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Abstract— Anytime learning with fitness biasing was shown 
in an earlier work to be an effective tool for learning leg 
cycles for a hexapod robot.  This learning system was capable 
of adapting to changes in the environment.  Although the leg 
cycles were appropriate for rougher terrain, the gaits 
produced with them by a standard genetic algorithm were 
not capable of bearing the robot’s load.  In this paper, we 
present the use of anytime learning with fitness biasing to 
improve the gaits produced by allowing the learning system 
to adapt to unforeseen changes in the environment and the 
robot’s capabilities.  Training and tests were done in 
simulation, with the resultant gaits tested on the actual robot. 

Keywords- evolutionary robotics, genetic algorithms, 
locomotion, control, anytime learning, six-legged robot 

I. INTRODUCTION  
Learning the control programs that produce gaits for 

hexapod robots is a difficult problem.  It is particularly 
challenging if one wants these programs to be altered to 
adapt the gaits for changes in the robot’s capabilities or the 
environment.  Gait generation can be broken down into two 
main parts: the cyclic action of the individual legs and the 
coordination of all the legs to make effective use of their 
cycles.  These can be learned together by finding the 
sequence of concurrent movements required by all the 
actuators [1] or they can be learned separately [2].  
Learning together greatly increases the complexity of the 
learning algorithm so details are often lost in the 
abstraction necessary to keep the computations within 
reason.  Since some detail is lost, the gaits produced by this 
method cannot fully exploit the capabilities of the robot.  
Individual leg learning can take into account the 
capabilities of the actuators and movement constraints of 
individual legs. This allows better use of each leg as long 
as the controllers are complex enough to handle the 
increased details.  The subsequent learning of the 
coordination of these leg cycles results in a gait that takes 
full advantage of the capabilities of the individual legs.   

Some form of evolutionary computation (EC) would 
work well in learning what signals are needed to produce 
the individual leg cycles and their coordination since EC is 
well suited for adapting a solution to the peculiarities of a 
problem.  Randall Beer and John Gallagher [3,4] used 
genetic algorithms (GAs) to develop neural network (NN) 
controllers for a simulated hexapod robot.  NN structures 
were defined for the leg cycles and the coordinators and the 

GA learned the weights required to generate gaits. Lewis, 
Fagg, and Solidum used incremental evolution to find the 
parameters of two neurons (forming an oscillator) to 
control the leg and then a network of these oscillators was 
evolved to coordinate the movements of the different legs 
[5].  In previous work on the incremental evolution of 
gaits, we used cyclic genetic algorithms (CGAs) to evolve 
a sequence of primitives that control servos on each leg [2]. 
The learning system took into consideration the 
peculiarities of each leg to evolve the best leg cycle for that 
leg.  A standard GA was then used to evolve the 
coordination of these leg cycles to produce gaits. 

A difficulty with these methods is that they do not alter 
their control programs to adapt to changes in the robot’s 
capabilities or the environment.  Grefenstette and Ramsey 
(1992) introduced the method of anytime learning that 
integrates the control system and the learning system [6].  
This method allowed a learning component to continually 
compute a best control solution while the robot operated in 
the environment using the latest best solution.  It could 
adapt quickly to changes in the robot or the environment by 
having the robot’s sensors continually update the status of 
the environment and the robot’s capabilities in the learning 
component’s simulation.  Unfortunately, this type of 
anytime learning would not work for ServoBot learning, 
which has to depend on global observation, instead of 
precise sensors, to determine the robot’s capabilities.  
Punctuated anytime learning was developed to compensate 
for the ServoBot system’s lack of quick feedback, precise 
sensors, and high computational power [7].    Training with 
the EC takes place off-line on a simple model while 
periodic checks on the actual robot help to improve the 
learning systems output. This type of anytime learning is 
referred to as punctuated because the learning, although it 
is continuous, has break points where it is working on 
newly updated information about the actual robot.  

In previous work, we used fitness biasing, a form of 
punctuated anytime learning, to evolve adaptive leg cycles 
for the ServoBot [8].  The system adapted the leg cycles to 
be more appropriate for walking on carpet after they had 
been initially learned for a smooth surface.  A standard GA 
used these leg cycles to evolve a high-stepping tripod gait 
for the hexapod robot.  This gait was a significant 
improvement over the previous gait when the robot was 
tested on carpet.   There were, however, still some issues 
with this gait.   Although the leg cycles were better since 



they lifted the legs high enough to avoid drag on the carpet, 
the ratio of time that they were in the air compared to on 
the ground increased.  This resulted in a gait that had 
difficulty holding the weight of the robot. 

