
Learning Adaptive Leg Cycles Using Fitness Biasing

Gary B. Parker
Computer Science

Connecticut College
New London, Connecticut 06320

parker@conncoll.edu

Abstract -- This paper discusses the use of fitness biasing to

alter the control of a seven microprocessor robot as it shifts from
one environment to another. The robot was initially using a gait
evolved to work on a smooth surface (tile). When tested on a
rough surface (carpet) the learned gait was found to be inappropri-
ate because the legs were causing drag as they repositioned. An
efficient move to reposition on the smooth surface did not work on
the rough surface. Anytime Learning with Fitness Biasing was
applied to the continued evolution of the individual leg cycles as
the simulated robot moved from an area of smooth to rough ter-
rain. An actual robot was used to test the results. Following train-
ing using fitness biasing, the robot’s gait was more appropriate for
a rough surface as it learned to raise its leg more before initiating
the return movement.

I. INTRODUCTION

Gait generation for multi-legged robots is a difficult prob-
lem. Each leg must learn a cycle that effectively produces
forward thrust in the environment where it is expected to
perform. These individual leg cycles must then be coordi-
nated so that the robot maintains stability as the legs pro-
duce thrust and avoid causing drag. The problem is com-
pounded by the fact that each leg has its own peculiarities
in performance, which makes coordination more difficult.
The use of incremental learning with evolutionary computa-
tion has been shown to be an effective way to learn gaits for
hexapod robots [6]. These robots were equipped with seven
microprocessors (one for each leg and one for coordina-
tion). The gaits learned took advantage of the capabilities
of each leg to produce smooth forward locomotion.

The difficulty of the problem is increased when consider-
ing that there will be changes in the leg’s capability or the
environment while the robot is in operation. Adjustments
to the control program must be made in real time. Anytime
learning with fitness biasing [4] offered a means for the
learning system to make adjustments after training was
complete and the robot was in operation. This was done by
using periodic checks on the robot to affect the solution
fitnesses during evolution. Tests in simulation showed that
this method was effective in providing adaptive gait control
for a hexapod robot that went through a series of leg capa-

bility changes. This robot was equipped with a single mi-
croprocessor that could send signals to each leg to move
backward or forward and up or down. Although these tests
showed the effectiveness of fitness biasing, the controller
used lacked the capacity to adjust the speed of movement of
the individual legs. This limited the possible solutions
available to the system and made adjustments for changes
in the environment very difficult.

Other researchers have used incremental learning to pro-
duce gaits by first learning leg cycles. Beer and Gallagher
used Genetic Algorithms (GA) to develop neural network
(NN) controllers for a hexapod [1]. The controller had foot,
backward swing, and forward swing motor neurons; two
internal unspecified neurons and a single angle sensing neu-
ron. The angle sensing neuron was connected to all 5 of the
other neurons and those 5 were fully connected to each
other. The 5 control neurons also had a threshold and time
constant parameter. After an individual leg cycle was
learned for a generic leg, six copies of the leg controller
were made. Each of the leg controllers was connected to
their neighbor leg controllers. A GA was used to learn the
connection weights between the leg NNs. Lewis, Fagg,
and Solidum used incremental evolution also [2]. In their
model, the position of each of the two leg joints was driven
by the state of a neuron. The two neurons controlling the
leg were the leg swing neuron and the leg elevation neuron.
The two neurons formed an oscillator, and the oscillators
were mapped to a pulse width modulated signal that con-
trolled the position of the motors. A GA was used to find
the parameters of this two-neuron network. Initially, the NN
started at random values but within several cycles the two
neurons fell into an oscillatory pattern, with a phase differ-
ence of 90 degrees. Then a network of these oscillators was
evolved by using a GA to coordinate the movements of the
different legs.

In previous work, cyclic genetic algorithms (CGAs)
were successfully used to evolve the pulse sequences that
were needed to control servos on each leg [6]. These pulse
sequences, which took into consideration the peculiarities
of the leg’s capabilities, were sent to the servos to generate
leg cycles. A GA was then used to evolve the convolution
of these cycles to produce a reasonable gait. This gait was
a classic tripod that worked very well on the smooth surface

of a tile floor. The leg cycles, since they were optimized
for speed, had minimal vertical movement in order to re-
duce the time for leg repositioning. This was effective be-
cause it provided time for more legs to simultaneously be
on the ground, resulting in additional stability and consis-
tent thrust. In addition, since the floor was smooth, short
times of opposite direction or no leg movement while a leg
was on the ground did not produce significant drag.

