic test agent we designed with predefined Q-values successfully fly
around the space without crashing. Thus, the main goal of our research became deriving a reward function
so learning agents could converge on a set of similar Q-values. This proved significantly challenging.
 With both reward functions, some learning was clearly observed. Our second significant observation
involved the R1 reward-system, for which two main agent strategies developed. While neither approach fit
our intuitive sense of “natural” or “intelligent” flight, each was effective in helping maximize reward and
navigate somewhat successfully. The first such technique is that the agent would constantly flip 180◦ back
and forth through the middle of the map, thrusting once in each direction to slow itself down. Then, when it
approached the walls (based on its speed-relative Near Wall state function), it would stop thrusting and
simply glide. The other observed technique involved thrusting once and then simply floating around in the
space at a very slow speed. This allowed it to bounce off of walls and stay alive through many frames.
 The third significant observation was that reward-system R2 helped eliminate the flipping behavior.
Given that set of rewards, the agent would approach walls at slow speed, before making a single turn to
move in the opposite direction. While the results of this approach were largely better, the slow speed
would need to be addressed if the agent were expected to engage in actual competitive game-play.

5.2 Quantitative Results
 More specific results for each reward structure can be found in Figure 1, showing average normalized
reward over time, plotted against the number of Xpilot games played by the learning agent. For purposes of
measuring total accumulated reward, an episode terminated as soon as the agent died by hitting a wall, and
the next game did not begin until the agent began moving once again. Total reward is averaged at each
point over games to date; furthermore, the result is normalized, as the particular value only distracts from
the trend (since, for instance, the same RL agent can learn the same policy, but gain higher or lower
average absolute reward, simply by scaling each r-value uniformly by some constant multiplicative factor).
 In the case of R1, in 1(a), the result is a strikingly linear trend. While the average is somewhat noisy
over the first few thousand games (as to be expected given the smaller sample size), it soon stabilizes, and
by 10,000 games has settled into a significant steady upward trend, still climbing at the experimental limit
of 64,250 games (roughly 24 hours of compute time). This is striking, showing that the agent still has room
to learn even very deep into game play, suggesting both the complex dynamics of even the simplified state-
and action-space for Xpilot, and that even longer-term behavior needs to be analyzed in future.
 Results for R2, in 1(b), are somewhat more typical of those seen in many RL domains. In particular,
the log-form trend given by regression produces a common RL performance profile, whereby the agent
learns rapidly at first, quickly gravitating toward a better policy, but begins to plateau as it goes on and the
learned policy stabilizes. While this effect is not absolute, and our agent is still trending upwards somewhat
at the limit of experimentation (74,350 games, a little over 24 hours), it is clearly noticeable. These results
suggest that while there is still some policy refinement possible to increase average reward, the R2-based
agent is starting to converge on what it considers an effective policy, based on relatively stable Q-values.
 These apparent differences between the results are somewhat mitigated, however, once we restrict our
attention to the period beginning at 5,000 games into our testing, where much of the noise and (relatively)
atypical behavior from the early games has been overcome. Limiting ourselves to the range of 5000–64,250
games, regression shows reward accumulation in both cases to proceed in upward-trending, linear fashion.
This shows that both R1- and R2-based agents will continue to develop different learned behaviors over
time, and that overall learning in game can be expected to be quite slow. These results accord with many
observed in the literature, showing the fundamental challenge to learning in such complex domains.
 A final set of experiments sought to investigate the effect of a richer action set for our pilot agents.
This was driven in part by our observations of highly erratic behaviors, and the hypothesis that this might
result from the fact that the agent did not have a complete range of motion, but rather could only turn in one
of 8 basic compass directions. We therefore added an additional 8 directions that the agent could turn,
allowing it to orient itself every 22.5 degrees. Four RL agents were then run—two with original action
sets, and two with the ability to turn in more direction, using each of the rewards R1 and R2—for 80,000
games of learning each. Then, fixing the learned policy for each agent, we ran each for 1050 games to
eliminate random outcomes, tracking the number of frames survived per game. This produced one very
striking result: using reward-system R2, the agent capable of navigating with more precision in its turns
lasted over twice as long as any of the others, averaging 6,358 frames per game. Among all of the other

Figure 1. Learning performance: average normalized reward gained per game over time for R1 & R2.