In this paper, we present the second increment of 
punctuated anytime learning required for adaptive gait 
generation.  We use fitness biasing to evolve gaits using the 
leg cycles that were learning using fitness biasing during 
the first increment of learning.  The leg cycles changed due 
to a change in environment (going from a smooth surface 
to a carpeted surface), the gait needs to change in response 
to the leg cycle changes since the previous gait could no 
longer hold up the robot using the new leg cycles.  The 
gaits produced using fitness biasing are still appropriate for 
the carpeted surface, but are also capable of bearing the 
weight of the robot. 

II. THE SERVOBOT  
The ServoBot is a hexapod robot that has two degrees 

of freedom per leg.  Twelve servos, two per leg, provide 
thrust and vertical movement.  The servos can be set to 
specific angular positions by providing a control pulse.  
This pulse should be repeated every 25 ms for the servo to 
maintain a constant position.  The duration of the pulse 
determines the position.  Pulses from 20 to 2400 
microseconds cover the full range of movement for each 
leg, although each servo is unique in its pulse to position 
ratios.  Some may have a full down position at 20 and on 
others it may be 80.  There is the same variance in the full 
up position.  In addition, the right and left side servos are 
mounted differently to ensure consistent mechanical 
capabilities, so in some cases the full down position is at a 
pulse duration of 20 and in some cases it’s at 2400.   

The servo cannot move the leg fast enough to reach the 
desired position within one pulse if the difference in the 
pulse durations is too much.  This results in the fastest leg 
movement as the servo attempts to get to its desired 
position as soon as possible.  Varying speeds of movement 
can be attained by incrementally changing the pulse 
durations.  For example, moving a leg using consecutive 
pulse durations of 40, 45, 50, etc. will move the leg at a 
slower speed than 40, 50, 60, etc., unless, of course, the 
increments are already more than the servo's capability.  
Consecutive pulses of 40, 240, 440, etc. would probably 
result in the same speed as the consecutive pulses of 40, 
340, 640, etc. 

With a program that indicates the desired pulses, each 
leg’s controller (BASIC Stamp II) can produce a sequence 
of pulses that direct the position of its two servos.  The 
central stamp controller directs each leg stamp when to 
start its sequence (leg cycle) and if needed, when to cut 
short one cycle to start another in order to maintain leg 
coordination. 

III. INCREMENTAL GAIT LEARNING 

A. First Increment: Evolving Leg Cycles 
To produce leg cycles, a control program needs to be 

generated that controls the output of each BASIC Stamp.  

The output is a sequence of pulses that continually position 
the leg’s servos.  This sequence can be learned using a 
cyclic genetic algorithm (CGA), a variation of the standard 
GA that uses a chromosome made up of tasks to be 
completed in a set amount of time as opposed to traits of a 
solution [9].  The CGA can learn single loop control 
programs since some portion of the chromosome can be 
designated as the iterative section (a sequence of tasks that 
will be continually repeated).  For this implementation, the 
tasks are sequences of pulses that are to be sent to the 
servos.   Further details will not be discussed since the 
work reported in this paper deals with using punctuated 
anytime learning to assist in the second increment of gait 
learning, which uses a standard GA.  The CGA has been 
used to generate reasonable leg cycles for each of the six 
legs [2].  These leg cycles were downloaded and observed 
on the actual robot where they produced efficient, useable 
leg cycles.  The length (number of pulse commands) of the 
longest of the 6 optimal leg cycles was 36.  A set of leg 
cycles using a range of desirable lengths were needed to 
produce a gait. Each leg was retrained for 500 generations 
to learn the optimal leg cycle with a desired length of 36.  
This population was then used to learn leg cycles with 
desired lengths from 21 to 52.   

B. Second Increment:Evolving Gaits from the Leg Cycles 
Gait generation required the coordination of the proper 

combination of leg cycles, one from each leg [2].  The gait 
learning algorithm would be able to choose leg cycles from 
anywhere in the range learned during the first increment for 
each leg to come up with the proper combination of leg 
cycles.  In addition, the time to start each leg cycle needed 
to be learned in order for them to be coordinated in 
providing thrust and repositioning from other thrusts while 
bearing the weight of the robot.   

