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Abstract  -- The incremental evolution of neural networks to 

control hexapod robot locomotion can be separated into two main 
parts: the evolution of leg controllers that produce the cyclic action 
of single legs (leg cycles) and the evolution of the coordination of 
these individual leg controllers to produce a gait.  In this paper, we 
use a genetic algorithm to do the first of these steps, to evolve the 
structure of an artificial neural network that produces leg cycles for 
a hexapod robot.  The robot has 12 servo effectors; two per leg to 
produce horizontal and vertical movement.  The servos are 
controlled by pulses that are provided by the leg’s controller.  A 
cycle of these pulses produces a leg cycle.  With minimal 
restrictions on the structure of the neural network, a genetic 
algorithm was used to evolve in simulation the parameters of 
neurons and their connections.  Neural networks were implemented 
on a BASIC Stamp II SX microcomputer and found to generate 
smooth leg cycles on the hexapod robot. 

 

I. INTRODUCTION 
 
Locomotion is a significant control issue for legged robots 

since the coordinated movement of all the legs is required to 
produce a good gait.  Developing a system for learning gaits 
can eliminate the need for writing controllers for each 
specific robot, plus give the robot the ability to adapt to 
changes in its capabilities and/or environment.  The problem 
of learning gaits can be divided into two parts, leg cycle 
learning and gait cycle learning, that can be implemented 
incrementally.  In this way, near optimal controllers can be 
learned for each leg to produce effective cycles of movement 
that produce forward thrust.  These controllers can then be 
coordinated to work together in producing a gait that 
maintains stability while propelling the robot forward at 
maximum speed.  In this paper, we discuss a method for 
learning the controller that can  produce  a  leg  cycle  for  an 
individual  leg.  This  is done using a genetic algorithm (GA) 
that learns the connections and their weights for a neural 
network (NN) controller.  This controller, in addition to the 
ones for the other five legs, can be used in future work to 
produce a gait for a hexapod robot. 

A number of researchers have used evolutionary 
computation to evolve controllers for legged robots 

[1,2,4,5,6,7,8,9].  Most related to the work presented in this 
paper is that of Beer and Gallagher [1] and Lewis et al [7]. 

Beer and Gallagher used genetic algorithms to develop 
neural network controllers for a hexapod robot [1]. The 
controller had three motor neurons (foot, backward-swing, 
and forward-swing), two internal unspecified neurons, and a 
single angle sensing neuron. The three motor neurons and 
two internal neurons were fully connected.  They each had a 
threshold, a time constant parameter, and an input from the 
angle sensing neurons.  The GA learned the weights of these 
eight input connections for the set of five neurons.  After a 
leg cycle was learned for a generic leg, six copies of the leg 
controller were made.  Each of the leg controllers was 
connected to its neighbor leg controllers. A GA was used to 
learn the connection weights between the leg NNs.    

Lewis, Fagg, and Solidum used this staged evolution also 
[7]. In their model, the position of each of the two leg joints 
was driven by the state of a neuron. The two neurons 
controlling the leg were the leg swing neuron and the leg 
elevation neuron. The two neurons formed an oscillator, and 
the oscillators were mapped to a pulse width modulated 
signal that controlled the position of the motors. A GA was 
used to find the parameters of this two-neuron network. 
Initially, the NN started at random values but within several 
cycles the two neurons fell into an oscillatory pattern, with a 
phase difference of 90 degrees. Then a network of these 
oscillators was evolved by using a GA to coordinate the 
movements of the different legs.   

In previous work to learn hexapod gaits, we used a cyclic 
genetic algorithm (CGA) [8] to learn the pulse sequences 
that were needed to directly control servomotors on each leg 
to generate leg cycles [9]. These pulse sequences took into 
consideration the peculiarities of the leg’s capabilities.  After 
each leg was trained, a GA was used to evolve gaits. 

In this paper, the weights of a fully connected six neuron 
NN are learned.  This NN takes in two sensor inputs and 
outputs a sequence of pulses to the two servomotors of the 
leg.  This work is distinct from the work discussed 
previously.  In the Beer and Gallagher model, the neural 
controller was designed at a macro level in which the output 
of neurons represented complete actions such as forward 
swing, backward swing and foot-down.  The GA was used to 



 

find the appropriate associated weights and thresholds. Our 
approach is similar to this except that we have six neurons 
with two producing control pulses to the leg’s two 
servomotors and two sensor inputs marking horizontal and 
vertical leg extremes.  The outputs of the neurons are pulse 
widths that control the angular positions of each leg servo.  
In Lewis, Fagg, and Solidum’s work, they specifically 
defined the controller of each leg as a simple two-neuron 
oscillator that generated outputs that were mapped into pulse 
widths and then sent to servos. The GA was used to learn the 
weights and thresholds.  

