
Fitness Biasing to Produce Adaptive Gaits for
Hexapod Robots

Gary B. Parker
Computer Science

Connecticut College
New London, CT, USA
parker@conncoll.edu

Abstract— Anytime learning with fitness biasing was shown
in an earlier work to be an effective tool for learning leg
cycles for a hexapod robot. This learning system was capable
of adapting to changes in the environment. Although the leg
cycles were appropriate for rougher terrain, the gaits
produced with them by a standard genetic algorithm were
not capable of bearing the robot’s load. In this paper, we
present the use of anytime learning with fitness biasing to
improve the gaits produced by allowing the learning system
to adapt to unforeseen changes in the environment and the
robot’s capabilities. Training and tests were done in
simulation, with the resultant gaits tested on the actual robot.

Keywords- evolutionary robotics, genetic algorithms,
locomotion, control, anytime learning, six-legged robot

I. INTRODUCTION
Learning the control programs that produce gaits for

hexapod robots is a difficult problem. It is particularly
challenging if one wants these programs to be altered to
adapt the gaits for changes in the robot’s capabilities or the
environment. Gait generation can be broken down into two
main parts: the cyclic action of the individual legs and the
coordination of all the legs to make effective use of their
cycles. These can be learned together by finding the
sequence of concurrent movements required by all the
actuators [1] or they can be learned separately [2].
Learning together greatly increases the complexity of the
learning algorithm so details are often lost in the
abstraction necessary to keep the computations within
reason. Since some detail is lost, the gaits produced by this
method cannot fully exploit the capabilities of the robot.
Individual leg learning can take into account the
capabilities of the actuators and movement constraints of
individual legs. This allows better use of each leg as long
as the controllers are complex enough to handle the
increased details. The subsequent learning of the
coordination of these leg cycles results in a gait that takes
full advantage of the capabilities of the individual legs.

Some form of evolutionary computation (EC) would
work well in learning what signals are needed to produce
the individual leg cycles and their coordination since EC is
well suited for adapting a solution to the peculiarities of a
problem. Randall Beer and John Gallagher [3,4] used
genetic algorithms (GAs) to develop neural network (NN)
controllers for a simulated hexapod robot. NN structures
were defined for the leg cycles and the coordinators and the

GA learned the weights required to generate gaits. Lewis,
Fagg, and Solidum used incremental evolution to find the
parameters of two neurons (forming an oscillator) to
control the leg and then a network of these oscillators was
evolved to coordinate the movements of the different legs
[5]. In previous work on the incremental evolution of
gaits, we used cyclic genetic algorithms (CGAs) to evolve
a sequence of primitives that control servos on each leg [2].
The learning system took into consideration the
peculiarities of each leg to evolve the best leg cycle for that
leg. A standard GA was then used to evolve the
coordination of these leg cycles to produce gaits.

A difficulty with these methods is that they do not alter
their control programs to adapt to changes in the robot’s
capabilities or the environment. Grefenstette and Ramsey
(1992) introduced the method of anytime learning that
integrates the control system and the learning system [6].
This method allowed a learning component to continually
compute a best control solution while the robot operated in
the environment using the latest best solution. It could
adapt quickly to changes in the robot or the environment by
having the robot’s sensors continually update the status of
the environment and the robot’s capabilities in the learning
component’s simulation. Unfortunately, this type of
anytime learning would not work for ServoBot learning,
which has to depend on global observation, instead of
precise sensors, to determine the robot’s capabilities.
Punctuated anytime learning was developed to compensate
for the ServoBot system’s lack of quick feedback, precise
sensors, and high computational power [7]. Training with
the EC takes place off-line on a simple model while
periodic checks on the actual robot help to improve the
learning systems output. This type of anytime learning is
referred to as punctuated because the learning, although it
is continuous, has break points where it is working on
newly updated information about the actual robot.

