

Evolving Neural Networks for Hexapod Leg Controllers

Gary B. Parker and Zhiyi Li
Computer Science

Connecticut College
New London, Connecticut 06320

parker@conncoll.edu, zli@conncoll.edu

Abstract -- The incremental evolution of neural networks to

control hexapod robot locomotion can be separated into two main
parts: the evolution of leg controllers that produce the cyclic action
of single legs (leg cycles) and the evolution of the coordination of
these individual leg controllers to produce a gait. In this paper, we
use a genetic algorithm to do the first of these steps, to evolve the
structure of an artificial neural network that produces leg cycles for
a hexapod robot. The robot has 12 servo effectors; two per leg to
produce horizontal and vertical movement. The servos are
controlled by pulses that are provided by the leg’s controller. A
cycle of these pulses produces a leg cycle. With minimal
restrictions on the structure of the neural network, a genetic
algorithm was used to evolve in simulation the parameters of
neurons and their connections. Neural networks were implemented
on a BASIC Stamp II SX microcomputer and found to generate
smooth leg cycles on the hexapod robot.

I. INTRODUCTION

Locomotion is a significant control issue for legged robots

since the coordinated movement of all the legs is required to
produce a good gait. Developing a system for learning gaits
can eliminate the need for writing controllers for each
specific robot, plus give the robot the ability to adapt to
changes in its capabilities and/or environment. The problem
of learning gaits can be divided into two parts, leg cycle
learning and gait cycle learning, that can be implemented
incrementally. In this way, near optimal controllers can be
learned for each leg to produce effective cycles of movement
that produce forward thrust. These controllers can then be
coordinated to work together in producing a gait that
maintains stability while propelling the robot forward at
maximum speed. In this paper, we discuss a method for
learning the controller that can produce a leg cycle for an
individual leg. This is done using a genetic algorithm (GA)
that learns the connections and their weights for a neural
network (NN) controller. This controller, in addition to the
ones for the other five legs, can be used in future work to
produce a gait for a hexapod robot.

A number of researchers have used evolutionary
computation to evolve controllers for legged robots

[1,2,4,5,6,7,8,9]. Most related to the work presented in this
paper is that of Beer and Gallagher [1] and Lewis et al [7].

Beer and Gallagher used genetic algorithms to develop
neural network controllers for a hexapod robot [1]. The
controller had three motor neurons (foot, backward-swing,
and forward-swing), two internal unspecified neurons, and a
single angle sensing neuron. The three motor neurons and
two internal neurons were fully connected. They each had a
threshold, a time constant parameter, and an input from the
angle sensing neurons. The GA learned the weights of these
eight input connections for the set of five neurons. After a
leg cycle was learned for a generic leg, six copies of the leg
controller were made. Each of the leg controllers was
connected to its neighbor leg controllers. A GA was used to
learn the connection weights between the leg NNs.

Lewis, Fagg, and Solidum used this staged evolution also
[7]. In their model, the position of each of the two leg joints
was driven by the state of a neuron. The two neurons
controlling the leg were the leg swing neuron and the leg
elevation neuron. The two neurons formed an oscillator, and
the oscillators were mapped to a pulse width modulated
signal that controlled the position of the motors. A GA was
used to find the parameters of this two-neuron network.
Initially, the NN started at random values but within several
cycles the two neurons fell into an oscillatory pattern, with a
phase difference of 90 degrees. Then a network of these
oscillators was evolved by using a GA to coordinate the
movements of the different legs.

In previous work to learn hexapod gaits, we used a cyclic
genetic algorithm (CGA) [8] to learn the pulse sequences
that were needed to directly control servomotors on each leg
to generate leg cycles [9]. These pulse sequences took into
consideration the peculiarities of the leg’s capabilities. After
each leg was trained, a GA was used to evolve gaits.

In this paper, the weights of a fully connected six neuron
NN are learned. This NN takes in two sensor inputs and
outputs a sequence of pulses to the two servomotors of the
leg. This work is distinct from the work discussed
previously. In the Beer and Gallagher model, the neural
controller was designed at a macro level in which the output
of neurons represented complete actions such as forward
swing, backward swing and foot-down. The GA was used to

find the appropriate associated weights and thresholds. Our
approach is similar to this except that we have six neurons
with two producing control pulses to the leg’s two
servomotors and two sensor inputs marking horizontal and
vertical leg extremes. The outputs of the neurons are pulse
widths that control the angular positions of each leg servo.
In Lewis, Fagg, and Solidum’s work, they specifically
defined the controller of each leg as a simple two-neuron
oscillator that generated outputs that were mapped into pulse
widths and then sent to servos. The GA was used to learn the
weights and thresholds.

