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Abstract -- This paper discusses the use of fitness biasing to 

alter the control of a seven microprocessor robot as it shifts from 
one environment to another. The robot was initially using a gait 
evolved to work on a smooth surface (tile).  When tested on a 
rough surface (carpet) the learned gait was found to be inappropri-
ate because the legs were causing drag as they repositioned.  An 
efficient move to reposition on the smooth surface did not work on 
the rough surface. Anytime Learning with Fitness Biasing was 
applied to the continued evolution of the individual leg cycles as 
the simulated robot moved from an area of smooth to rough ter-
rain.  An actual robot was used to test the results.  Following train-
ing using fitness biasing, the robot’s gait was more appropriate for 
a rough surface as it learned to raise its leg more before initiating 
the return movement. 

 

I. INTRODUCTION 
 

Gait generation for multi-legged robots is a difficult prob-
lem. Each leg must learn a cycle that effectively produces 
forward thrust in the environment where it is expected to 
perform.  These individual leg cycles must then be coordi-
nated so that the robot maintains stability as the legs pro-
duce thrust and avoid causing drag.  The problem is com-
pounded by the fact that each leg has its own peculiarities 
in performance, which makes coordination more difficult.  
The use of incremental learning with evolutionary computa-
tion has been shown to be an effective way to learn gaits for 
hexapod robots [6].  These robots were equipped with seven 
microprocessors (one for each leg and one for coordina-
tion).  The gaits learned took advantage of the capabilities 
of each leg to produce smooth forward locomotion. 

The difficulty of the problem is increased when consider-
ing that there will be changes in the leg’s capability or the 
environment while the robot is in operation.  Adjustments 
to the control program must be made in real time.  Anytime 
learning with fitness biasing [4] offered a means for the 
learning system to make adjustments after training was 
complete and the robot was in operation.  This was done by 
using periodic checks on the robot to affect the solution 
fitnesses during evolution. Tests in simulation showed that 
this method was effective in providing adaptive gait control 
for a hexapod robot that went through a series of leg capa-

bility changes.  This robot was equipped with a single mi-
croprocessor that could send signals to each leg to move 
backward or forward and up or down. Although these tests 
showed the effectiveness of fitness biasing, the controller 
used lacked the capacity to adjust the speed of movement of 
the individual legs.  This limited the possible solutions 
available to the system and made adjustments for changes 
in the environment very difficult.   

Other researchers have used incremental learning to pro-
duce gaits by first learning leg cycles.  Beer and Gallagher 
used Genetic Algorithms (GA) to develop neural network 
(NN) controllers for a hexapod [1]. The controller had foot, 
backward swing, and forward swing motor neurons; two 
internal unspecified neurons and a single angle sensing neu-
ron. The angle sensing neuron was connected to all 5 of the 
other neurons and those 5 were fully connected to each 
other. The 5 control neurons also had a threshold and time 
constant parameter.  After an individual leg cycle was 
learned for a generic leg, six copies of the leg controller 
were made. Each of the leg controllers was connected to 
their neighbor leg controllers. A GA was used to learn the 
connection weights between the leg NNs.   Lewis, Fagg, 
and Solidum used incremental evolution also [2]. In their 
model, the position of each of the two leg joints was driven 
by the state of a neuron. The two neurons controlling the 
leg were the leg swing neuron and the leg elevation neuron. 
The two neurons formed an oscillator, and the oscillators 
were mapped to a pulse width modulated signal that con-
trolled the position of the motors. A GA was used to find 
the parameters of this two-neuron network. Initially, the NN 
started at random values but within several cycles the two 
neurons fell into an oscillatory pattern, with a phase differ-
ence of 90 degrees. Then a network of these oscillators was 
evolved by using a GA to coordinate the movements of the 
different legs.   

In previous work, cyclic genetic algorithms (CGAs)  
were successfully used to evolve the pulse sequences that 
were needed to control servos on each leg [6]. These pulse 
sequences, which took into consideration the peculiarities 
of the leg’s capabilities, were sent to the servos to generate 
leg cycles. A GA was then used to evolve the convolution 
of these cycles to produce a reasonable gait.  This gait was 
a classic tripod that worked very well on the smooth surface 



of a tile floor.  The leg cycles, since they were optimized 
for speed, had minimal vertical movement in order to re-
duce the time for leg repositioning.  This was effective be-
cause it provided time for more legs to simultaneously be 
on the ground, resulting in additional stability and consis-
tent thrust.  In addition, since the floor was smooth, short 
times of opposite direction or no leg movement while a leg 
was on the ground did not produce significant drag. 