In previous work, we used fitness biasing, a form of
punctuated anytime learning, to evolve adaptive leg cycles
for the ServoBot [8]. The system adapted the leg cycles to
be more appropriate for walking on carpet after they had
been initially learned for a smooth surface. A standard GA
used these leg cycles to evolve a high-stepping tripod gait
for the hexapod robot. This gait was a significant
improvement over the previous gait when the robot was
tested on carpet. There were, however, still some issues
with this gait. Although the leg cycles were better since

they lifted the legs high enough to avoid drag on the carpet,
the ratio of time that they were in the air compared to on
the ground increased. This resulted in a gait that had
difficulty holding the weight of the robot.

In this paper, we present the second increment of
punctuated anytime learning required for adaptive gait
generation. We use fitness biasing to evolve gaits using the
leg cycles that were learning using fitness biasing during
the first increment of learning. The leg cycles changed due
to a change in environment (going from a smooth surface
to a carpeted surface), the gait needs to change in response
to the leg cycle changes since the previous gait could no
longer hold up the robot using the new leg cycles. The
gaits produced using fitness biasing are still appropriate for
the carpeted surface, but are also capable of bearing the
weight of the robot.

II. THE SERVOBOT
The ServoBot is a hexapod robot that has two degrees

of freedom per leg. Twelve servos, two per leg, provide
thrust and vertical movement. The servos can be set to
specific angular positions by providing a control pulse.
This pulse should be repeated every 25 ms for the servo to
maintain a constant position. The duration of the pulse
determines the position. Pulses from 20 to 2400
microseconds cover the full range of movement for each
leg, although each servo is unique in its pulse to position
ratios. Some may have a full down position at 20 and on
others it may be 80. There is the same variance in the full
up position. In addition, the right and left side servos are
mounted differently to ensure consistent mechanical
capabilities, so in some cases the full down position is at a
pulse duration of 20 and in some cases it’s at 2400.

The servo cannot move the leg fast enough to reach the
desired position within one pulse if the difference in the
pulse durations is too much. This results in the fastest leg
movement as the servo attempts to get to its desired
position as soon as possible. Varying speeds of movement
can be attained by incrementally changing the pulse
durations. For example, moving a leg using consecutive
pulse durations of 40, 45, 50, etc. will move the leg at a
slower speed than 40, 50, 60, etc., unless, of course, the
increments are already more than the servo's capability.
Consecutive pulses of 40, 240, 440, etc. would probably
result in the same speed as the consecutive pulses of 40,
340, 640, etc.

With a program that indicates the desired pulses, each
leg’s controller (BASIC Stamp II) can produce a sequence
of pulses that direct the position of its two servos. The
central stamp controller directs each leg stamp when to
start its sequence (leg cycle) and if needed, when to cut
short one cycle to start another in order to maintain leg
coordination.

III. INCREMENTAL GAIT LEARNING

A. First Increment: Evolving Leg Cycles
To produce leg cycles, a control program needs to be

generated that controls the output of each BASIC Stamp.

The output is a sequence of pulses that continually position
the leg’s servos. This sequence can be learned using a
cyclic genetic algorithm (CGA), a variation of the standard
GA that uses a chromosome made up of tasks to be
completed in a set amount of time as opposed to traits of a
solution [9]. The CGA can learn single loop control
programs since some portion of the chromosome can be
designated as the iterative section (a sequence of tasks that
will be continually repeated). For this implementation, the
tasks are sequences of pulses that are to be sent to the
servos. Further details will not be discussed since the
work reported in this paper deals with using punctuated
anytime learning to assist in the second increment of gait
learning, which uses a standard GA. The CGA has been
used to generate reasonable leg cycles for each of the six
legs [2]. These leg cycles were downloaded and observed
on the actual robot where they produced efficient, useable
leg cycles. The length (number of pulse commands) of the
longest of the 6 optimal leg cycles was 36. A set of leg
cycles using a range of desirable lengths were needed to
produce a gait. Each leg was retrained for 500 generations
to learn the optimal leg cycle with a desired length of 36.
This population was then used to learn leg cycles with
desired lengths from 21 to 52.

