
Competing Sample Sizes for the Co-Evolution of 
Heterogeneous Agents  

Gary B. Parker and H. Joseph Blumenthal 
Computer Science 

Connecticut College 
New London, CT USA 

{parker, hjblu}@conncoll.edu
 

 
Abstract—Evolving heterogeneous behavior for cooperative 
agents is a complex challenge. The co-evolution of separate 
populations requires a system for evaluation at trial time. If 
too few combinations of partners are tested, the GA is 
unable to recognize fit agents, but if too many agents are 
tested the required computation time becomes unreasonable.  
To resolve this issue, we created a system based on 
punctuated anytime learning that periodically tests partner 
combinations to reduce computation time. In continued 
research, we discovered that by testing fewer combinations 
the GA maintains accuracy while further reducing 
computation time. In this paper we propose a method that 
concurrently tests varying numbers of partner combinations 
and the spacing between these combinations at trial time to 
determine which is optimal for any stage of the co-evolution. 
We chose a box pushing task to compare these methods. 

Keywords-co-evolution; cooperative agents; team 
coordination; evolutionary robotics; learning; control 

I.  INTRODUCTION  
The objective of our work is to define a method for 

evolving a team that simultaneously reduces computation 
time while maximizing accuracy. Finding a powerful 
system for team learning is essential because of its 
potential for application in today’s world. Robots that 
cooperate can often achieve more than the sum of what 
they could do individually. Some applications for teams 
include toxic waste cleanup and search and rescue teams. 
These tasks are often too dangerous for humans and 
therefore fertile ground for the employment of teams of 
robots. We chose a box pushing task to show the strength 
of our method because it represents a simplified task 
related to our method’s possible applications. Learning 
cooperative behavior has been approached in several 
different ways. 

Luke and Spector researched methods for increasing 
specialization and cooperation in team behavior [2]; a 
study of a variety of methods for breeding and 
communication in a Predator-Prey scenario. The simulated 
scenario was a toroidal (continuous) space where four 
agents representing “lions” chase a randomly moving 
“gazelle”. Using the success rate of capture for 
comparison, two of Luke and Spector’s conclusions are 
germane to our work. They concluded that restricted 
breeding promotes greater specialization than free 
breeding. In the context of co-evolution, restricted breeding 

would allow individuals to breed only within their own 
population. Their second conclusion was to consider the 
whole team as a single GP individual. Though this method 
proved successful, we believe evolving team members in 
separate populations will further increase specialization 
because the GA can concentrate on making the best 
individual to do the task. When a team is represented by a 
single GP individual it is hard to obtain an individual’s 
fitness without it being overly influenced by the team 
members to which the agent is bound. This issue highlights 
the greatest challenge of co-evolution using separate 
populations, how to pair teams at trial time. Random 
selection of  teams could result in fit members going 
unrecognized by the GA because of a poor member of the 
team. 

Potter and De Jong developed a solution to this 
problem that capitalized on evolving team members in 
separate populations [8]. Their method, referred to as 
cooperative co-evolutionary algorithms (CCAs), tests an 
individual’s fitness by pairing it with a single member from 
each of the opposing populations. The chosen members 
from opposing populations are selected as the best member 
from the previous generation. The “best” is determined by 
its relative fitness to other members of its own population. 
Using this system Potter, Meeden, and Schultz co-evolved 
artificially intelligent agents to heard sheep into a corral 
[9]. Their results showed this to be a successful method of 
producing heterogeneous behavior. Even though CCAs 
proved to be a powerful system of co-evolution, it still 
limits an individual’s fitness calculation to a single partner.  

Wiegand, Liles, and De Jong, examined factors that 
influenced co-evolution using different implementations of 
the CCA [10]. In their research they focused on 
collaborator selection issues and credit assignment at trial 
time. The first implementation tested (CCA-1) used the 
best individual for pairing at trial time, while the second 
(CCA-2) had varying collaborator pool size, the number of 
individuals chosen for comparison at trial time.   They 
concluded that the most prominent factor for co-evolution 
was in fact the collaborator pool size. Wiegand, Liles, and 
De Jong, also point out that as the pool size increases so 
does the computation required to perform the evaluations. 
Taking this to the extreme, the most accurate yet 
computationally expensive solution would be to test all 
members of a population against all other possible partners 
in the opposing populations. Using this method a problem 



involving N populations with I members in each 
population, would require IN comparisons for any 
generation of training. This level of computation is 
unacceptable. 