 
  

Fig. 1:  ServoBot with seven BASIC Stamp II controllers; one for 
each leg and one to coordinate the legs. 

 

In the work presented in this paper, the neural structure 
will evolve, including the connections, associated weights, 
and neuron thresholds.  In addition, this work differs from 
these works in that the leg cycle learned is for a specific leg 
taking into account its particular capabilities.  The resultant 
NN controller is then implemented on a BASIC Stamp II SX 
(sold by Parallax, Inc.).  The output of the NN running on the 
BASIC Stamp is a cycle of pulses sent to the servos of the leg 
that produces a viable leg cycle.    

 

II. SERVOBOT 
 

The NN controller was designed to work on the ServoBot 
robot (Figure 1).  It is an inexpensive hexapod robot that has 
two degrees of freedom per leg.  Twelve servos, two per leg, 
provide thrust and vertical movement. The servomotors have 
three wires; one for power, one for ground, and a third 
provides control.  They can be set to specific angular 

positions by providing a control pulse.  This pulse should be 
repeated every 25 ms for the servo to maintain a constant 
position.  The length of the pulse determines the position.  
Pulses from 0 to 3000 µs cover the full range of movement 
for each leg, although each servo is unique in its pulse to 
position ratios.  Some may have a full down position at 20, 
on others it may be 80.  There is the same variance in the full 
up position.  In addition, the right and left side servos are 
mounted differently to ensure consistent mechanical 
capabilities, so in some cases the full down position is at a 
pulse length of 10 and in some cases it’s at 2400.  

  

Neuron    Pulse  X-Posit Y-Posit  
 0     0   0    0 
 1   200    1   0   
 2   400   7   3 
 3   600  16   8 
 4   800  28  14 
 5  1000  41  21 
 6  1200  52  28 
 7  1400  63  34 
 8  1600  71  39 
 9  1800  75  43 
10  2000  77  45 
11  2200  76  48 
12  2400  73  49 
13  2600  73  49 
14  2800  73  49 
15  3000  73  49 

Fig. 2:  The neuron output with its corresponding pulse width.  This 
pulse will affect the horizontal servo by moving the foot to the X 
position shown.  This pulse sent to the vertical servo would move 
the leg’s foot to the designated Y position.  
 

 

By measuring the results on the actual robot, applied 
pulses can be converted into leg positions for both the 
vertical and horizontal servos.  Figure 2 shows the 
relationship between pulse widths and the position they 
determine for a particular leg.  These are measured 
capabilities of a robot©s specific leg.  The Neuron Output 
column will be explained in the next section. The Pulse 
Width column shows several possible pulse widths that can 
control the servo.  The X and Y positions show the resultant 
leg position due to the movement of the horizontal and 
vertical servos associated with each pulse width. The full 
forward position is defined as 0 for X; the full downward 
position is defined as 0 for Y.   A pulse with a width of 600 µs 
sent to the horizontal servo will drive it to an angle that will 
result in the leg moving to a position 16 mm back from the 0 
position.  The same pulse sent to the vertical servo will result 
in the leg lifting/lowering the foot to 8 mm off the ground. 



 

The servo cannot move the leg fast enough to reach the 
desired position within one pulse if the differences in pulses 
are too much.  This results in the fastest leg movement as the 
servo attempts to get to its desired position as soon as 
possible.  Through experimentation, it was found that this 
fastest speed results in a maximum leg movement of 5mm in 
one pulse.    For example, if the original pulses are (0, 0), 
corresponding to (horizontal servo, vertical servo), putting 
the leg at x, y position (0, 0) and the next pulses sent are (600, 
0), the associated position (from Figure 2) should be (16, 0). 
However, because this exceeds the servo’s capability, the leg 
will only move to (5, 0) in that one pulse.  