B. Second Increment:Evolving Gaits from the Leg Cycles
Gait generation required the coordination of the proper

combination of leg cycles, one from each leg [2]. The gait
learning algorithm would be able to choose leg cycles from
anywhere in the range learned during the first increment for
each leg to come up with the proper combination of leg
cycles. In addition, the time to start each leg cycle needed
to be learned in order for them to be coordinated in
providing thrust and repositioning from other thrusts while
bearing the weight of the robot.

Gait training was done using a standard GA. The
chromosome (Figure 1) was made up of 7 parts. The gait
cycle length (GCL) represented the number of pulses in the
overall gait cycle. Information for each leg included its leg
cycle length (LCL), which selected which leg cycle to use,
and start time (START), which specified the time that the
corresponding leg cycle should start.

(GCL
 (LCL START)
 (LCL START)
 (LCL START)
 (LCL START)
 (LCL START)
 (LCL START))

Figure 1. Chromosome used for gait training.

The single stamp that acted as the central controller was
to coordinate the individual leg cycles. It needed to know
the length (in pulses) of the gait cycle and which leg cycles
to use for each leg. In addition, it needed the start time for
each of the individual leg cycles. This was where the
coordination took place. Upon execution the controller
program would count through the total number of pulses 0,

1, 2, 3…. When the start time for each leg was reached, its
leg cycle began. The central controller ensured that all the
stamps executed their pulses together. When the gait cycle
length was reached, the count started again at 0. When
each leg’s start number was reached they begin their cycle
again. To simulate the effect of this on the robot, each of
the leg cycles was run separately for the number of
designated pulses used for training (500 in this case). They
were then considered to be running simultaneously in a
simulator that would determine at each pulse what the
result of the 6 leg pulses would be.

A population of 64 randomly generated chromosomes
was produced to start training, which was done for 500
generations. Each individual's fitness was calculated by
determining the effect of the 6 leg-cycles running
simultaneously as specified by the gait cycle chromosome.
In addition to calculating the fitness produced by the legs,
additional factors such as balance and drag were used.
Balance was a determination of the robot’s stability. Drag
was used to penalize the fitness of the gait when the legs
were on the ground but not producing thrust. Using these
fitnesses, individuals were stochastically selected to be the
parents of the next generation.

Two types of crossover were used. In one, crossover
was accomplished by randomly picking corresponding
spots in the two selected parents. In the other, crossover
was a gene-by-gene crossover that performed crossover in
each of the corresponding genes of the two chromosomes.
Crosses could happen between the individual members of
the list or within the bits of the specific numbers in the list.
There were two types of mutation used and selected
randomly after each recombination. In one, each gene had
a random chance of being replaced by a new completely
random gene. In the other, each part of the gene had a
random chance of having one of its bits flipped.

This method of incremental learning worked well for
producing gaits for the ServoBot operating on a consistent
(smooth) surface [2]. In all five test cases, near optimal
tripod gaits were produced.

IV. ANYTIME LEARNING WITH FITNESS BIASING
Fitness biasing [10] is a form of punctuated anytime

learning, which employs off-line learning using
evolutionary computation with the control program being
downloaded to the on-line controller. The off-line learning
does not require internal sensors but uses global
observation to make the required adjustments to guide the
evolutionary computation. The results of periodic tests,
done on the actual robot, are used to bias the fitnesses
calculated by the evolutionary computation, which uses a
model of the robot. This allows the learning system to
adapt to changes in the robot’s capabilities to provide
continually updated control programs.

Anytime learning with fitness biasing allows the system
to modify the GA based on the performance of the robot.
Figure 2 shows how it affects the learning. The model is
not changed; its parameters were set before anytime
learning began. The periodic checks on the actual robot
alter the processing within the GA in an attempt to improve

the result of training. This involves the biasing of evolved
solution fitnesses by comparing their performance on the
model to their performance on the actual robot.

