
Distributed Neural Network: 

Dynamic Learning via Backpropagation with 

Hardware Neurons using Arduino Chips 

 

Gary Parker and Mohammad Khan 
Department of Computer Science 

Connecticut College 

New London, CT, USA 

parker@conncoll.edu, mkhan4@conncoll.edu 

 

 
Abstract—In this paper we present an implementation of and 

a proposed algorithm for an easily expandable hardware 

Artificial Neural Network (ANN) capable of learning using 

inexpensive, off-the-shelf microprocessors. While significant 

work has been done in hardware ANN implementations, this 

research offers a unique, general use, unspecialized, and 

inexpensive model with a flexible architecture representation. 

Using Arduino Pro Mini microprocessors and a flexible data 

communication framework that makes use of the built-in circuit 

bus called the Inter-Integrated Circuit, this implementation 

involves the programming of one neuron per microchip. This one 

to one ratio allows for the computational parallelism inherent in 

neural networks and provides for the flexibility of building 

various ANN architectures. The prototype that was developed 

consists of an input layer element microchip, two hidden layer 

neuron microchips, and an output layer neuron microchip. 

Learning happens completely on hardware via backpropagation 

without a data connection to a computer. Tests showed that the 

prototype can learn the logical operations OR, AND, XOR, and 

XNOR, and that the system can accommodate dynamic changes 

in learning between logical operations. 

Keywords—Artificial Neural Networks; backpropagation; 

dynamic learning; hardware; Arduino; Inter-Integrated Circuit;  

I. INTRODUCTION 

An Artificial Neural Network (ANN) models a biological 

neural network, which can have billions of neurons with 

trillions of interconnections. Most ANNs are implemented 

solely in software simulations, and those implemented in 

hardware usually have the whole ANN loaded on one chip. 

This research takes a step towards a new ANN implemented 

by connecting a number of microchips such that each 

microchip represents a single neuron. While the commercial 

market does have a host of hardware ANNs, no general use, 

unspecialized, and inexpensive model exists such that it has a 

clear one chip to one neuron representation. Generally, extra 

modules and processing parts are added to have the chip 

function as a single neuron and more commonly multiple 

neurons are implemented on one chip. Under-the-hood, these 

representations also generally require a good grasp of 

electrical engineering to fully understand how the inputs and 

outputs are mapped as they use voltage, current, and similar 

elements to model data. In order to manipulate these elements, 

specialized and expensive parts are often needed. Moreover, 

many of the architectures are built for specific tasks, and they 

are not easily incorporated into bigger systems, and even 

fewer have learning capabilities. This paper presents a more 

accessible approach for creating general hardware ANNs 

capable of learning.  

In this research we develop a hardware ANN utilizing 

Arduino Pro Mini (APM) microchips, which are popular, low-

priced microcontrollers, coupled with open-source software, to 

function as neurons that are able to learn using the 

backpropagation algorithm. In this implementation, each of 

the APM chips act as a single neuron with learning 

capabilities, which is a step towards a more genuine imitation 

of a biological neural network. The architecture of the ANN 

that we developed for this initial trial is such that one APM 

chip handles the input, two APM chips are each neurons in the 

hidden layer taking input from the previous APM chip, and 

one APM chip is a neuron in the output layer. The 

communication between the chips is supported by the I2C 

(Inter-Integrated Circuit) capability of Arduino which allows a 

Master-Slave connection between the output chip, the hidden 

layer chips, and the input chip. This works into the theme of a 

more genuine model because the output neuron fires only 

when it receives input from the hidden layer neurons. This 

design was implemented on a breadboard to show the dynamic 

nature of the system whereby chips/neurons can be moved to 

grow or shrink the ANN. The finished network has the 

capability of learning four different logic operations: AND, 

OR, XOR, and XNOR. Learning happens on the hardware 

APMs themselves without a data connection to a computer. 

The learning can be controlled by two physical switches, 

which allow the user to change in real time from one 

input/output combination correlating to one of the logic 

operations to another.  

The key to the implementation was an understanding of 

the intricacies of transferring data across I2C and 

modularizing the overall ANN across multiple Arduinos. A 

protocol for transferring the information from chip to chip was 

developed to allow backpropagation in the learning phase. 
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II. RELATED WORKS 

Most commonly ANNs are implemented as software and 

trained on computers. This technique is inherently non-parallel 

due to the sequential von-Neumann architecture of computers. 

In contrast, the past two decades have shown strides being 

made in the development of dedicated hardware to develop 

faster and more genuine networks that are processed in 

parallel [1]. However, there is much room for improvement. 

Dias, Antunes, and Mota note in a review of commercial ANN 

hardware that much of this hardware is specialized and 

expensive in development time and resources, and not much is 

known about its commercial implementations [2]. Goser notes 

in a paper on limitations of hardware ANN that one problem 

in developing hardware models of ANNs is dedicated, 

complex wiring due to specialized hardware [3]. It is 

important to consider how the architecture of an ANN is 

represented in hardware. Generally, multiple neurons are 

implemented on one chip and often the full ANN is put on one 

chip. Liao notes in a survey of Neural Networks hardware that 

almost all hardware neuron designs are such that they include 

an activation block, weights block, transfer function block, 

and other processing elements [4]. The activation block is 

always on the chip, but the other blocks need not be. In other 

words, much of these implementations do not focus on 

building a hardware neuron in a single chip. There have also 

been highly specialized products that explore learning through 

implementation of the backpropagation algorithm on several 

different hardware structures [5]. These products, however, 

deal more with hardware manipulation in parallel computers 

than representation on the microcontroller level. 