In this paper, we discuss a method that maximizes 
accuracy while minimizing computation time. This method 
involves a periodic selection (at punctuated generations) of 
a single individual from each population (referred to as the 
alpha individual) that represents the overall nature of its 
population. This selection is made by testing all the 
individuals in the population with a sampling of individuals 
from the other populations.  The alpha individual is the 
individual that has the highest average fitness when 
working with the sample of individuals from the other 
populations.  These alpha individuals are used by the 
genetic algorithm during the fitness evaluation of a 
population by testing each individual of the population 
when partnered with the alpha individual from the other 
population.   We optimize our algorithm in terms of 
accuracy and reducing computation time by testing two 
different combinations of the number of individuals in a 
sample and the spacing (number of normal generations) 
between punctuated generations. 

 

Figure 1.  A snapshot of the simulation with everthing in its starting 
positions. 

II. THE BOX PUSHING PROBLEM 
The applied problem in our research is to have two 

hexapod robots starting from one corner of an enclosed 
square area walk to and push a box that is in the middle of 
the area to the opposite corner.   The simulated area from 
which the task has been abstracted is an existing colony 
space in the Connecticut College Robotics Lab. This space 
measures approximately 8x8 ft. In the colony, two 
ServoBot robots and a cardboard box can be placed. The 
problem is for the pair to act cooperatively to force the box 
into the opposing corner from which the robots started.  
The tests done in simulation use agents that model actual 
robots present in the lab. 

The simulated environment used for evolving the 
agents measures 250x250 units. Both robots were 
represented as circles with a diameter of 6 units but the 
robots were treated as single points for the rules of contact 
with the box. The box was represented as a square 
measuring 18x18 units. In each trial, the agents and the box 
were placed in consistent starting positions. All coordinates 
in the simulation are positive, meaning the point (0,0) is in 
the upper left hand corner of the area. The first robot was 
placed in the location (10,5) and faced parallel to the x-
axis, while the second robot started in the mirrored position 
(5,10). The box started in the center of the space at the 
point (125,125). In Figure 1 we see the starting position of 
the simulation where the first robot at (10,5) is shaded in 
dark grey, and the second robot at (5,10) is shaded in light 
grey.  

Each robot’s ability to move the box on its own 
(without aid from its partner) was affected by an endurance 
factor. This endurance factor is initially zero and increases 
by one with each consecutive non-aided push of the box. 
With F representing the would be full force of the robot’s 
push acting singly, and E representing the endurance 
factor, the force the robot may apply to the box is given by 
the quotient F/2E. The endurance factor reduces each agents 
pushing power by a factor of two every gait cycle without 
its partner. As soon as both robots push the box 
simultaneously their endurance factors are both reset to 
zero. Both robots move simultaneously and the simulation 
stops when either the robots have taken 100 steps or any 
one of the three (two robots or the box) moves out of the 
simulated area. 

 

Figure 2.  The ServoBot. 

The robots modeled in the simulation are ServoBots. A 
ServoBot is an inexpensive hexapod robot constructed 
from masonite (a hard pressed wood). Each leg has two 
motorized servos, one oriented in a vertical capacity and 
the other oriented in a horizontal capacity, giving two 
degrees of freedom per leg (Figure 2). In order to control 
the motion of the robot, a BASIC Stamp II is mounted on 
the top of the ServoBot. This chip is capable of 
individually addressing each of the twelve servo actuators 
to produce and sustain a gait cycle. A gait cycle is defined 



as the timed and coordinated motion of the legs of a robot, 
such that the legs return to the positions from which they 
began. The BASIC Stamp is capable of storing a sequence 
of timed activations. Each of these activations represents 
the simultaneous movement of all twelve servos. This 
information is stored as a twelve-bit number, one bit for 
each servo. Every bit in the activation dictates the position 
of a servo with a 1 indicating full back or up and 0 
indicating full forward or down depending on the 
orientation of the servo. Therefore, each pair of bits can 
represent the motion of a single leg with each bit 
controlling one servo, which corresponds to one of the two 
degrees of freedom. The pairs of bits are ordered by their 
represented leg as 0 to 5 with the legs 0,2,4 on the right 
side from front to back and 1,3,5 on the left in the same 
order (Figure 3). Also shown is an example twelve-bit 
activation number. Using this scheme, the number 
001000000000 would lift the front left leg and 
000001000000 would pull the second right leg backward.  
The BASIC Stamp provides a control pulse every 25 ms to 
drive the legs to their indicated positions.  