 GA

 Robot performance

 GA trains GA modifies GA
 on Model modifies
 Robot
 controller
 Model Robot

Figure 2. Fitness biasing affects the genetic algorithm.

Probability for selection is determined by computing
each individual’s fitness on the robot model. After each n
generations all solutions of the GA population are tested on
the actual robot. These measurements are used to bias the
fitnesses found on the model to make them equal to the
actual robot fitnesses. These biases are used as the GA
continues training. In this way, solutions that are good on
the actual robot but poor on the model have boosted
fitnesses during training, which results in their production
of more offspring. This solution requires population-size
actual tests every n generations.

Model-Fitness = Compute-Model-
Fitness(Solution)
if absolute-value(Model-Fitness) < 1
 Bias = 1
else
 Actual-Fitness = Test-on-Robot(Solution)
 Bias = Actual-Fitness / Model-Fitness

Figure 3. Algorithm to compute bias.

A bias for each solution of the population is computed
using the algorithm in Figure 3. This bias is stored with its
corresponding solution. It is used in subsequent
generations of the GA to alter the fitness of the solution
computed on the model of the robot. This is done by
multiplying the fitness computed on the model by the bias:

Corrected-Fitness = Model-Fitness * Bias (1)

These Corrected-Fitnesses are used for selection during
the subsequent training being done by the GA. Pairs of
individuals are stochastically selected for reproduction
using the Corrected-Fitnesses. The two individuals
produce a single offspring for the next generation;
combining their attributes by crossover with possible
random variations caused by mutation. The new
offspring’s bias is computed by averaging the biases of its
parents.

A. Learning Leg Cycles Using Fitness Biasing
The gaits learned using incremental learning discussed

in Section III worked well on the smooth surface since they
had minimal vertical movement in order to reduce the time
for leg repositioning. This was effective because it
provided time for more legs to simultaneously be on the
ground, resulting in additional stability and consistent
thrust, but it was inappropriate for rougher surfaces such as
carpeting since returning leg’s produced significant drag.
In order to adapt the leg cycles to be able to handle rough
surfaces, anytime learning using fitness biasing was
employed.

The same model and CGA used in earlier results
(Section III) were used as the learning part of the
punctuated anytime learning system. Tests on the actual
robot (simulated) were done after every ten generations. A
list of 64 biases (one for each individual (chromosome) in
the solution set), all being initialized to one, was produced.
Training was continued for 200 CGA generations. This
involved 200*64 evaluations on the model and 20*64
evaluations on the actual robot. This learning, using fitness
biasing produced leg cycles, adapted to the new carpeted
surface. The legs would raise more before and after they
moved horizontally during the return portion of the cycle.

Leg cycles produced for rough surfaces were then used
by a GA to evolve convolutions of leg cycles that formed
tripod gaits. Since the new gaits had increased length, leg
cycles with desired lengths from 36 to 67 were learned
using the techniques discussed in Section III. Gait training,
the chromosome used (Figure 1), and the model robot were
all as described in Section III. In all five test cases, tripod
gaits with high stepping leg cycles were produced [8].
These high stepping gaits were more appropriate for the
rough surface, but now that more time was required for the
leg to return for another thrust, there was less time with all
legs on the ground. This resulted in a gait that worked well
initially, but would slow down because the robot’s weight,
which was higher than normal because of the prototype
board holding the controllers, was too much for the
sustained support by three legs.

V. ANYTIME LEARNING WITH FITNESS BIASING TO
LEARN ADAPTIVE GAIT CYCLES

Although the leg cycles adapted by anytime learning
with fitness biasing to handle rougher surfaces were used to
form new gait cycles, the results were not as good as
desired. Nice tripod gaits evolved in the model, but due to
the weight of the seven stamp control board, the robot
could not statically hold itself up on three legs. In previous
experiments where the leg cycles were optimized for a
smooth surface, this was not as much of a factor since the
robot spent minimal time on only three legs. With the leg
cycles being optimized for conditions where increased
vertical lift was required to reposition the legs, more time
was needed for repositioning, so the robot spent more time
on three legs. Although these gaits were useable on carpet,

since the legs lifted high enough to avoid catching during
their swing, the underbody servos were often being
dragged along the ground. This worked in the lab, but was
determined to be undesirable for field use. Anytime
learning with fitness biasing was employed in evolving the
gaits from the new leg cycles to rectify the problem.