Fig. 1: ServoBot with seven BASIC Stamp II controllers; one for
each leg and one to coordinate the legs.

In the work presented in this paper, the neural structure
will evolve, including the connections, associated weights,
and neuron thresholds. In addition, this work differs from
these works in that the leg cycle learned is for a specific leg
taking into account its particular capabilities. The resultant
NN controller is then implemented on a BASIC Stamp II SX
(sold by Parallax, Inc.). The output of the NN running on the
BASIC Stamp is a cycle of pulses sent to the servos of the leg
that produces a viable leg cycle.

II. SERVOBOT

The NN controller was designed to work on the ServoBot
robot (Figure 1). It is an inexpensive hexapod robot that has
two degrees of freedom per leg. Twelve servos, two per leg,
provide thrust and vertical movement. The servomotors have
three wires; one for power, one for ground, and a third
provides control. They can be set to specific angular

positions by providing a control pulse. This pulse should be
repeated every 25 ms for the servo to maintain a constant
position. The length of the pulse determines the position.
Pulses from 0 to 3000 µs cover the full range of movement
for each leg, although each servo is unique in its pulse to
position ratios. Some may have a full down position at 20,
on others it may be 80. There is the same variance in the full
up position. In addition, the right and left side servos are
mounted differently to ensure consistent mechanical
capabilities, so in some cases the full down position is at a
pulse length of 10 and in some cases it’s at 2400.

Neuron Pulse X-Posit Y-Posit
 0 0 0 0
 1 200 1 0
 2 400 7 3
 3 600 16 8
 4 800 28 14
 5 1000 41 21
 6 1200 52 28
 7 1400 63 34
 8 1600 71 39
 9 1800 75 43
10 2000 77 45
11 2200 76 48
12 2400 73 49
13 2600 73 49
14 2800 73 49
15 3000 73 49

Fig. 2: The neuron output with its corresponding pulse width. This
pulse will affect the horizontal servo by moving the foot to the X
position shown. This pulse sent to the vertical servo would move
the leg’s foot to the designated Y position.

By measuring the results on the actual robot, applied
pulses can be converted into leg positions for both the
vertical and horizontal servos. Figure 2 shows the
relationship between pulse widths and the position they
determine for a particular leg. These are measured
capabilities of a robot©s specific leg. The Neuron Output
column will be explained in the next section. The Pulse
Width column shows several possible pulse widths that can
control the servo. The X and Y positions show the resultant
leg position due to the movement of the horizontal and
vertical servos associated with each pulse width. The full
forward position is defined as 0 for X; the full downward
position is defined as 0 for Y. A pulse with a width of 600 µs
sent to the horizontal servo will drive it to an angle that will
result in the leg moving to a position 16 mm back from the 0
position. The same pulse sent to the vertical servo will result
in the leg lifting/lowering the foot to 8 mm off the ground.

The servo cannot move the leg fast enough to reach the
desired position within one pulse if the differences in pulses
are too much. This results in the fastest leg movement as the
servo attempts to get to its desired position as soon as
possible. Through experimentation, it was found that this
fastest speed results in a maximum leg movement of 5mm in
one pulse. For example, if the original pulses are (0, 0),
corresponding to (horizontal servo, vertical servo), putting
the leg at x, y position (0, 0) and the next pulses sent are (600,
0), the associated position (from Figure 2) should be (16, 0).
However, because this exceeds the servo’s capability, the leg
will only move to (5, 0) in that one pulse.

Control for the ServoBot is provided by seven BASIC
Stamp II SXs, one per leg and one working as the overall
controller. Each leg’s stamp should produce a sequence of
pulses that will direct the position of its two servos. The
central stamp controller will be used in future work to
maintain the timing so all the neurons of the leg controller
BASIC Stamps will fire at the same time.

III. THE NEURAL NETWORK CONTROLLER

The NN controller for the robot was designed to be

implemented on seven BASIC Stamp II SX controllers. One
of the BASIC Stamps will be the timer to control the
coordinated execution of the other stamps. It will release a
control pulse every 25 ms (the timing is predicated on the
requirements of the servomotors that require pulses every
25ms to designate servo location). The six other BASIC
Stamps will each control a leg. They will serve as nerve
ganglia, with sensor inputs and actuator outputs, for that leg.
These individual leg ganglia will be connected to each other
to form a complete NN for locomotion control. Although the
six BASIC stamps can do their computations in parallel, the
computations within each stamp will be sequential. The
appearance of parallel processing of every neuron will be
achieved because the computations within each stamp will
take place within the 25ms timer duration.