 

01
23
45

Activation: 100101101001

 10 01 01 10 10 01  

Figure 3.  Diagram numbering the legs of the ServoBot and a sample 
twelve-bit activation. The dark lines represent legs that are down and 
moving back while the light lines represent legs that are currently or 

moving up and moving forward. 

III. CYCLIC GENETIC ALGORITHMS 
A cyclic genetic algorithm is a variation of a 

traditional GA, where the genes of the chromosome 
represent tasks to be completed in a set amount of time 
[3]. These represented tasks can be anything ranging from 
a single action to multiple sub-cycles of actions. Using this 
method of representation, it is possible to break up a 
chromosome into multiple genes with each gene acting as 
a cycle. Each gene or sub-cycle contains two parts, one 
part representing an action or set of actions, and the 
second part representing the number of times that action is 
to be performed. The genes can be arranged into repeated 
sequences that form a chromosome that can be arranged 
with single or multiple cycles, or the entire chromosome 
can become a cycle.  

The first way the CGA is used in our research is for 
evolving gait cycles. This can be done by coupling the 
CGA with the method of representation diagramed in 
Figure 3 to evolve a gait cycle for a specific ServoBot [3]. 
The optimal gait cycle for the ServoBot modeled in our 
simulation was a tripod gait. The tripod gait maintains 
static stability while maximizing the speed of forward 
motion for a hexapod. Legs 1, 2, and 5 are down and 
moving back while legs 0, 3, and 4 are lifting up as they 
move forward. This optimal gait cycle for the specific 
ServoBot used requires 58 pulses (29 pulses for thrust and 

29 for repositioning) from the BASIC Stamp to each the 
left and right side servos for completion. 

Different degrees of turns were generated for our 
ServoBot by decreasing the total number of pulses 
signaling thrust to the legs on one side of the robot. If the 
left legs 1,3,5 were given all 29 pulses of thrust but the 
right legs 0,2,4 were only give 14 pulses the result would 
be a right turn due to the drag created by the right legs 
throughout the duration of the gait cycle. Turns were 
measured by tests on the actual robot giving 15 left and 
right turns, plus a no turn. These performance values 
(measured in centimeters moved and degrees turned) were 
recorded and stored in the table with the addition of a 
“zero” value, corresponding to the robot not moving at all, 
giving a total of 32 turns. 

The second way in which the CGA was used in our 
research was for the incremental evolution of a solution 
for the box pushing problem. The first stage of evolution 
defined the robots’ behavior before they first touched the 
box, while the second stage determined their actions 
subsequently. The learning was done in two increments 
because the first stage required no cooperation while the 
second stage did. The CGA was perfectly fit for the 
incremental evolution of heterogeneous behavior. Each 
increment in the learning process was given its own cycle, 
forming a two part chromosome. The switch from the first 
cycle to the second occurs when the robot touches the box, 
after the completion of the gait cycle’s current execution. 
Each of the two cycles of the CGA chromosome has nine 
genes.  Every gene contains two 5-bit numbers, one 
representing a gait cycle with 32 possible turns and the 
other representing the repetitions of that gait cycle. The 
scheme representation of the chromosome is shown in 
Figure 4.  

(((T1 R1) (T2 R2) … (T9 R9)) ((T1 R1) (T2 R2) … (T9 R9))) 

Figure 4.  Scheme representation of the CGA chromosome where T is a 
specific turn and R is the number of repetitions of that turn. The genes 

that appear in bold represent the second cycle. 

In the first increment of evolution, each agent’s 
behavior was evolved without its partner’s presence in the 
simulation, each population evolved separately. For 
population A, the starting point was (10,5) facing down 
the x-axis; the fitness of an individual was either the value 
of the box’s y coordinate position after the trail ended or 
zero if the individual failed to move the box positively in 
the y direction. For population B, starting at the mirrored 
position (5,10) facing down the y-axis, the individual’s 
score was computed similarly except the agent was 
charged with moving the box positively in the x direction 
to receive a non-zero score. The first increment of learning 
produced two populations of sixty-four individuals 
capable of touching the box, one population evolved for 
the robot starting at (10,5) and the other starting at the 
mirrored position. For the second increment of learning 
the starting population had individuals with the first cycle 
evolved and the second cycle randomized.  