Tests determined, however, that these leg cycles would 
be inappropriate for rougher surfaces such as carpeting.  In 
this paper we discuss the use of anytime learning using fit-
ness biasing to adapt the leg cycles to be able to handle 
rough surfaces.  With the fitness biasing method, the model 
used by the CGA is not altered; it is the same model used 
for smooth surfaces.  Instead, periodic tests are done on the 
actual robot (simulated) and the results of these tests are 
used to bias the fitnesses of the corresponding solutions. 

Leg cycles produced for rough surfaces are then used by 
a GA to evolve convolutions of leg cycles that formed tri-
pod gaits.  Tests showed that this method is an effective 
learning system that is adaptive to changes in the walking 
surface. 

 

II. SEVEN STAMP SERVOBOT 
 

This learning method was designed to work on the Ser-
voBot robot (Figure 1).  It is an inexpensive hexapod robot 
that has two degrees of freedom per leg.  Twelve servos, 
two per leg, provide thrust and vertical movement. The ser-
vomotors have three wires; one for power, one for ground, 
and a third provides control.  They can be set to specific 
angular positions by providing a control pulse.  This pulse 
should be repeated every 25 ms for the servo to maintain a 
constant position.  The length of the pulse determines the 
position.  Pulses from 20 to 2400 microseconds cover the 
full range of movement for each leg, although each servo is 
unique in its pulse to position ratios.  Some may have a full 
down position at 20, on others it may be 80.  There is the 
same variance in the full up position.  In addition the right 
and left side servos are mounted differently to ensure con-
sistent mechanical capabilities, so in some cases the full 
down position is at a pulse length of 20 and in some cases 
it’s at 2400.   

The servo cannot move the leg fast enough to reach the 
desired position within one pulse if the differences in pulses 
are too much.  This results in the fastest leg movement as 
the servo attempts to get to its desired position as soon as 
possible.  Varying speeds of movement can be obtained by 
incrementally changing the pulse lengths.  For example, 
moving a leg using consecutive pulse lengths of 40, 45, 50, 
etc. will move the leg at a slower speed than 40, 50, 60, 
etc., unless, of course, the increments are already more than 

the servos capability.  Consecutive pulses of 40, 240, 440, 
etc. would probably result in the same speed as the 
consecutive pulses of 40, 340, 640, etc. 
 

Fig. 1:  ServoBot with seven BASIC Stamp II controllers; one for 
each leg and one to coordinate the legs. 

 

Control for the ServoBot will be provided by seven 
BASIC Stamp IIs, one per leg and one working as the over-
all controller.  Each leg’s stamp takes in a sequence of 
pulses that indicated the position of its two servos.  The 
central stamp controller tells each leg stamp when to start 
its sequence and if needed, when to cut short one cycle to 
start another in order to maintain leg coordination.   

 

A. Leg Model 
 

A model of the leg was used to do the evolution.  Each leg 
was represented by a simple data structure that held the 
information required to produce a leg cycle.  Each servo’s 
maximum throw positions were stored as  x, y, coordinates.  
The horizontal servo’s full forward position was defined as 
x = 0, the full back position was the measured number of 
millimeters distance from the full forward.  The vertical 
servo had a y = 0 if it rested on the ground when all the legs 
were full down and the max up was the millimeters off the 
ground when the leg was fully lifted.  Along with these 
positions the pulse width required to attain each was re-
corded.  The model data structure also included a lookup 
table for each servo.  This table listed the corresponding leg 
position of 13 different pulse lengths (1,200, 400,…2400).  
These figures were attained by applying consistent pulses to 
each servo and measuring the leg’s response.  The final data 
kept in the model was the current position and pulse of each 
servo. 



III. CYCLIC GENETIC ALGORITHMS FOR LEG 
CYCLES 

 
Cyclic Genetic Algorithms were developed [3] to allow 

for the representation of a cycle of actions in the chromo-
some.  They differ from the standard GA in that the genes 
represent solution tasks instead of traits and the chromo-
some is circular instead of linear in structure. The genes of 
the CGA chromosome can be one of several possibilities.  
They can be as simple as a set of actuator activations to as 
complex as cyclic sub-chromosomes that can be trained 
separately by a CGA.  For our purposes, the genes represent 
a sequence of servo pulses. The trained chromosome con-
tains the cycle of servo control pulses that will be continu-
ally repeated by the leg’s controller to produce a leg cycle.  