Control for the ServoBot is provided by seven BASIC 
Stamp II SXs, one per leg and one working as the overall 
controller.  Each leg’s stamp should produce a sequence of 
pulses that will direct the position of its two servos.  The 
central stamp controller will be used in future work to 
maintain the timing so all the neurons of the leg controller 
BASIC Stamps will fire at the same time.   

 

III. THE NEURAL NETWORK CONTROLLER 
 
The NN controller for the robot was designed to be 

implemented on seven BASIC Stamp II SX controllers.  One 
of the BASIC Stamps will be the timer to control the 
coordinated execution of the other stamps.  It will release a 
control pulse every 25 ms (the timing is predicated on the 
requirements of the servomotors that require pulses every 
25ms to designate servo location).  The six other BASIC 
Stamps will each control a leg.  They will serve as nerve 
ganglia, with sensor inputs and actuator outputs, for that leg.  
These individual leg ganglia will be connected to each other 
to form a complete NN for locomotion control.  Although the 
six BASIC stamps can do their computations in parallel, the 
computations within each stamp will be sequential.  The 
appearance of parallel processing of every neuron will be 
achieved because the computations within each stamp will 
take place within the 25ms timer duration. 

Each BASIC Stamp will simulate a neural ganglion where 
all of the neurons are firing simultaneously.  This leg 
ganglion has six neurons (Figure 3).  Each neuron can read 
the input from the two BASIC stamp pins that will be 
connected to sensors and the pins connected to other leg 
ganglia.  In addition, each neuron has six input connections 
from each of the internal neurons (including itself), plus two 
thresholds.  Two of the neurons are directly connected to the 
servomotors.   

The coordinator controller will send a signal to all of the 
leg controllers every 25ms (we refer to this as an iteration).  
Upon receipt of this signal, internal computations using 
actual external connections and internal connections will be 

computed and the new internal values will be set as external 
signals are sent.  A more detailed description of the NN 
follows. 

 
 

Fig. 3: The neural network controller for a single leg.  The 
controller is made up of 6 neurons that each have 6 output (one that 
goes to each neuron including one that loops back to the sending 
neuron).  This means that each neuron will also have 6 inputs from 
neurons.  In addition, each neuron has an input from the horizontal 
sensor and one from the vertical sensor.  The weights of all of these 
connections are learned by the genetic algorithm.  One of the 
neurons is preset to send a control pulse to the horizontal servo and 
one is preset to send a control pulse to the vertical servo.     

 
 
Sensors. The two sensors are simulated at this point. 

Sensor-1 monitors horizontal extreme positions and sensor-2 
monitors vertical extreme positions. When the leg hits its full 
backward position, sensor-1 will fire 15 and keeps firing it 
until the leg hits its full forward position, where the sensor 
starts to fire 0. When the leg hits its highest position, 
sensor-2 will fire 15 until the leg hits its lowest position 



 

where the sensor starts to fire 0.   The sensors are connected 
to all of the neurons. The connection weights, which are 
within the range [-15, 15], are left to the GA to find. 

Neural connections. Due to memory limitations within a 
BASIC Stamp II SX, the number of neurons is limited to six 
(Neuron-0 to Neuron-5).  Six should be sufficient for the GA 
to evolve freely.  It is not known what role each neuron will 
play in the controlling process and there is no concern with 
whether a neuron is useful or not, just that enough neurons 
are made available to solve the problem.  Each leg controller 
will have 6 neurons that are fully connected to each other and 
connected to the possible external connections.  External 
connections are actual, through wiring between pins, and 
internal connections are simulated through variables holding 
the output.  Each neuron’s connections with other neurons 
and associated weights are left for the GA to find.  It is 
possible that some neurons will not be used in the final result. 
The connection weights are within the range [-15, 15]. If it is 
0, there is no connection in between; if it is positive, the 
effect from the source to target neuron is positive; if it is 
negative, the effect from the source to target neuron is 
negative.  