Each BASIC Stamp will simulate a neural ganglion where
all of the neurons are firing simultaneously. This leg
ganglion has six neurons (Figure 3). Each neuron can read
the input from the two BASIC stamp pins that will be
connected to sensors and the pins connected to other leg
ganglia. In addition, each neuron has six input connections
from each of the internal neurons (including itself), plus two
thresholds. Two of the neurons are directly connected to the
servomotors.

The coordinator controller will send a signal to all of the
leg controllers every 25ms (we refer to this as an iteration).
Upon receipt of this signal, internal computations using
actual external connections and internal connections will be

computed and the new internal values will be set as external
signals are sent. A more detailed description of the NN
follows.

Fig. 3: The neural network controller for a single leg. The
controller is made up of 6 neurons that each have 6 output (one that
goes to each neuron including one that loops back to the sending
neuron). This means that each neuron will also have 6 inputs from
neurons. In addition, each neuron has an input from the horizontal
sensor and one from the vertical sensor. The weights of all of these
connections are learned by the genetic algorithm. One of the
neurons is preset to send a control pulse to the horizontal servo and
one is preset to send a control pulse to the vertical servo.

Sensors. The two sensors are simulated at this point.

Sensor-1 monitors horizontal extreme positions and sensor-2
monitors vertical extreme positions. When the leg hits its full
backward position, sensor-1 will fire 15 and keeps firing it
until the leg hits its full forward position, where the sensor
starts to fire 0. When the leg hits its highest position,
sensor-2 will fire 15 until the leg hits its lowest position

where the sensor starts to fire 0. The sensors are connected
to all of the neurons. The connection weights, which are
within the range [-15, 15], are left to the GA to find.

Neural connections. Due to memory limitations within a
BASIC Stamp II SX, the number of neurons is limited to six
(Neuron-0 to Neuron-5). Six should be sufficient for the GA
to evolve freely. It is not known what role each neuron will
play in the controlling process and there is no concern with
whether a neuron is useful or not, just that enough neurons
are made available to solve the problem. Each leg controller
will have 6 neurons that are fully connected to each other and
connected to the possible external connections. External
connections are actual, through wiring between pins, and
internal connections are simulated through variables holding
the output. Each neuron’s connections with other neurons
and associated weights are left for the GA to find. It is
possible that some neurons will not be used in the final result.
The connection weights are within the range [-15, 15]. If it is
0, there is no connection in between; if it is positive, the
effect from the source to target neuron is positive; if it is
negative, the effect from the source to target neuron is
negative.

Thresholds. Each neuron has two thresholds:
threshold-low and threshold-high. During each iteration the
NN changes its state, each neuron will accumulate the effects
of those that are connected with it and of the sensors. This is
called the accumulation value. The output of a neuron in
each iteration is determined by its accumulation value and its
two thresholds. The maximum output for a neuron is 15 and
the minimum value is 0. If the accumulation of a neuron is
smaller than threshold-low, it will fire a 0. If the
accumulation of a neuron is more than threshold-high, it will
fire a 15. If the accumulation of a neuron is between the two,
a linear function will transform it to a value between 0 and
15 that will be fired. This linear function is shown in
Equation 1.

()
()

−
−×=

12

1
15

TT

TA
Output (1)
Output is the output of a neuron; A is the accumulation

of a neuron; T1 is the lower threshold; T2 is the higher
threshold. In case threshold-high is smaller than
threshold-low, the neuron will fire 15 when the accumulation
is larger than threshold-low and fire 0 when the
accumulation is smaller than threshold-low. The selection of
the 0-15 range is to allow efficient storage in the BASIC
Stamp II SX. With this range, we can use a nibble (4bits) to
represent the output from a neuron.

Output. Neuron-0 is connected directly to the horizontal
servo; Neuron-1 is connected directly to the vertical servo.
At each iteration, outputs from Neuron-0 and Neuron-1,
which are within the range [0, 15], will be mapped to
associated pulse widths [0, 3000] by multiplying it by 200µs
and sent to the leg©s servos to control their angular position
and subsequently set the linear positions of the leg.

Execution. The NN will start at an initial state (defined by
the GA) and then it will run for 500 iterations, i.e. it will
change its state 500 times. Each iteration is started by a
signal from the coordinator controller (the 7th BASIC Stamp
II SX). The signal will be sent every 25ms. After the NN gets
this signal, it will evaluate itself according to its present state
and calculate what the next neuron values should be.