A. Training
Training was done with the actual robot being

simulated in a world where dragging the body was heavily
penalized. Five populations of 64 randomly generated
individuals as described in Section III were used to start the
training. After each five generations of training on the
model, the solution was checked on the simulated robot.
The results of these tests were used to bias the fitnesses as
described in Figure 3. A total of 100 generations on the
model, which is equivalent to 20 generations on the robot,
were used. The best individual solution from each of the
five starting populations was stored after every ten
generations of training on the model.

B. Results
Tests showed that anytime learning with fitness biasing

could generate a gait for this new environment even though
the genetic algorithm was working with an inaccurate
model. Figure 4 summarizes the results done in simulation.
Consider first the dashed lines only. They represent
learning without anytime learning. The thinner line
represents what the fitness would be if it were tested on the
inaccurate model. The thicker line shows what the fitness
really is on the simulated robot. The fitness improves
quickly on the model as the genetic algorithm works to
optimize a gait for it, but since robot tests are not part of
the learning system, performance on the robot actually
decreases. The learning system is learning a tripod gait
that will have insufficient support for the robot to stay off
the ground.

Now consider what happens when anytime learning
with fitness biasing is part of the learning system (the solid
lines). The thin solid line shows the fitnesses attained
when tested on the inaccurate model. The thicker solid line
is the resultant fitness on the robot. Comparing the thin
solid line to the thin dashed line one can see that anytime
learning reduced the resultant fitness on the model. This
was caused by biasing the fitnesses away from solutions
that were optimal for the model in favor of the robot. A
comparison of the thicker lines shows that the anytime
learning drastically improved the learning on the simulated
robot (solid thick line versus dashed thick line).

Figure 5 shows a comparison of the learning curve
when using anytime learning versus learning directly on
the simulated robot. The x-axis shows the number of trials
on the robot required for training when using either
method. As can be seen, the anytime learning is an
improvement over a genetic algorithm applied directly to
the robot.

Figure 4. Comparing normal and anytime learning with fitness biasing on gait production from leg cycles.
Fitness is the distance (mm) traveled in 500 pulses.

Figure 5. Anytime learning with fitness biasing versus learning directly on the robot.

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50 60 70 80 90 100

Generations of Training

Fi
tn

es
s NoAnytime Model

NoAnytime Actual
Anytime Model
Anytime Actual

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14 16 18 20

Trials on Robot

Fi
tn

es
s Anytime Actual

Learn on Actual

Examination of the produced solutions revealed that the
gaits formed were similar to those of insects using a slow
moving metachronal wave. Tests on the actual robot
showed that the gaits were an improvement over the ones
learned without anytime learning; due to additional
support, the robot body no longer touched the ground.
They were not, however, that much faster. Using the five
new gaits the average forward movement in 30 seconds
was 136 cm; the old gaits’ average was 124 cm. This was
due to the fact that the ServoBot has six of its servo motors
mounted on its underside giving it a clearance of only
about 20cm. In addition, the underside of the servo motors
is smooth. Both these factors allow the robot to
comfortably drag itself without significant loss of speed.
Penalties were introduced into the simulation to make
dragging an undesirable option to accommodate robots
without the low clearance and smooth underside. The gaits
generated by anytime learning would be equally effective
on high clearance robots since nothing except the feet of
the robot touched the ground.