Tests determined, however, that these leg cycles would
be inappropriate for rougher surfaces such as carpeting. In
this paper we discuss the use of anytime learning using fit-
ness biasing to adapt the leg cycles to be able to handle
rough surfaces. With the fitness biasing method, the model
used by the CGA is not altered; it is the same model used
for smooth surfaces. Instead, periodic tests are done on the
actual robot (simulated) and the results of these tests are
used to bias the fitnesses of the corresponding solutions.

Leg cycles produced for rough surfaces are then used by
a GA to evolve convolutions of leg cycles that formed tri-
pod gaits. Tests showed that this method is an effective
learning system that is adaptive to changes in the walking
surface.

II. SEVEN STAMP SERVOBOT

This learning method was designed to work on the Ser-
voBot robot (Figure 1). It is an inexpensive hexapod robot
that has two degrees of freedom per leg. Twelve servos,
two per leg, provide thrust and vertical movement. The ser-
vomotors have three wires; one for power, one for ground,
and a third provides control. They can be set to specific
angular positions by providing a control pulse. This pulse
should be repeated every 25 ms for the servo to maintain a
constant position. The length of the pulse determines the
position. Pulses from 20 to 2400 microseconds cover the
full range of movement for each leg, although each servo is
unique in its pulse to position ratios. Some may have a full
down position at 20, on others it may be 80. There is the
same variance in the full up position. In addition the right
and left side servos are mounted differently to ensure con-
sistent mechanical capabilities, so in some cases the full
down position is at a pulse length of 20 and in some cases
it’s at 2400.

The servo cannot move the leg fast enough to reach the
desired position within one pulse if the differences in pulses
are too much. This results in the fastest leg movement as
the servo attempts to get to its desired position as soon as
possible. Varying speeds of movement can be obtained by
incrementally changing the pulse lengths. For example,
moving a leg using consecutive pulse lengths of 40, 45, 50,
etc. will move the leg at a slower speed than 40, 50, 60,
etc., unless, of course, the increments are already more than

the servos capability. Consecutive pulses of 40, 240, 440,
etc. would probably result in the same speed as the
consecutive pulses of 40, 340, 640, etc.

Fig. 1: ServoBot with seven BASIC Stamp II controllers; one for
each leg and one to coordinate the legs.

Control for the ServoBot will be provided by seven
BASIC Stamp IIs, one per leg and one working as the over-
all controller. Each leg’s stamp takes in a sequence of
pulses that indicated the position of its two servos. The
central stamp controller tells each leg stamp when to start
its sequence and if needed, when to cut short one cycle to
start another in order to maintain leg coordination.

A. Leg Model

A model of the leg was used to do the evolution. Each leg
was represented by a simple data structure that held the
information required to produce a leg cycle. Each servo’s
maximum throw positions were stored as x, y, coordinates.
The horizontal servo’s full forward position was defined as
x = 0, the full back position was the measured number of
millimeters distance from the full forward. The vertical
servo had a y = 0 if it rested on the ground when all the legs
were full down and the max up was the millimeters off the
ground when the leg was fully lifted. Along with these
positions the pulse width required to attain each was re-
corded. The model data structure also included a lookup
table for each servo. This table listed the corresponding leg
position of 13 different pulse lengths (1,200, 400,…2400).
These figures were attained by applying consistent pulses to
each servo and measuring the leg’s response. The final data
kept in the model was the current position and pulse of each
servo.

III. CYCLIC GENETIC ALGORITHMS FOR LEG
CYCLES

Cyclic Genetic Algorithms were developed [3] to allow

for the representation of a cycle of actions in the chromo-
some. They differ from the standard GA in that the genes
represent solution tasks instead of traits and the chromo-
some is circular instead of linear in structure. The genes of
the CGA chromosome can be one of several possibilities.
They can be as simple as a set of actuator activations to as
complex as cyclic sub-chromosomes that can be trained
separately by a CGA. For our purposes, the genes represent
a sequence of servo pulses. The trained chromosome con-
tains the cycle of servo control pulses that will be continu-
ally repeated by the leg’s controller to produce a leg cycle.