IV. GENETIC ALGORITHM

A genetic algorithm (GA) was used to find the connection

weights and the thresholds of the ganglia of neurons. The
software package GENESIS5.0 [3] was used to perform the
functions of the GA. A population of 80 chromosomes was
randomly generated. Each chromosome represented a NN
structure. The NN ran 500 iterations and thus generated a
sequence of 500 pulses for each of the two servos. The two
sequences were evaluated with a fitness assigned. The
individual chromosome used was a series of numbers that
describe the NN controller. It is shown in Figure 4.

((n0 t01 t02 w00 w01 w02 w03 w04 w05 ws10 ws20)
 (n1 t11 t12 w10 w11 w12 w13 w14 w15 ws11 ws21)
 (n2 t21 t22 w20 w21 w22 w23 w24 w25 ws12 ws22)
 (n3 t31 t32 w30 w31 w32 w33 w34 w35 ws13 ws23)
 (n4 t41 t42 w40 w41 w42 w43 w44 w45 ws14 ws24)
 (n5 t51 t52 w50 w51 w52 w53 w54 w55 ws15 ws25))

Fig. 4: The chromosome used to represent a neural network. ni is
the original value (value between 0 and 15) of the ith neuron. ti1
is the lower threshold (value between -400 and 400) of the ith
neuron. ti2 is the higher threshold (value between -400 and 400)
of the ith neuron. wij is the connection weight (value between
-15 and 15) from the ith neuron to the jth neuron. ws1i is the
connection weight (value between -15 and 15) from sensor-1 to the
ith neuron. ws2i is the connection weight (value between -15 and
15) from sensor-2 to the ith neuron.

The general GA functions were performed by the

GENESIS package, but a fitness function was provided to
run the program. Fitnesses consisted of three factors:
forward movement, number of times raising the leg, and
drag generated. Forward movement was calculated by the

movement generated when the leg was on the ground. The
number of times the leg was raised and lowered was
penalized because it wasted energy and reduced the effect of
the forward movement generated. The drag generated was a
penalty due to a leg staying on the ground with its full
backward position, which would just cause drag.

V. IMPLEMENTATION ON THE BASIC STAMP

Tests were done using five different (randomly generated)
starting populations. Learning was done in simulation with
the final best solution tested on a leg of the actual robot.
Figure 5 shows the learning curve with the average of the
five separate tests. As can be observed, the GA quickly
learned and by about 60 generations all of the trials resulted
in a leg cycle that could produce sustained forward
movement. In the remaining generations, the GA continued
to refine the solution to produce a better leg cycle. Figure 6
shows the chromosome of the individual that resulted in the
fittest NN controller (compare with Figure 4 to see what each
field represents).

Fig. 5: Single leg training, the average populations (the error bars
show standard error) of the five starting. The fitness of the best
individual at every 20 generations of training is shown.

The artificial NN, which was found to be the fittest in

simulation, was used for implemented on the hardware.
Tests were run using the BASIC Stamp code development
software, in the debug mode, to observe the pulse outputs.
These were determined to be reasonable so it was used to
attempt implementation on the BASIC Stamp. Initially the

standard BASIC Stamp II was used. The weights were
stored in the EPROM, an array of 6 nibbles was used to store
the values of the neurons, and an additional array of 6 nibbles
was used to store the resultant values of the 6 neurons
(values ranged from 0 to 15).

The program used subprograms to sequentially compute
the new values for each of the neurons. During these
computations the old neuron values were held constant in the
current neuron value array. After the computations were
complete, the new values were copied over the old and pulse
values were sent for the two servos.

This program was downloaded/executed and the results
observed. In these initial tests done using the standard
BASIC Stamp II, its processing speed was observed to be too
slow to deliver timely control pulses to the servos. The
movements of the leg looked correct, but the pulse signals
sent to the servos were spaced at long intervals that resulted
in very slow and rough leg movement. Implementation was
switched to the BASIC Stamp II SX and it was determined
that this microprocessor could make the calculations fast
enough to deliver pulses to the servos in time to produce
smooth leg movement.

 ((4 -186 125 14 -12 -8 3 6 -3 -1 -10)

 (10 167 398 -14 0 12 -14 1 0 6 -13)

 (11 104 15 1 -2 15 -14 3 0 5 13)

 (5 173 -362 -11 -8 -14 -5 -9 7 -13 7)

 (10 88 274 -12 -8 2 -1 14 0 -5 1)

 (3 -79 -135 -8 15 -7 8 3 -4 6 2))

Fig. 6: The resultant NN chromosome that produced the fittest
controller for the leg.