Figure 6 shows a comparison of two sample gaits
produced during training. The top diagram is the tripod
produced from Section IV. As discussed in the
introduction to this section, this gait had minimal time
when more than three legs were on the ground. The result
was that the robot could not hold itself off the ground due
to the excessive weight of the seven stamp controller
board. The bottom diagram shows one of the gaits
produced using anytime learning. As can be seen, there are
almost always at least four legs on the ground resulting in
the additional support required to hold up the heavy
controller board.

Figure 6: Rough terrain gaits. The dark areas are times when the leg’s
foot is off the ground. The top diagram shows a sample tripod gait
produced using the high stepping leg cycles. This gait lacked the support
needed to keep the heavy robot off the ground at all times. The bottom
diagram shows a sample gait produced after anytime learning with fitness
biasing was applied to gait generation. The second gait seldom had more
than two legs off the ground at one time, so it provided the support
needed to hold the robot off the ground. This gait is very similar to the
slow metachronal wave used by some slow walking insects.

VI. CONCLUSIONS
Anytime learning with fitness biasing was very

successful at allowing the learning system to adapt the
evolution of gaits to compensate for changes in the
environment and the capabilities of the robot. Even though
the model of the robot/environment being used by the
learning system became incorrect, fitness biasing allowed it
to adapt to the changes. As the simulated robot moved
from a smooth surface to a rough surface the learning
system adapted the leg cycles to be high stepping. This
change revealed an inaccuracy in the model’s parameters
concerning the weight bearing capabilities of the robot.
Fitness biasing adapted the gaits produced using these new
high-stepping leg cycles despite the model’s inaccuracies.
Tests done on the actual robot showed that the produced
gaits were appropriate for the robot operating on the rough
surface. This successful use of fitness biasing on two
levels of robot control helps to demonstrate its general
applicability in this area.

REFERENCES
[1] Parker, G., Braun, D., and Cyliax I. (1997). “Evolving Hexapod

Gaits Using a Cyclic Genetic Algorithm.” Proceedings of the
IASTED International Conference on Artificial Intelligence and
Soft Computing (ASC'97). pp. 141-144.

[2] Parker, G. (2001). "The Incremental Evolution of Gaits for
Hexapod Robots." Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2001). pp. 1114-1121.

[3] Beer, R. D., and Gallagher, J. C. (1992). "Evolving Dynamic
Neural Networks for Adaptive Behavior." Adaptive Behavior, 1, pp.
91-122.

[4] Gallagher, J. C. and Beer, R. D. (1994). “Application of Evolved
Locomotion Controllers to a Hexapod Robot.” Technical Report
CES-94-7, Department of Computer Engineering and Science, Case
Western Reserve University.

[5] Lewis, M. A., Fagg, A. H., and Solidum A. (1992). "Genetic
Programming Approach to the Construction of a Neural Network
for Control of a Walking Robot" 1992 IEEE International
Conference on Robotics and Automation, pp. 2618-23.

[6] Grefenstette, J. and Ramsey, C. (1992). “An Approach to Anytime
Learning.” Proceedings of the Ninth International Conference on
Machine Learning. pp. 189-195.

[7] Parker, G. (2002). "Punctuated Anytime Learning for Hexapod Gait
Generation." Proceedings of the 2002 IEEE/RSJ International
Conference on Intelligent Robots and Systems. pp. 2664-2671.

[8] Parker, G. (2003). “Learning Adaptive Leg Cycles Using Fitness
Biasing.” Proceedings of the 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2003). pp.
100-105.

[9] Parker, G. and Rawlins, G. (1996). “Cyclic Genetic Algorithms for
the Locomotion of Hexapod Robots.” Proceedings of the World
Automation Congress, Volume 3, Robotic and Manufacturing
Systems. pp. 617-622.

[10] Parker, G. and Mills, J. (1999). "Adaptive Hexapod Gait Control
Using Anytime Learning with Fitness Biasing." Proceedings of the
Genetic and Evolutionary Computation Conference. pp. 519-524.

Right
0
2
4

Left
1
3
5

Right
0
2
4

Left
1
3
5