In order to produce leg cycles, each stamp needs a se-
quence of pulses to continually position its servos.  This 
sequence must by variable in length to accommodate the 
differing capabilities of each leg and its servos.  Fixed 
length chromosomes offer distinct advantages when using 
CGAs since like areas of each chromosome are more likely 
to correspond to similar tasks.  In order to formulate the 
problem in such a way as to be able to use a fixed length 
chromosome some observations of a leg cycle had to be 
made.  Pulses differing by only 20 microsecond result in 
positions that are only slightly distinguishable from each 
other (usually within 1 mm).  This level of position accu-
racy is sufficient for our problem, so we can represent all 
pulses from 0 to 2400 by the numbers 0 to 120 considering 
each to be in increments of 20 microsecond pulses.  This 
allows us to use a 7 bit number to represent each pulse.  It 
takes 14 bits to represent pulses for both servos.   

Smooth movement is required by the horizontal servo, 
especially while on the ground.  A sequence of pulses such 
as 100, 120, 140, 160 would move the leg smoothly from 
the position corresponding to 100 to the position corre-
sponding to 160.  The sequence 100, 110, 150, 160 would 
result in the same final position, but the movement would 
not be as smooth.  The chromosome representation needed 
to allow smooth horizontal movement, but smooth vertical 
movement was not needed since vertical movement does 
not affect the smoothness of the robot's movement over the 
ground. 
 

 
( (R1 HP1 VP1) (R2 HP2 VP2) ... (R8 HP8 VP8) ) 
 
Fig. 2:  Leg cycle chromosome.  Each gene of the chromosome 
was made up of three parts: repetitions, horizontal pulse, and ver-
tical pulse. 

 
 

In order to accommodate these considerations, the 
chromosome representation shown in Figure 2 was used.  
The chromosome was made up of 8 genes.  Each gene 
consisted of 3 parts.  The first was called the repetitions, the 
second was the horizontal pulse, and the third was the 
vertical pulse.  The horizontal pulse and vertical pulse 
numbers were each multiplied by 20 microseconds to 
calculate the actual pulse width sent to the servo.  The 
effect of the repetitions was different on the two types of 
pulse.  For the horizontal pulse the repetitions number was 
used to calculate the increments required to move from the 
servo’s last pulse length to the new pulse length.  The 
following formula (hp is the horizontal pulse and php is the 
previous horizontal pulse) was used: 

 
 pulse increment = (hp  -   php)  / repetitions        (1) 

 
This pulse increment was then added for repetitions 

number of consecutive pulses until the end servo pulse was 
at horizontal pulse.  For example, if the previous horizontal 
pulse was 40 and the gene was (5, 60, 100) then the follow-
ing pulses would be sent to the horizontal servo over the 
next 5 inputs : 44, 48, 52, 56, 60.  Repetitions affected the 
vertical pulses only by telling the controller how many 
times to repeat this vertical pulse.  The extra computation 
was not required since smoothness was only a factor for 
horizontal movement. 

CGA evolution took place on the leg model in the genera-
tion of a chromosome to control the leg cycle.  The contents 
of the chromosome representation were used directly by the 
BASIC Stamp II and upon execution it would do the calcu-
lations required to direct its two servos.   

 

IV. ANYTIME LEARNING WITH FITNESS 
BIASING 

 
Anytime learning with fitness biasing is one of two meth-

ods of punctuated anytime learning [4,5,7].  It is a learning 
system that employs off-line learning, using evolutionary 
computation, with the control program being downloaded to 
the on-line controller. The off-line learning does not require 
internal sensors but uses global observation to make the 
required adjustments to guide the evolutionary 
computation.  The results of periodic tests, done on the ac-
tual robot, are used to bias the fitnesses calculated by the 
evolutionary computation, which uses a model of the robot.  
This allows the system to modify the CGA based on the 
performance of the robot. The model is not affected; its 
parameters were set before anytime learning began. The 
periodic checks on the actual robot alter the processing 
within the CGA in an attempt to improve the result of train-
ing.  