Gait training was done using a standard GA.  The 
chromosome  (Figure 1) was made up of 7 parts.  The gait 
cycle length (GCL) represented the number of pulses in the 
overall gait cycle.  Information for each leg included its leg 
cycle length (LCL), which selected which leg cycle to use, 
and start time (START), which specified the time that the 
corresponding leg cycle should start.  

 
(GCL 
  (LCL START) 
  (LCL START) 
  (LCL START) 
  (LCL START) 
  (LCL START) 
  (LCL START)) 

 
Figure 1.  Chromosome used for gait training. 

The single stamp that acted as the central controller was 
to coordinate the individual leg cycles.  It needed to know 
the length (in pulses) of the gait cycle and which leg cycles 
to use for each leg.  In addition, it needed the start time for 
each of the individual leg cycles.  This was where the 
coordination took place.  Upon execution the controller 
program would count through the total number of pulses 0, 



1, 2, 3…. When the start time for each leg was reached, its 
leg cycle began.  The central controller ensured that all the 
stamps executed their pulses together.  When the gait cycle 
length was reached, the count started again at 0.  When 
each leg’s start number was reached they begin their cycle 
again.  To simulate the effect of this on the robot, each of 
the leg cycles was run separately for the number of 
designated pulses used for training (500 in this case).  They 
were then considered to be running simultaneously in a 
simulator that would determine at each pulse what the 
result of the 6 leg pulses would be. 

A population of 64 randomly generated chromosomes 
was produced to start training, which was done for 500 
generations.  Each individual's fitness was calculated by 
determining the effect of the 6 leg-cycles running 
simultaneously as specified by the gait cycle chromosome.  
In addition to calculating the fitness produced by the legs, 
additional factors such as balance and drag were used.  
Balance was a determination of the robot’s stability.  Drag 
was used to penalize the fitness of the gait when the legs 
were on the ground but not producing thrust.  Using these 
fitnesses, individuals were stochastically selected to be the 
parents of the next generation.   

Two types of crossover were used.  In one, crossover 
was accomplished by randomly picking corresponding 
spots in the two selected parents. In the other, crossover 
was a gene-by-gene crossover that performed crossover in 
each of the corresponding genes of the two chromosomes.  
Crosses could happen between the individual members of 
the list or within the bits of the specific numbers in the list.  
There were two types of mutation used and selected 
randomly after each recombination.  In one, each gene had 
a random chance of being replaced by a new completely 
random gene.  In the other, each part of the gene had a 
random chance of having one of its bits flipped.   

This method of incremental learning worked well for 
producing gaits for the ServoBot operating on a consistent 
(smooth) surface [2].  In all five test cases, near optimal 
tripod gaits were produced. 

IV. ANYTIME LEARNING WITH FITNESS BIASING 
Fitness biasing [10] is a form of punctuated anytime 

learning, which employs off-line learning using 
evolutionary computation with the control program being 
downloaded to the on-line controller. The off-line learning 
does not require internal sensors but uses global 
observation to make the required adjustments to guide the 
evolutionary computation.  The results of periodic tests, 
done on the actual robot, are used to bias the fitnesses 
calculated by the evolutionary computation, which uses a 
model of the robot.  This allows the learning system to 
adapt to changes in the robot’s capabilities to provide 
continually updated control programs. 

Anytime learning with fitness biasing allows the system 
to modify the GA based on the performance of the robot.  
Figure 2 shows how it affects the learning.  The model is 
not changed; its parameters were set before anytime 
learning began. The periodic checks on the actual robot 
alter the processing within the GA in an attempt to improve 

the result of training. This involves the biasing of evolved 
solution fitnesses by comparing their performance on the 
model to their performance on the actual robot.   
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Figure 2.  Fitness biasing affects the genetic algorithm. 

 

Probability for selection is determined by computing 
each individual’s fitness on the robot model.   After each n 
generations all solutions of the GA population are tested on 
the actual robot.  These measurements are used to bias the 
fitnesses found on the model to make them equal to the 
actual robot fitnesses.  These biases are used as the GA 
continues training.  In this way, solutions that are good on 
the actual robot but poor on the model have boosted 
fitnesses during training, which results in their production 
of more offspring.  This solution requires population-size 
actual tests every n generations.   

 
Model-Fitness = Compute-Model-
Fitness(Solution) 
if absolute-value(Model-Fitness) < 1 
    Bias = 1 
else 
    Actual-Fitness = Test-on-Robot(Solution) 
    Bias = Actual-Fitness / Model-Fitness 

 

Figure 3.  Algorithm to compute bias. 