In order to produce leg cycles, each stamp needs a se-
quence of pulses to continually position its servos. This
sequence must by variable in length to accommodate the
differing capabilities of each leg and its servos. Fixed
length chromosomes offer distinct advantages when using
CGAs since like areas of each chromosome are more likely
to correspond to similar tasks. In order to formulate the
problem in such a way as to be able to use a fixed length
chromosome some observations of a leg cycle had to be
made. Pulses differing by only 20 microsecond result in
positions that are only slightly distinguishable from each
other (usually within 1 mm). This level of position accu-
racy is sufficient for our problem, so we can represent all
pulses from 0 to 2400 by the numbers 0 to 120 considering
each to be in increments of 20 microsecond pulses. This
allows us to use a 7 bit number to represent each pulse. It
takes 14 bits to represent pulses for both servos.

Smooth movement is required by the horizontal servo,
especially while on the ground. A sequence of pulses such
as 100, 120, 140, 160 would move the leg smoothly from
the position corresponding to 100 to the position corre-
sponding to 160. The sequence 100, 110, 150, 160 would
result in the same final position, but the movement would
not be as smooth. The chromosome representation needed
to allow smooth horizontal movement, but smooth vertical
movement was not needed since vertical movement does
not affect the smoothness of the robot's movement over the
ground.

((R1 HP1 VP1) (R2 HP2 VP2) ... (R8 HP8 VP8))

Fig. 2: Leg cycle chromosome. Each gene of the chromosome
was made up of three parts: repetitions, horizontal pulse, and ver-
tical pulse.

In order to accommodate these considerations, the
chromosome representation shown in Figure 2 was used.
The chromosome was made up of 8 genes. Each gene
consisted of 3 parts. The first was called the repetitions, the
second was the horizontal pulse, and the third was the
vertical pulse. The horizontal pulse and vertical pulse
numbers were each multiplied by 20 microseconds to
calculate the actual pulse width sent to the servo. The
effect of the repetitions was different on the two types of
pulse. For the horizontal pulse the repetitions number was
used to calculate the increments required to move from the
servo’s last pulse length to the new pulse length. The
following formula (hp is the horizontal pulse and php is the
previous horizontal pulse) was used:

 pulse increment = (hp - php) / repetitions (1)

This pulse increment was then added for repetitions

number of consecutive pulses until the end servo pulse was
at horizontal pulse. For example, if the previous horizontal
pulse was 40 and the gene was (5, 60, 100) then the follow-
ing pulses would be sent to the horizontal servo over the
next 5 inputs : 44, 48, 52, 56, 60. Repetitions affected the
vertical pulses only by telling the controller how many
times to repeat this vertical pulse. The extra computation
was not required since smoothness was only a factor for
horizontal movement.

CGA evolution took place on the leg model in the genera-
tion of a chromosome to control the leg cycle. The contents
of the chromosome representation were used directly by the
BASIC Stamp II and upon execution it would do the calcu-
lations required to direct its two servos.

IV. ANYTIME LEARNING WITH FITNESS
BIASING

Anytime learning with fitness biasing is one of two meth-

ods of punctuated anytime learning [4,5,7]. It is a learning
system that employs off-line learning, using evolutionary
computation, with the control program being downloaded to
the on-line controller. The off-line learning does not require
internal sensors but uses global observation to make the
required adjustments to guide the evolutionary
computation. The results of periodic tests, done on the ac-
tual robot, are used to bias the fitnesses calculated by the
evolutionary computation, which uses a model of the robot.
This allows the system to modify the CGA based on the
performance of the robot. The model is not affected; its
parameters were set before anytime learning began. The
periodic checks on the actual robot alter the processing
within the CGA in an attempt to improve the result of train-
ing.

Probability for selection is determined by computing each
individual’s fitness on the robot model. This fitness is
computed for each individual in the population. After each
n generations all solutions of the CGA population are tested
on the actual robot. These measurements are used to bias
the fitnesses found on the model to make them equal to the
actual robot fitnesses. These biases are used as the CGA
continues training. In this way, solutions that are good on
the actual robot but poor on the model have boosted fit-
nesses during training, which results in their production of
more offspring. This solution requires population-size ac-
tual tests every n generations.

Biases are computed for each solution by dividing the ac-
tual fitness by the model's fitness. Each bias is stored with
its corresponding solution. It is used in subsequent genera-
tions of the CGA to alter the fitness of each solution com-
puted on the model of the robot by multiplying this fitness
by the bias. These corrected fitnesses are used for selection
during the subsequent training being done by the CGA.
Pairs of individuals are stochastically selected to form a
new offspring through crossover and mutation. The new
offspring’s bias is computed by averaging the biases of its
parents.