Probability for selection is determined by computing each 
individual’s fitness on the robot model.   This fitness is 
computed for each individual in the population.  After each 
n generations all solutions of the CGA population are tested 
on the actual robot.  These measurements are used to bias 
the fitnesses found on the model to make them equal to the 
actual robot fitnesses.  These biases are used as the CGA 
continues training.  In this way, solutions that are good on 
the actual robot but poor on the model have boosted fit-
nesses during training, which results in their production of 
more offspring.  This solution requires population-size ac-
tual tests every n generations.   

Biases are computed for each solution by dividing the ac-
tual fitness by the model's fitness.  Each bias is stored with 
its corresponding solution.  It is used in subsequent genera-
tions of the CGA to alter the fitness of each solution com-
puted on the model of the robot by multiplying this fitness 
by the bias.  These corrected fitnesses are used for selection 
during the subsequent training being done by the CGA.  
Pairs of individuals are stochastically selected to form a 
new offspring through crossover and mutation. The new 
offspring’s bias is computed by averaging the biases of its 
parents. 

 

V. FITNESS BIASING APPLIED TO LEG CYCLE 
GENERATION 

 
The test, done in simulation, was designed to determine if 

fitness biasing could be used with a CGA to adapt leg cycle 
control as the robot moved from a smooth to a rough sur-
face.  The CGA used the original smooth surface model for 
evolution.  The robot was represented by a second model 
that required additional vertical lift before a leg would be 
high enough to not influence the its horizontal movement.  
Each leg’s fitness was determined by the thrust that it pro-
duced while on the ground.  The best leg cycle produced 
forward thrust (by moving the leg back) while the leg was 
on the ground and used minimal time to reposition the leg.  
But if reposition started (by moving forward) before the leg 
cleared the ground, negative thrust would result.  The robot 
simulation model required more vertical separation between 
the ground and the leg before reposition could be done 
without producing negative thrust. 
 

A. Training 
 

Training began with the CGA operating on an inaccurate 
(smooth surface) model. Tests on the actual robot (simu-
lated) were done after every ten generations (n = 10).  A list 
of 64 biases (one for each individual (chromosome) in the 
solution set), all being initialized to one, was produced.  
Upon each generation of training (by the CGA) the fit-

nesses found by evaluating the 64 individuals of the popula-
tion on the CGA model were multiplied by their corre-
sponding bias to gain an adjusted fitness (adjusted_fitness = 
model_fitness * bias). 

 
 

   Ii              Ij                        Bi            Bj 
 
 
 
    Ik                                    Bi + Bj 
                                                    2 

Fig. 3:  Bias calculation for offspring Ik  from parents I i and I j. 

 

 
This list of 64 adjusted fitnesses was used by the CGA 

for its standard selection followed by crossover and muta-
tion.  The biases also changed during evolution.  The bias 
of each child was the average of its parents’  biases; see 
Figure 3.  Individuals Ii and Ij (i and j being indexes be-
tween 0 and 63 corresponding to the 64 individuals in the 
population) are stochastically selected for reproduction.  
Their offspring Ik is the result of applying crossover and 
mutation to the parents.  The bias assigned to Ik is the aver-
age of the two parents’  biases. 

As training continued, the biases tend toward the average 
of all the biases.  After each ten generations of CGA train-
ing, the original biases were disregarded and new biases 
were calculated (Figure 4). 
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Fig. 4:  Computation of biases.  Each individual solution is tested 
on the model and the actual robot.  The fitnesses that correspond 
to each individual are used to calculate the bias for that individual 
by dividing the actual fitness into the model fitness. 

 
The biases were set so that the next generation of stochas-

tic selection would be predicated on the fitnesses of the 
individual solutions on the actual robot.  The system started 
out doing ten generations of training with the actual robot 
requiring only the minimal vertical movement for a good 
gait.  After the ten generations, the environment changed to 



one where the robot required increased vertical movement. 
Training was continued for another 200 CGA generations.  
This involved 200*64 evaluations on the model and 20*64 
evaluations on the actual robot. 
 

B. Results 
 

Anytime learning with fitness biasing was used over 200 
generations of CGA training on each of the six legs.  The 
results discussed are the average of these six legs.   

 

 

Fig. 5: Anytime learning (solid line) versus no anytime learning 
(dashed line). 
 