A bias for each solution of the population is computed 
using the algorithm in Figure 3.  This bias is stored with its 
corresponding solution.  It is used in subsequent 
generations of the GA to alter the fitness of the solution 
computed on the model of the robot.  This is done by 
multiplying the fitness computed on the model by the bias:  
 

Corrected-Fitness = Model-Fitness * Bias    (1)           
          

These Corrected-Fitnesses are used for selection during 
the subsequent training being done by the GA.  Pairs of 
individuals are stochastically selected for reproduction 
using the Corrected-Fitnesses.  The two individuals 
produce a single offspring for the next generation; 
combining their attributes by crossover with possible 
random variations caused by mutation.  The new 
offspring’s bias is computed by averaging the biases of its 
parents. 



A. Learning Leg Cycles Using Fitness Biasing 
The gaits learned using incremental learning discussed 

in Section III worked well on the smooth surface since they 
had minimal vertical movement in order to reduce the time 
for leg repositioning.  This was effective because it 
provided time for more legs to simultaneously be on the 
ground, resulting in additional stability and consistent 
thrust, but it was inappropriate for rougher surfaces such as 
carpeting since returning leg’s produced significant drag.  
In order to adapt the leg cycles to be able to handle rough 
surfaces, anytime learning using fitness biasing was 
employed.   

The same model and CGA used in earlier results 
(Section III) were used as the learning part of the 
punctuated anytime learning system.  Tests on the actual 
robot (simulated) were done after every ten generations.  A 
list of 64 biases (one for each individual (chromosome) in 
the solution set), all being initialized to one, was produced. 
Training was continued for 200 CGA generations.  This 
involved 200*64 evaluations on the model and 20*64 
evaluations on the actual robot.  This learning, using fitness 
biasing produced leg cycles, adapted to the new carpeted 
surface. The legs would raise more before and after they 
moved horizontally during the return portion of the cycle. 

Leg cycles produced for rough surfaces were then used 
by a GA to evolve convolutions of leg cycles that formed 
tripod gaits.  Since the new gaits had increased length, leg 
cycles with desired lengths from 36 to 67 were learned 
using the techniques discussed in Section III. Gait training, 
the chromosome used (Figure 1), and the model robot were 
all as described in Section III.  In all five test cases, tripod 
gaits with high stepping leg cycles were produced [8].  
These high stepping gaits were more appropriate for the 
rough surface, but now that more time was required for the 
leg to return for another thrust, there was less time with all 
legs on the ground.  This resulted in a gait that worked well 
initially, but would slow down because the robot’s weight, 
which was higher than normal because of the prototype 
board holding the controllers, was too much for the 
sustained support by three legs. 

V. ANYTIME LEARNING WITH FITNESS BIASING TO 
LEARN ADAPTIVE GAIT CYCLES 

Although the leg cycles adapted by anytime learning 
with fitness biasing to handle rougher surfaces were used to 
form new gait cycles, the results were not as good as 
desired. Nice tripod gaits evolved in the model, but due to 
the weight of the seven stamp control board, the robot 
could not statically hold itself up on three legs.  In previous 
experiments where the leg cycles were optimized for a 
smooth surface, this was not as much of a factor since the 
robot spent minimal time on only three legs.  With the leg 
cycles being optimized for conditions where increased 
vertical lift was required to reposition the legs, more time 
was needed for repositioning, so the robot spent more time 
on three legs.  Although these gaits were useable on carpet, 

since the legs lifted high enough to avoid catching during 
their swing, the underbody servos were often being 
dragged along the ground.  This worked in the lab, but was 
determined to be undesirable for field use.  Anytime 
learning with fitness biasing was employed in evolving the 
gaits from the new leg cycles to rectify the problem. 

A. Training 
Training was done with the actual robot being 

simulated in a world where dragging the body was heavily 
penalized.  Five populations of 64 randomly generated 
individuals as described in Section III were used to start the 
training.  After each five generations of training on the 
model, the solution was checked on the simulated robot.  
The results of these tests were used to bias the fitnesses as 
described in Figure 3.  A total of 100 generations on the 
model, which is equivalent to 20 generations on the robot, 
were used.  The best individual solution from each of the 
five starting populations was stored after every ten 
generations of training on the model. 