In the second increment of evolution, both agents were 
placed in their respective starting positions for team 
evaluation. The fitness score of a team of agents a is the 
product of the positive distances the box moved in the x 
and y directions. Where Xfinal and Yfinal represent the box’s 
final coordinates and Xstart and Ystart represent the box’s 
starting position, the fitness of any given evaluation would 
be ((Xfinal- Xstart) * ((Yfinal – Ystart)).  The team is given a 
score of zero if the product of the coordinates is negative 
meaning the agents failed to advance the box towards 
target corner of the area in either the x or y directions. 
Since the box’s starting position is (125,125) and the 
target corner is located at (250,250)  the maximum 
attainable fitness is 1252 or 15625.  

IV. CO-EVOLUTION USING PUNCTUATED ANYTIME 
LEARNING 

The concept of anytime learning was introduced by 
Grefenstette and Ramsey [1] to allow for the continuous 
updating of a robot’s internal model. A system of 
Punctuated Anytime Learning (PAL) was developed by 
Parker [4] to strengthen offline genetic algorithms by 
capitalizing on the dynamic nature of the anytime learning 
approach. Since offline GAs cannot allow for continuous 
updates of the computer’s models, the PAL system updates 
its model every G generations, resulting in periods of 
accelerated learning. The generations in which the model is 
updated are referred to as “punctuated” generations. When 
applied to the evolution of a single population, PAL 
updates the learning system every G generations by 
running tests on the actual robot and using these results for 
fitness biasing in the GA or for the co-evolution of model 
parameters.  

Punctuated anytime learning is a fairly different 
concept when applied to co-evolving populations [5]. The 
two systems of evolution bear the same name because they 
both capitalize on the idea of periodic updates during 
punctuated generations. The updated information that each 
population receives is a more accurate representation of the 
overall nature of the other populations. For ease of 
explanation, assume that an experiment has two 
populations, population A and population B. At every G 
generations, all individuals in population A are tested 
against all individuals in population B. The purpose of this 
process is to find the individual from each population that 
pairs best with members of the other population for 
evaluation at trial time. The chosen individual from each 
population will be referred to as the alpha individual. The 
most accurate method of evolution would be to select new 
alpha individuals at each generation. However, the process 
of alpha selection requires significant computation. 
Assuming there exists I individuals in each population and 
N populations, the computer must perform IN trials for each 
generation at trial time. To circumvent this level of 
computation, new alpha individuals are selected only at 
certain consistently spaced periods of time, the punctuated 
generation. During normal, non-punctuated generations, 
the alpha individuals selected from the last punctuated 
generations are paired with perspective team members in 
the evolving population for fitness evaluation. This method 

not only ensures consistency within a generation of training 
but it also decreases the total number of evaluations 
required to find an accurate solution. 

A. Sampling The Nature of Populations 
After the initial success with the PAL method of co-

evolution, it was concluded that a further reduction of 
computation time is required teams of three or more agents. 
We realized that it was possible to select an alpha 
individual while testing less than the entire population by 
taking a sample of the population [6]. The number of 
individuals used for comparison to select an alpha 
individual is called the sample size. Assuming there exists I 
individuals in each of the N populations with a sample size 
of S, the computer must perform N * (I * SN-1) trials for any 
given round of alpha selections which is much 
computationally cheaper than using our previous method 
requiring IN comparisons to select alphas.  

To test the success of the sampling method we tested 
the sample sizes of 1, 2, 4, 8, 16, 32, and 64 to determine 
the relative strength of the different sample sizes for co-
evolution [7]. In order to accurately measure the sample 
sizes strengths, it is essential to ensure that each sample 
size performed an equivalent number of fitness 
comparisons. The number of total alpha evaluations 
performed during a period of training depends on the 
sample size (S) and the spacing between punctuated 
generations (G). Since the key to comparing different 
sample sizes is ensuring an equal number of evaluations, 
we define sampling rate as S/G.  In testing, the sample rate 
was set to 1, meaning the sample size used for alpha 
selection was equal to the spacing of the punctuated 
generations.  Sample 1 performed alpha selection every 
generation, sample 2 performed alpha selection every 
second generation, and so on. In addition to these alpha 
evaluations, each generation also incurs 128 normal 
evaluations (the number of evaluations during a non-
punctuated generation), one for each of the sixty-four 
members of each population.  