Figure 5 shows a comparison of the actual robot leg per-
formance when anytime learning was used versus when it 
was not. Without anytime learning, (dotted line) the actual 
robot leg fitness fell sharply at the tenth generation where 
the robot simulation entered an area where increased lift 
was required.  No improvements were made to this since 
the training system was still using the outdated model 
(specifying that minimal lift is required) to find leg cycle 
solutions.  The solid line shows the average fitness of the 
six legs when anytime learning was used.  At the transition 
point, anytime learning gained an immediate advantage 
since the test on the actual robot leg helped to identify a 
better best solution.  Its benefit did not stop there, as the 
anytime learning continued to increase the actual leg fitness 
over the next 200 generations.   

This training took 20 generations of tests on the actual 
robot legs, which is the largest expense with anytime learn-
ing.  Although anytime learning increased the solution over 
training without anytime learning, is it an improvement 
over doing the CGA directly on the robot?  Figure 6 shows 
the same information as is shown in Figure 5, but a new 
line is added that shows what would happen if the training 
was done directly on the simulated robot.  The generation 

numbers are shown in actual generations.  The fitness again 
shows steady improvement, but this time the improvement 
is not as fast.  Anytime learning with fitness biasing worked 
better than training on the model or directly on the robot. 

 

Fig. 6:  Anytime learning (solid line) versus learning on the 
robot (dashed line). 

 

VI. GAIT GENERATION 
 
The previous section discussed the use of anytime learn-

ing to produce leg cycles that were optimized for rough 
terrain.  The desired length (number of pulses in the cycle) 
for these leg cycles was not specified.  The end results var-
ied in length from 36 to 56 pulses.  In order to use leg cy-
cles for the generation of gaits a set of leg cycles using a 
range of desired lengths needed to be produced.  The gait 
learning algorithm needs to be able to choose leg cycles 
from anywhere in this range for each leg to come up with 
the proper coordination of legs.  The lowest “no length 
specified”  optimal should be the lowest in this range since it 
would be unlikely that the best gait would use leg cycles 
that were all lower than their optimal.  Gait cycles with 
desired lengths from 36 to 67 were learned using the tech-
niques discussed in previous work [7]. 

The best individuals at generations that were multiples of 
10 were stored.  The results on the robot model are shown 
in Figure 7.  Graphs of  the  fitness  growth  of  the  five 
distinct starting populations along with their average 
(dashed line) after 500 pulses are shown. There are two 
things to note from this graph. The start fitness at genera-
tion 0 is fairly high.  This is because all the legs are already 
moving in a near optimal cycle; they simply need to be co-
ordinated.  The GA quickly learns adequate coordination 
and works to improve this solution to find the optimal leg 
cycle lengths and start spots for each leg. 
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Fig. 7:  Gaits formed from high-stepping leg cycles. Five tests are 
shown. The dashed line is the average performance of the five. 

 
 
Tests on the actual robot confirmed the viability of this 

method.  In all five cases, tripod gaits with high stepping 
leg cycles were produced.  Figure 8 shows diagrams of two 
tripod gaits.  The first is the gait produced with normal leg 
cycles from previous research [7].  The second shows the 
tripod gait produced using the higher stepping leg cycles 
formed from anytime learning.  Now that more time is re-
quired in the leg swing, to allow it to lift over rough terrain, 
there is less time with all legs on the ground. 

 

 

Fig. 8:  Tripod gait for smooth terrain versus one for rough terrain.   
The smooth terrain gait (top diagram) takes minimal time to repo-
sition the legs during their swing.  For rough terrain, the stance 
(producing thrust) times are the same, but the swing times are 
longer as the leg must lift up further before it starts to move for-
ward. 

 
 

 

VII. CONCLUSIONS 
 

Anytime learning with fitness biasing is an effective 
means of learning adaptive leg cycles, when used in con-
junction with a cyclic genetic algorithm.  It can assist in the 
correction of leg cycles to accommodate environmental 
conditions such as rough terrain by causing them to incor-
porate more lift into their cycles.  Punctuated anytime learn-
ing has been shown, in simulation, to be more effective on 
these problems than direct learning on the robot.  Further 
tests on anytime learning with fitness biasing should con-
tinue to reveal its general applicability to several problems 
in evolutionary robotics. 
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