B. Results 
Tests showed that anytime learning with fitness biasing 

could generate a gait for this new environment even though 
the genetic algorithm was working with an inaccurate 
model.  Figure 4 summarizes the results done in simulation. 
Consider first the dashed lines only.  They represent 
learning without anytime learning.  The thinner line 
represents what the fitness would be if it were tested on the 
inaccurate model.  The thicker line shows what the fitness 
really is on the simulated robot.  The fitness improves 
quickly on the model as the genetic algorithm works to 
optimize a gait for it, but since robot tests are not part of 
the learning system, performance on the robot actually 
decreases.  The learning system is learning a tripod gait 
that will have insufficient support for the robot to stay off 
the ground. 

Now consider what happens when anytime learning 
with fitness biasing is part of the learning system (the solid 
lines).  The thin solid line shows the fitnesses attained 
when tested on the inaccurate model.  The thicker solid line 
is the resultant fitness on the robot.  Comparing the thin 
solid line to the thin dashed line one can see that anytime 
learning reduced the resultant fitness on the model.  This 
was caused by biasing the fitnesses away from solutions 
that were optimal for the model in favor of the robot.  A 
comparison of the thicker lines shows that the anytime 
learning drastically improved the learning on the simulated 
robot (solid thick line versus dashed thick line).  

Figure 5 shows a comparison of the learning curve 
when using anytime learning versus learning directly on 
the simulated robot.  The x-axis shows the number of trials 
on the robot required for training when using either 
method.  As can be seen, the anytime learning is an 
improvement over a genetic algorithm applied directly to 
the robot. 

 



Figure 4.  Comparing normal and anytime learning with fitness biasing on gait production from leg cycles.   
Fitness is the distance (mm) traveled in 500 pulses. 

 
 
 

Figure 5.  Anytime learning with fitness biasing versus learning directly on the robot. 
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Examination of the produced solutions revealed that the 
gaits formed were similar to those of insects using a slow 
moving metachronal wave.  Tests on the actual robot 
showed that the gaits were an improvement over the ones 
learned without anytime learning; due to additional 
support, the robot body no longer touched the ground.  
They were not, however, that much faster.  Using the five 
new gaits the average forward movement in 30 seconds 
was 136 cm; the old gaits’ average was 124 cm.  This was 
due to the fact that the ServoBot has six of its servo motors 
mounted on its underside giving it a clearance of only 
about 20cm.  In addition, the underside of the servo motors 
is smooth.  Both these factors allow the robot to 
comfortably drag itself without significant loss of speed.  
Penalties were introduced into the simulation to make 
dragging an undesirable option to accommodate robots 
without the low clearance and smooth underside.  The gaits 
generated by anytime learning would be equally effective 
on high clearance robots since nothing except the feet of 
the robot touched the ground. 

Figure 6 shows a comparison of two sample gaits 
produced during training.  The top diagram is the tripod 
produced from Section IV.  As discussed in the 
introduction to this section, this gait had minimal time 
when more than three legs were on the ground.  The result 
was that the robot could not hold itself off the ground due 
to the excessive weight of the seven stamp controller 
board.  The bottom diagram shows one of the gaits 
produced using anytime learning.  As can be seen, there are 
almost always at least four legs on the ground resulting in 
the additional support required to hold up the heavy 
controller board. 

 

Figure 6:  Rough terrain gaits.  The dark areas are times when the leg’s 
foot is off the ground. The top diagram shows a sample tripod gait 
produced using the high stepping leg cycles.  This gait lacked the support 
needed to keep the heavy robot off the ground at all times.  The bottom 
diagram shows a sample gait produced after anytime learning with fitness 
biasing was applied to gait generation.  The second gait seldom had more 
than two legs off the ground at one time, so it provided the support 
needed to hold the robot off the ground.  This gait is very similar to the 
slow metachronal wave used by some slow walking insects.   

 

VI. CONCLUSIONS 
Anytime learning with fitness biasing was very 

successful at allowing the learning system to adapt the 
evolution of gaits to compensate for changes in the 
environment and the capabilities of the robot.  Even though 
the model of the robot/environment being used by the 
learning system became incorrect, fitness biasing allowed it 
to adapt to the changes.  As the simulated robot moved 
from a smooth surface to a rough surface the learning 
system adapted the leg cycles to be high stepping.   This 
change revealed an inaccuracy in the model’s parameters 
concerning the weight bearing capabilities of the robot.  
Fitness biasing adapted the gaits produced using these new 
high-stepping leg cycles despite the model’s inaccuracies.  
Tests done on the actual robot showed that the produced 
gaits were appropriate for the robot operating on the rough 
surface.  This successful use of fitness biasing on two 
levels of robot control helps to demonstrate its general 
applicability in this area.  
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