Thresholds. Each neuron has two thresholds: 
threshold-low and threshold-high. During each iteration the 
NN changes its state, each neuron will accumulate the effects 
of those that are connected with it and of the sensors. This is 
called the accumulation value. The output of a neuron in 
each iteration is determined by its accumulation value and its 
two thresholds. The maximum output for a neuron is 15 and 
the minimum value is 0. If the accumulation of a neuron is 
smaller than threshold-low, it will fire a 0. If the 
accumulation of a neuron is more than threshold-high, it will 
fire a 15. If the accumulation of a neuron is between the two, 
a linear function will transform it to a value between 0 and 
15 that will be fired. This linear function is shown in 
Equation 1.  
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Output is the output of a neuron; A is the accumulation 

of a neuron; T1 is the lower threshold; T2 is the higher 
threshold.  In case threshold-high is smaller than 
threshold-low, the neuron will fire 15 when the accumulation 
is larger than threshold-low and fire 0 when the 
accumulation is smaller than threshold-low. The selection of 
the 0-15 range is to allow efficient storage in the BASIC 
Stamp II SX. With this range, we can use a nibble (4bits) to 
represent the output from a neuron. 

Output.  Neuron-0 is connected directly to the horizontal 
servo; Neuron-1 is connected directly to the vertical servo.  
At each iteration, outputs from Neuron-0 and Neuron-1, 
which are within the range [0, 15], will be mapped to 
associated pulse widths [0, 3000] by multiplying it by 200µs 
and sent to the leg©s servos to control their angular position 
and subsequently set the linear positions of the leg. 

Execution.  The NN will start at an initial state (defined by 
the GA) and then it will run for 500 iterations, i.e. it will 
change its state 500 times. Each iteration is started by a 
signal from the coordinator controller (the 7th BASIC Stamp 
II SX). The signal will be sent every 25ms. After the NN gets 
this signal, it will evaluate itself according to its present state 
and calculate what the next neuron values should be.    

    

IV. GENETIC ALGORITHM 
 
A genetic algorithm (GA) was used to find the connection 

weights and the thresholds of the ganglia of neurons.  The 
software package GENESIS5.0 [3] was used to perform the 
functions of the GA.  A population of 80 chromosomes was 
randomly generated. Each chromosome represented a NN 
structure. The NN ran 500 iterations and thus generated a 
sequence of 500 pulses for each of the two servos. The two 
sequences were evaluated with a fitness assigned.  The 
individual chromosome used was a series of numbers that 
describe the NN controller. It is shown in Figure 4.  

 
 

((n0 t01 t02 w00 w01 w02 w03 w04 w05 ws10 ws20) 
 (n1 t11 t12 w10 w11 w12 w13 w14 w15 ws11 ws21) 
 (n2 t21 t22 w20 w21 w22 w23 w24 w25 ws12 ws22) 
 (n3 t31 t32 w30 w31 w32 w33 w34 w35 ws13 ws23) 
 (n4 t41 t42 w40 w41 w42 w43 w44 w45 ws14 ws24) 
 (n5 t51 t52 w50 w51 w52 w53 w54 w55 ws15 ws25)) 

 
Fig. 4: The chromosome used to represent a neural network. ni is 
the original value (value between 0 and 15) of the ith neuron.   ti1 
is the lower threshold (value between  -400 and 400) of the ith 
neuron.  ti2 is the higher threshold (value between  -400 and 400) 
of the ith neuron.  wij is the connection weight (value between  
-15 and 15) from the ith neuron to the jth neuron.  ws1i is the 
connection weight (value between -15 and 15) from sensor-1 to the 
ith neuron.  ws2i is the connection weight (value between  -15 and 
15) from sensor-2 to the ith neuron. 

 
 
The general GA functions were performed by the 

GENESIS package, but a fitness function was provided to 
run the program.  Fitnesses consisted of three factors: 
forward movement, number of times raising the leg, and 
drag generated. Forward movement was calculated by the 



 

movement generated when the leg was on the ground.  The 
number of times the leg was raised and lowered was 
penalized because it wasted energy and reduced the effect of 
the forward movement generated.   The drag generated was a 
penalty due to a leg staying on the ground with its full 
backward position, which would just cause drag.   

 

V.  IMPLEMENTATION ON THE BASIC STAMP 
 

Tests were done using five different (randomly generated) 
starting populations.  Learning was done in simulation with 
the final best solution tested on a leg of the actual robot.  
Figure 5 shows the learning curve with the average of the 
five separate tests.  As can be observed, the GA quickly 
learned and by about 60 generations all of the trials resulted 
in a leg cycle that could produce sustained forward 
movement.  In the remaining generations, the GA continued 
to refine the solution to produce a better leg cycle.  Figure 6 
shows the chromosome of the individual that resulted in the 
fittest NN controller (compare with Figure 4 to see what each 
field represents).   