(a) R1: positive, primarily linear accumulation
of average reward, showing steady learning,
continuing even after 64,250 games.

(b) R2: log-form gain in average reward (more
typical in RL), showing initial burst of learning,
with an apparent plateau near 74,350 games.

combinations of reward and action, results were far more comparable, with the R1 agent that could only
turn in 8 directions doing somewhat worse than the others (see Table III). More than rate of reward
accumulation, this shows that the R2 structure can convey significant survival benefits.

6. CONCLUSIONS AND FUTURE WORK

 We used reinforcement learning to develop an Xpilot navigational agent. Based on pre-programmed
testing, we can conclude that it is indeed possible for an agent to implement a useful and natural
navigational policy based on our reduced state space and action set. Although results so far do not show an
agent as effective as the pre-programmed bot, our agents did find distinct and interesting strategies, in real
time, based on the set rewards. Given the continuing growth in average reward, we also conclude that even
longer test runs (on the order of several days compute time) may be required to further craft our agents.
 A main conclusion is that complex environments like Xpilot are serious challenges for RL. While
agents converged toward value-maximizing policies via Q-learning, these were not always the natural and
useful navigational policies desired if AI pilots are to be competitive against other players. The main focus
of our work now is therefore to find a more suitable reward function. While this is a challenge for any use
of RL, our results so far show it to be a promising technique for games like the Xpilot domain, especially
since it provides for direct, real- time learning and AI control. We are currently engaged in supplementing
RL with evolutionary computing methods, using genetic algorithms to automate the process of developing
reward and action parameters, to speed learning, and improve final performance. This approach allows us
to do away with the sometimes tedious and ad hoc work of designing state, action, and reward abstractions.
 Further work will be build up from navigation alone, to allow combat with an enemy bot. After that,
we plan to extend to team-based play using multiagent RL, a much more complicated endeavor, relative to
its single agent kin, and subject of much ongoing research [9, 10]. Another topic of interest is the use of a
“Coach” agent, not directly involved in game-play, but functioning as a learner that can see the position of
enemy players and relay strategy to the team. (For one approach, see [11].) Such an agent has the potential
to overcome some of the multiagent complexities arising from wholly decentralized approaches.

REFERENCES
1. R. Baumgarten, S. Colton, and M. Morris, “Combining AI methods for learning bots in a real-time

strategy game,” International Journal of Computer Games Technology, vol. 2009, 2009.
2. K. O. Stanley, B. D. Bryant, I. V. Karpov, and R. Miikkulainen, “Real-time evolution of neural

networks in the NERO video game,” AAAI-06, Boston, MA, 2006, pp. 1671–1674.
3. R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge, Massachusetts:

MIT Press, 2000.
4. C. J. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, 1992. pp. 279–292.
5. M. G. M. Madden and J. P. Nolan, “Application of AI-based reinforcement learning to robot vehicle

control,” Proc.10th Intl. Conf. Applications of AI in Engineering, Udine, Italy, July 1995.
6. M. Sharma, M. Holmes, J. Santamaria, A. Irani, C. Isbell, and A. Ram, “Transfer learning in real-

time strategy games using hybrid CBR/RL,” IJCAI-07, Hyderabad, India, 2007, pp. 1041–1046.
7. “Xpilot project home-page,” http://www.xpilot.org/, last retrieved: 06 February 2010.
8. G. B. Parker and M. Parker, “Evolving parameters for Xpilot combat agents,” Proc. IEEE

Symposium on Computational Intelligence and Games, Honolulu, Hawaii, 2007.
9. Y. Shoham, R. Powers, and T. Grenager, “If multi-agent learning is the answer, what is the

question?” Artificial Intelligence, vol. 171, no. 7, 2007, pp. 365–377.
10. L. Busoniu, R. Babuska, and B. D. Shutter, “A comprehensive survey of multi-agent reinforcement

learning,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 38, no. 2, 2008, pp. 156–172.
11. P. Riley and M. M. Veloso, “Coach planning with opponent models for distributed execution,”

Autonomous Agents and Multi-Agent Systems, vol. 13, no. 3, 2006, pp. 293–325.

Table III. Average frames survived over 1,050 games, for all settings of movement and reward.