Fitnessses were recorded at 0, 64, 128, 256, 512, 1024, 
2048, 5120, and 10240 alpha evaluations. It was found that 
the higher sample sizes, which also meant more time 
between punctuated generations, did poorly in early 
evolution, but better in later evolution.  The lower sampling 
sizes of 1, 2, and 4, have relatively inferior performance 
after the 1024th alpha evaluation. They are in general better 
in the initial stages of learning.  This quality of the smaller 
sample sizes shows their application for optimizing the 
method. They exhibit their accelerated growth up to the 
128th alpha evaluation. This is rather intuitive because by 
the sixty-fourth generation, the sample one has evolved 
with sixty-four different pairs of alpha individuals while 
the sample sixty-four has evolved with only one pair of 
alphas. The sample 4 continues its accelerated growth past 
the sample sizes of 1 and 2. Sample 1 and 2 lack the ability 
to represent the true nature of a population with so few 
comparisons for alpha selection; their fitness tend to 
plateau. The significance of the results can be seen as 
helping to determine whether it is more important to have a 
more accurately selected or a more current alpha individual 
for training.  



V. COMPETING SAMPLE SIZES 
Based on these results, we concluded that it is feasible 

to optimize our method by using the smaller sample sizes 
in the earlier generations and the larger sample sizes for 
evolution in the later generation. This would allow the 
learning system to capitalize on the accelerated growth of 
the lower sample sizes in the early generations, while 
taking advantage of the sustained growth of the higher 
sample sizes in the later generations. The best way to 
optimize the system would be to allow the learning system 
to choose the appropriate sample size for evolution at any 
given time; a system of predefined sample size switching 
can only be realized through extensive testing and 
observation.  To give the learning system liberty to choose 
a sample size, we created a method that simultaneously 
evolves two separate populations with different sample 
sizes.  This allows the algorithm to maintain the population 
of the current best sample size for evolution while testing it 
against a population with a sample size twice as large. 

In order to determine which sample size is best suited 
for evolution we need to ensure that both competing 
sample sizes begin their respective generations of training 
on the same populations with equal number of alpha 
evaluations incurred during the period of training. To 
achieve this we set the two competing sample sizes to the 
same sampling rate.  In addition, in order to compare in this 
new method with those of the past, the sampling rate 
needed to be set to ½ since there were two evolutions can 
concurrently taking place.  This means that a sample 1 
selects alphas every other generation while a competing 
sample 2 selects alphas every fourth generation, etc. Not 
only does this provide an equal number of evaluations 
during a period of training, but it also keeps the total 
number of evaluations incurred the same as running only a 
single sample size at the sampling rate of 1. The evolution  

 

is started with a sample 1 at generation 0.  Each of the two 
populations is copied and alphas are then selected by both 
sets of sample sizes. These two sets are evolved until the 
higher sample size undergoes a second round of alpha 
selection then the fitnesses of the newly selected alphas are 
compared.  In the case of a competing sample 1 and sample 
2, the fitnesses of the alphas are compared after every 
fourth generation of training. If the higher sample size 
selects a more fit team of alphas, the populations with 
which it evolved are then cloned and evolved with a 
sample size twice as large. On the other hand, if the lower 
sample size evolves more fit alpha individuals, the two 
currently competing sample sizes continue until the higher 
sample size selects new alphas. 

A. Results 
To test our method, we ran five separate tests of the GA 

for 5120 generations each with the sampling rate set to 1/2. 
The results are plotted in Figure 5. The x-axis represents 
the total number of alpha evaluations performed by both 
competing sample sizes added together, and the y-axis 
represents the fitness score achieved by the current best 
sample size’s selected alpha individuals and were recorded 
at the generations 0, 64, 128, 256, 512, 1024, 2048, and 
5120. 

When analyzing the above graph it is clear that this 
method is very successful, with all 5 test runs reaching a 
fitness of above 14,000 by only the 1024th generation and 
three of the five tests reaching the same level well before. 
The optimization of our method is even clearer when 
compared to the single sample fitness scores shown in 
Figure 6, where only the sample 64 reaches a fitness 
greater than 14,000 by the 1024th generation. As can be 
seen,  the competing sample sizes method is compared with  

0

2000

4000

6000

8000

10000

12000

14000

16000

0 1000 2000 3000 4000 5000

Alpha Evaluations

F
it

n
e
s
s

test1

test2

test3

test4

test5

avg

 
Figure 5.  Plotted above are five separate test runs of the competing sample GA with the sampling rate set to 1/2. The average is shown in bold.   



seven other methods, each using a set sample size.   The 
new method (shown in bold) is comparable to the lower 
sample sizes during early evolution and higher sample 
sizes during late evolution.  It makes the changes to the 
sample sizes when needed to be most effective for the 
evolution of a solution to the problem. 