V. FITNESS BIASING APPLIED TO LEG CYCLE
GENERATION

The test, done in simulation, was designed to determine if

fitness biasing could be used with a CGA to adapt leg cycle
control as the robot moved from a smooth to a rough sur-
face. The CGA used the original smooth surface model for
evolution. The robot was represented by a second model
that required additional vertical lift before a leg would be
high enough to not influence the its horizontal movement.
Each leg’s fitness was determined by the thrust that it pro-
duced while on the ground. The best leg cycle produced
forward thrust (by moving the leg back) while the leg was
on the ground and used minimal time to reposition the leg.
But if reposition started (by moving forward) before the leg
cleared the ground, negative thrust would result. The robot
simulation model required more vertical separation between
the ground and the leg before reposition could be done
without producing negative thrust.

A. Training

Training began with the CGA operating on an inaccurate
(smooth surface) model. Tests on the actual robot (simu-
lated) were done after every ten generations (n = 10). A list
of 64 biases (one for each individual (chromosome) in the
solution set), all being initialized to one, was produced.
Upon each generation of training (by the CGA) the fit-

nesses found by evaluating the 64 individuals of the popula-
tion on the CGA model were multiplied by their corre-
sponding bias to gain an adjusted fitness (adjusted_fitness =
model_fitness * bias).

 Ii Ij Bi Bj

 Ik Bi + Bj
 2

Fig. 3: Bias calculation for offspring Ik from parents I i and I j.

This list of 64 adjusted fitnesses was used by the CGA

for its standard selection followed by crossover and muta-
tion. The biases also changed during evolution. The bias
of each child was the average of its parents’ biases; see
Figure 3. Individuals Ii and Ij (i and j being indexes be-
tween 0 and 63 corresponding to the 64 individuals in the
population) are stochastically selected for reproduction.
Their offspring Ik is the result of applying crossover and
mutation to the parents. The bias assigned to Ik is the aver-
age of the two parents’ biases.

As training continued, the biases tend toward the average
of all the biases. After each ten generations of CGA train-
ing, the original biases were disregarded and new biases
were calculated (Figure 4).

(I0, I1, I2,, ... In) evaluate on model (M0, M1, M2,, ... Mn)

(I0, I1, I2,, ... In) evaluate on robot (R0, R1, R2,, ... Rn)

 (B0, B1, B2, B3, . . . Bn) =







n

n

M

R

M

R

M

R

M

R

M

R
,...,,,

3

3

2

2

1

1

0

0

Fig. 4: Computation of biases. Each individual solution is tested
on the model and the actual robot. The fitnesses that correspond
to each individual are used to calculate the bias for that individual
by dividing the actual fitness into the model fitness.

The biases were set so that the next generation of stochas-

tic selection would be predicated on the fitnesses of the
individual solutions on the actual robot. The system started
out doing ten generations of training with the actual robot
requiring only the minimal vertical movement for a good
gait. After the ten generations, the environment changed to

one where the robot required increased vertical movement.
Training was continued for another 200 CGA generations.
This involved 200*64 evaluations on the model and 20*64
evaluations on the actual robot.

B. Results

Anytime learning with fitness biasing was used over 200
generations of CGA training on each of the six legs. The
results discussed are the average of these six legs.

Fig. 5: Anytime learning (solid line) versus no anytime learning
(dashed line).

Figure 5 shows a comparison of the actual robot leg per-
formance when anytime learning was used versus when it
was not. Without anytime learning, (dotted line) the actual
robot leg fitness fell sharply at the tenth generation where
the robot simulation entered an area where increased lift
was required. No improvements were made to this since
the training system was still using the outdated model
(specifying that minimal lift is required) to find leg cycle
solutions. The solid line shows the average fitness of the
six legs when anytime learning was used. At the transition
point, anytime learning gained an immediate advantage
since the test on the actual robot leg helped to identify a
better best solution. Its benefit did not stop there, as the
anytime learning continued to increase the actual leg fitness
over the next 200 generations.

This training took 20 generations of tests on the actual
robot legs, which is the largest expense with anytime learn-
ing. Although anytime learning increased the solution over
training without anytime learning, is it an improvement
over doing the CGA directly on the robot? Figure 6 shows
the same information as is shown in Figure 5, but a new
line is added that shows what would happen if the training
was done directly on the simulated robot. The generation

numbers are shown in actual generations. The fitness again
shows steady improvement, but this time the improvement
is not as fast. Anytime learning with fitness biasing worked
better than training on the model or directly on the robot.

Fig. 6: Anytime learning (solid line) versus learning on the
robot (dashed line).