The pulses produced by the NN controller resulted in a leg
cycle that used the full horizontal movement doing thrusts.
The return was done immediately upon reaching the full
back position with an up and down phase that put the leg
back on the ground in position for the next thrust. Figure 7
shows the movement of the actual leg by a plot of the X and
Y positions of the foot (the full up, down, forward, and back
positions were measured; the slopes were approximated).

The leg starts out moving back from the 0 position to 73
mm back while the foot stays on the ground (this takes 15
pulses). When the leg gets to the full back position, the legs
starts moving forward and at the same time it starts lifting the
foot (this can be seen at pulse 15). This lift continues for
about eight pulses and then the leg quickly lowers the foot
back down to the ground. At approximately this point, the
NN directs the horizontal servo to start moving the leg back

0

200

400

600

800

1000

1200

0 50 100 150 200 250 300 350

Generations

F
it

n
es

s

again. There is an instant where the leg is moving back
while the foot is not all the way on the ground. This causes
no problem because the horizontal movement at this point is
minimal so minimal thrust is lost and when the foot hits the
ground the leg produces immediate thrust. The cycle
continues with the foot moving vertically from 0 to 23 mm
and horizontally from 14 to 73 mm. The speed of the foot is
fastest in between the extremes as it slows down to reverse
direction.

Fig. 7: Observed movement of the leg when the best NN controller
was downloaded and ran on the BASIC Stamp II SX. The graph
shows the X and Y position of the foot as the leg moves in the first
50 pulses. After the initial 15 pulses, a cycle of 22 pulses starts and
is continually repeated.

VI. CONCLUSIONS

NN controllers for the BASIC Stamp II SX are capable of

producing useable leg cycles for the ServoBot robot. A GA
can effectively evolve the structure of these NN controllers.
The resultant NN controllers are specialized for the task and
the learning system will have the flexibility to adapt to
changes in the environment or robot capabilities. Tests on
the SX confirmed the viability of this method as the
produced leg cycles worked well on the actual robot. Future
work will involve the generation of NN controllers for each
of the legs followed by the evolution of a central controller.
Wires between the I/O pins of the BASIC Stamp will connect
the leg controllers to each other. Alternatively, the six NN

ganglia can be co-evolved to learn coordination with no
central controller (except to send timing signals for
synchronization).

VII. REFERENCES

[1] Beer, R. D. and Gallagher, J. C. (1992). "Evolving
Dynamic Neural Networks for Adaptive Behavior."
Adaptive Behavior, vol. 1, pp. 91-122.

[2] Fujii, A., Ishiguro, A., Otsu, K., Uchikawa, Y., Aoki, T.,
and Eggenberger, P. (2000). "Evolutionary Creation of
an Adaptive Controller for a Legged-Robot: A
Dynamically-Rearranging Neural Network Approach."
Proceedings of the International Symposium on
Adaptive Motion of Animals and Machines.

[3] Grefenstette, J. J. GENESIS5.0 Copyright © 1990.

[4] Gruau, F. (1995). "Automatic Definition of Modular
Neural Networks." Adaptive Behavior, vol. 3, num. 2,
pp. 151-183.

[5] Hornby, G., Fujita M., Takamura S., Yamamoto T., and
Hana O. (1999). "Autonomous Evolution of Gaits with
the Sony Quadruped Robot." Proceedings of the
Genetic and Evolutionary Computation
Conference.,pp. 1297-1304.

[6] Kodjabachian, J. and Meyer, J-A. (1998). "Evolution
and Development of Modular Control Architectures
for 1-d Locomotion in Six-Legged Animats."
Connection Science, vol. 10, pp. 211-254.

[7] Lewis, M. A., Fagg, A. H., and Solidum A. (1992).
"Genetic Programming Approach to the Construction
of a Neural Network for Control of a Walking Robot"
1992 IEEE International Conference on Robotics and
Automation, pp. 2618-2623.

[8] Parker, G. and Rawlins, G. (1996). “Cyclic Genetic
Algorithms for the Locomotion of Hexapod Robots.”
Proceedings of the World Automation Congress
(WAC’96), Volume 3, Robotic and Manufacturing
Systems, pp. 617-622.

[9] Parker, G. (2000). "Evolving Leg Cycles to Produce
Hexapod Gaits." Proceedings of the World Automation
Congress (WAC’00), Volume 10, Robotic and
Manufacturing Systems, pp. 250-255.

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45 50Pulse Count

P
o

si
ti

o
n

X Position

Y Position