 
 

Fig. 5: Single leg training, the average populations (the error bars 
show standard error) of the five starting. The fitness of the best 
individual at every 20 generations of training is shown. 
 

 
The artificial NN, which was found to be the fittest in 

simulation, was used for implemented on the hardware.  
Tests were run using the BASIC Stamp code development 
software, in the debug mode, to observe the pulse outputs.  
These were determined to be reasonable so it was used to 
attempt implementation on the BASIC Stamp.  Initially the 

standard BASIC Stamp II was used.  The weights were 
stored in the EPROM, an array of 6 nibbles was used to store 
the values of the neurons, and an additional array of 6 nibbles 
was used to store the resultant values of the 6 neurons 
(values ranged from 0 to 15).  

The program used subprograms to sequentially compute 
the new values for each of the neurons.  During these 
computations the old neuron values were held constant in the 
current neuron value array.  After the computations were 
complete, the new values were copied over the old and pulse 
values were sent for the two servos.    

This program was downloaded/executed and the results 
observed.   In these initial tests done using the standard 
BASIC Stamp II, its processing speed was observed to be too 
slow to deliver timely control pulses to the servos.  The 
movements of the leg looked correct, but the pulse signals 
sent to the servos were spaced at long intervals that resulted 
in very slow and rough leg movement.  Implementation was 
switched to the BASIC Stamp II SX and it was determined 
that this microprocessor could make the calculations fast 
enough to deliver pulses to the servos in time to produce 
smooth leg movement.   

 

 

 ((4 -186  125  14 -12  -8  3  6 -3 -1 -10)     

 (10 167  398 -14   0  12 -14  1  0  6 -13)     

 (11 104   15   1  -2  15 -14  3  0  5  13)     

 (5  173 -362 -11  -8 -14  -5 -9  7 -13  7)     

 (10  88  274 -12  -8   2  -1 14  0  -5  1)     

 (3  -79 -135  -8  15  -7   8  3 -4  6  2)) 

Fig. 6: The resultant NN chromosome that produced the fittest 
controller for the leg. 

 

The pulses produced by the NN controller resulted in a leg 
cycle that used the full horizontal movement doing thrusts.  
The return was done immediately upon reaching the full 
back position with an up and down phase that put the leg 
back on the ground in position for the next thrust.   Figure 7 
shows the movement of the actual leg by a plot of the X and 
Y positions of the foot (the full up, down, forward, and back 
positions were measured; the slopes were approximated).    

The leg starts out moving back from the 0 position to 73 
mm back while the foot stays on the ground (this takes 15 
pulses). When the leg gets to the full back position, the legs 
starts moving forward and at the same time it starts lifting the 
foot (this can be seen at pulse 15).  This lift continues for 
about eight pulses and then the leg quickly lowers the foot 
back down to the ground.  At approximately this point, the 
NN directs the horizontal servo to start moving the leg back 
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again.  There is an instant where the leg is moving back 
while the foot is not all the way on the ground.  This causes 
no problem because the horizontal movement at this point is 
minimal so minimal thrust is lost and when the foot hits the 
ground the leg produces immediate thrust.  The cycle 
continues with the foot moving vertically from 0 to 23 mm 
and horizontally from 14 to 73 mm.   The speed of the foot is 
fastest in between the extremes as it slows down to reverse 
direction. 

 

Fig. 7: Observed movement of the leg when the best NN controller 
was downloaded and ran on the BASIC Stamp II SX.  The graph 
shows the X and Y position of the foot as the leg moves in the first 
50 pulses.  After the initial 15 pulses, a cycle of 22 pulses starts and 
is continually repeated.  

 

VI.  CONCLUSIONS 

 
NN controllers for the BASIC Stamp II SX are capable of 

producing useable leg cycles for the ServoBot robot.  A GA 
can effectively evolve the structure of these NN controllers.  
The resultant NN controllers are specialized for the task and 
the learning system will have the flexibility to adapt to 
changes in the environment or robot capabilities.  Tests on 
the SX confirmed the viability of this method as the 
produced leg cycles worked well on the actual robot.  Future 
work will involve the generation of NN controllers for each 
of the legs followed by the evolution of a central controller.  
Wires between the I/O pins of the BASIC Stamp will connect 
the leg controllers to each other.  Alternatively, the six NN 

ganglia can be co-evolved to learn coordination with no 
central controller (except to send timing signals for 
synchronization). 
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