VI. GAIT GENERATION

The previous section discussed the use of anytime learn-

ing to produce leg cycles that were optimized for rough
terrain. The desired length (number of pulses in the cycle)
for these leg cycles was not specified. The end results var-
ied in length from 36 to 56 pulses. In order to use leg cy-
cles for the generation of gaits a set of leg cycles using a
range of desired lengths needed to be produced. The gait
learning algorithm needs to be able to choose leg cycles
from anywhere in this range for each leg to come up with
the proper coordination of legs. The lowest “no length
specified” optimal should be the lowest in this range since it
would be unlikely that the best gait would use leg cycles
that were all lower than their optimal. Gait cycles with
desired lengths from 36 to 67 were learned using the tech-
niques discussed in previous work [7].

The best individuals at generations that were multiples of
10 were stored. The results on the robot model are shown
in Figure 7. Graphs of the fitness growth of the five
distinct starting populations along with their average
(dashed line) after 500 pulses are shown. There are two
things to note from this graph. The start fitness at genera-
tion 0 is fairly high. This is because all the legs are already
moving in a near optimal cycle; they simply need to be co-
ordinated. The GA quickly learns adequate coordination
and works to improve this solution to find the optimal leg
cycle lengths and start spots for each leg.

200

250

300

350

400

450

0 50 100 150 200 250

Model Generations

F
it

n
es

s 200

250

300

350

400

450

0 5 10 15 20 25

Actual Generations

F
it

n
es

s

Fig. 7: Gaits formed from high-stepping leg cycles. Five tests are
shown. The dashed line is the average performance of the five.

Tests on the actual robot confirmed the viability of this

method. In all five cases, tripod gaits with high stepping
leg cycles were produced. Figure 8 shows diagrams of two
tripod gaits. The first is the gait produced with normal leg
cycles from previous research [7]. The second shows the
tripod gait produced using the higher stepping leg cycles
formed from anytime learning. Now that more time is re-
quired in the leg swing, to allow it to lift over rough terrain,
there is less time with all legs on the ground.

Fig. 8: Tripod gait for smooth terrain versus one for rough terrain.
The smooth terrain gait (top diagram) takes minimal time to repo-
sition the legs during their swing. For rough terrain, the stance
(producing thrust) times are the same, but the swing times are
longer as the leg must lift up further before it starts to move for-
ward.

VII. CONCLUSIONS

Anytime learning with fitness biasing is an effective
means of learning adaptive leg cycles, when used in con-
junction with a cyclic genetic algorithm. It can assist in the
correction of leg cycles to accommodate environmental
conditions such as rough terrain by causing them to incor-
porate more lift into their cycles. Punctuated anytime learn-
ing has been shown, in simulation, to be more effective on
these problems than direct learning on the robot. Further
tests on anytime learning with fitness biasing should con-
tinue to reveal its general applicability to several problems
in evolutionary robotics.

VIII. REFERENCES

[1] Beer, R. D., and Gallagher, J. C. (1992). "Evolving

Dynamic Neural Networks for Adaptive Behavior."
Adaptive Behavior, 1, pp. 91-122.

[2] Lewis, M. A., Fagg, A. H., and Solidum A. (1992).
"Genetic Programming Approach to the Construction
of a Neural Network for Control of a Walking Robot"
1992 IEEE International Conference on Robotics and
Automation, pp. 2618-23.

[3] Parker, G. and Rawlins, G. (1996). “Cyclic Genetic
Algorithms for the Locomotion of Hexapod Robots.”
Proceedings of the World Automation Congress, Vol-
ume 3, Robotic and Manufacturing Systems. pp. 617-
622.

[4] Parker, G. and Mills, J. (1999). "Adaptive Hexapod
Gait Control Using Anytime Learning with Fitness Bi-
asing." Proceedings of the Genetic and Evolutionary
Computation Conference. pp. 519-524.

[5] Parker, G. (2000). "Co-Evolving Model Parameters for
Anytime Learning in Evolutionary Robotics."
Robotics and Autonomous Systems, Volume 33, Issue
1, pp. 13-30.

[6] Parker, G. (2001). "The Incremental Evolution of
Gaits for Hexapod Robots." Proceedings of the
Genetic and Evolutionary Computation Conference
(GECCO 2001). (pp. 1114-1121).

[7] Parker, G. (2002). "Punctuated Anytime Learning for
Hexapod Gait Generation." Proceedings of the 2002
IEEE/RSJ International Conference on Intelligent
Robots and Systems. pp. 2664-2671.

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90 100

Generations

F
it

n
es

s

Right

0
2
4

Left
1
3
5

Right

0
2
4

Left
1
3
5