The greatest advantage of using the system of 
competing sample sizes is that the learning system decides 
which sample size is best suited for a period of evolution. 
If a person is forced to choose appropriate sample sizes, 
this requires extensive testing of all sample sizes in 
separate GA runs to observe their behavior specific to a 
particular problem. With this new method of competing 
sample sizes it is possible to find an extremely accurate yet 
computationally inexpensive solution to a problem with 
only a single run of the GA.  

VI. CONCLUSIONS 
There are many challenges involved when attempting 

to optimize a method of co-evolution. It is essential to have 
the learning system decide when to adjust sample sizes 
because the optimal switching points can vary greatly 
between different evolutions on the same problem. A 
plausible way to punctually, accurately, and objectively 
adjust the sample size is to test different sample sizes 
during the evolution itself. To avoid doubling the level of 
computation from our previous method, we set the 
sampling rate to half of its original value.  The results show 
that not only does this method produce a highly accurate 
solution but the timely switching of sample sizes reduces 
the overall computation time. In the future, we hope to 
extend this method to problems involving more than two 
agents to demonstrate the scalability of the method. 

REFERENCES 
[1] Grefenstette, J. J. and Ramsey, C. L.: An Aproach to Anytime 

Learning. Proceeding of the Ninth International Conference on 
Machine Learning, (1992), 189-195.  

[2] Luke, S. and Spector, L.: Evolving Teamwork and Coordination 
with Genetic Programming.  Proceedings of First Genetic 
Programming Conference. (1996), 150-156. 

[3] Parker, Gary B.:  Evolving Cyclic Control for a Hexapod Robot 
Performing Area Coverage.  Proceedings of 2001 IEEE 
International Symposium on Computational Intelligence in 
Robotics and Automation (CIRA 2001). (2001), 561-566. 

[4] Parker, Gary B.:  Punctuated Anytime Learning for Hexapod Gait 
Generation.  Proceedings of the 2002 IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IROS 2002).  
(2002),  2664-2671. 

[5] Parker, Gary B. and Blumenthal, J.: Punctuated Anytime Learning 
for Evolving a Team. Proceedings of the World Automation 
Congress (WAC2002), Vol. 14, Robotics, Manufacturing, 
Automation and Control.  (2002),  559-566. 

[6] Parker, Gary B. and Blumenthal, J.:  Sampling the Nature of A 
Population: Punctuated Anytime Learning For Co-Evolving A 
Team. Intelligent Engineering Systems Through Artificial Neural 
Networks (ANNIE2002, Vol. 12)  (2002), 207-212. 

[7] Parker, Gary B. and Blumenthal J.:  Comparison of Sampling Sizes 
for the Co-Evolution of Cooperative Agents.  Proceedings of the 
2003 Congress on Evolutionary Computation (CEC 2003).  (2003),  
536-543. 

[8] Potter M. A. and De Jong K. A.:  A Cooperative Coevolutionary 
Approach to Function Optimization.  Proceedings of the Third 
Conference on Parallel Problem Solving from Nature. (1994), 249-
257.   

[9] Potter, M. A., Meeden L. A., and Schultz A. C.:  Heterogeneity in 
the Coevolved Behaviors of Mobile Robots: The Emergence of 
Specialists.  Proceedings of the Seventeenth International 
Conference on Artificial Intelligence.  (2001).  

[10] Wiegand R. P., Liles W. C., and De Jong K. A.:  An Empirical 
Analysis of Collaboration Methods in Cooperative Coevolutionary 
Algorithms.  Proceedings of the Genetic and Evolutionary 
Computation Conference (GECCO). (2001), 1235-1245. 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 200 400 600 800 1000

Alpha Evaluations

Fi
tn

es
s

sample1
sample2
sample4
sample8
sample16
sample32
sample64
Competing

 

Figure 6.  This graph shows a comparison of the competing sampling sizes method (shown in bold) compared to using set sampling sizes.   In each 
case, the line shown is the average of 5 runs. 