One method for creating hardware ANNs is the use of 

Field Programmable Gate Arrays (FPGAs). FPGAs are 

integrated circuits that are physically configurable and serve 

as programmable logic. Significant work has been done in 

using FPGAs for ANN development [6, 8, 9]. Sahin, Becerikli 

and Yazici implemented a multiple layer ANN such that an 

FPGA was configured to link neurons together with 

multipliers and adders were representative of connections 

between neurons [7]. This framework allowed for 

manipulation of the ANN architecture by having a dynamic 

number of layers and neurons. The weights were learned 

beforehand and mapped onto the FPGA. Although no clear 

learning method was explored on the hardware itself, this 

work took an accessible product commonly used for 

prototyping to develop a hardware ANN. It is important to 

note that even though the ANN architecture can be changed in 

these frameworks, it does require physical configuration and 

rededication of parts within the hardware itself. 

A general theme with development of hardware ANNs has 

been an architectural representation such that multiple neurons 

exist on one chip. Ienne and Kuhn give an analysis of multiple 

commercial chips [10]. For example, the Philips’ Lneuro-1 

consists of 16 neurons while the Philips’ Lneuro-2.3 consists 

of 12 neurons. The Ricoh RN-200 also consists of a 16 

neurons in a multiple layered ANN and includes 

backpropagation learning. Some implementations add extra 

processing parts to a chip to make it a faster system. For 

example, Ienne and Kuhn also describe the Intel’s Ni1000 

which consists of three parts where the microcontroller is 

combined with a classifier and an external interface that does 

conversion calculation to decrease the load on the chip itself. 

Other specialized designs have been considered, and many 

intricate methods for modeling neurons have been explored. 

Joubert, Belhadj, Temam, and Héliot give an analysis of the 

Leaky Integrate-and-Fire neuron which although is a single 

neuron representation, has a specific architecture split among 

three main parts: the synapse, the neuron core, and the 

comparator [11]. A number of these implementations are 

based on electrical properties such as current, capacitance, 

voltage, and similar elements. Although this may be a more 

genuine representation of a biological neuron it does take a 

good amount of electrical engineering expertise to implement 

and reproduce, and the parts are specialized and expensive. 

In summary, there has been much research in the 

development of novel hardware ANNs that are efficient and 

fast. However, most of these hardware implementations are 

built with specialized parts, the resources are expensive, and 

there does not exist a clear general, unspecialized, and 

inexpensive “one neuron to one chip” implementation. Hence, 

the ultimate goal of the research reported in this paper is to 

provide an alternative, to develop a hardware ANN system 

where each neuron is implemented on a single inexpensive, 

readily available chip. In addition, each neuron/chip will have 

learning capability (initially through backpropagation) and the 

implementation will be accessible to typical users. In this 

research we used the APM microchip because it is 

inexpensive, widely available, small enough for quick 

prototyping of ANN architectures down to the level of the 

neuron, and allows for a communication framework for 

learning through backpropagation. 

III. ARTIFICIAL NEURAL NETWORKS 

Artificial Neural Networks (ANNs) consist of single 

neurons that are linked together by weighted connections via 

which information is transferred. Every neuron receives a set 

of inputs with corresponding weights and produces only a 

single output. The output of one neuron becomes the input for 

neurons in a subsequent layer. For example, Figure 1 includes 

an input layer (consists of no neurons - it just provides input), 

a hidden layer with two neurons, and an output layer with one 

neuron. A threshold value (θ) symbolically represents the 

activation potential of a biological neuron. Normally a 

weighted sum of all the inputs is compared to this value to 

determine an output. We treat the threshold as a constant input 

value of -1 and give it a corresponding weight. The weighted 

sum (X) of all the inputs is fed into an activation function to 

determine an output (Y). The production of an output is called 

activation. Here, we employ the sigmoid activation function as 

such:  
 

     

                            Y = 
1

1 + e -X
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Figure 1. Visual representation of a multiple layered ANN with two inputs, 

two hidden layer neurons, and an output layer neuron. 

 
 

The standard learning mechanism for feed-forward ANNs 

consists of two stages, forward propagation and 

backpropagation.  Learning happens when these stages are 

continually repeated with a set of desired input/output pairs. 

The learning process starts by initially setting all of the 

weights in each neuron to random values within a small range. 

The input layer provides the input to each neuron in the 

hidden layer. The hidden layer neurons produce an activation, 

which is passed to the next layer. Activations continue to be 

output in each subsequent layer until the output layer neurons 

are reached. An actual output is produced after activation at 

the output layer, and forward propagation ends. This value is 

compared to the desired output corresponding to the current 

input and an error value is produced as the difference between 

the two values. Using this error, the process of 

backpropagation begins as described below. Error gradients 

are used to adjust weights in the case of multi-layered ANNs 

because hidden layers do not have a clear desired output 

value, and thus cannot have an error by the definition above. 

Below, the equation formatting is similar to that which is used 

in the Neural Networks chapter of Artificial Intelligence:  A 

Guide to Intelligent Systems by Negnevitsky [12]. The 

backpropagation algorithm was utilized for the learning 

portion of this ANN. The algorithm follows as such: 

 

1) The error gradient (δ) for the neuron in the output 

layer (k) at the current iteration (t) is calculated.  

 

               δk(t)= Yk(t)  ×  [1 – Yk(t)] ×  ek(t)   

 

Where Yk is the actual output at the output layer and 

ek is the error at the output layer neuron such that: 

 

                        ek (t) =  Yd_k(t) – Yk(t) 

    

Where Yd_k  is the desired output at the output layer neuron. 

 

2) The weights (Wj_k) between the hidden layer (j) and 

output layer (k) are updated for the next iteration (t+1) using 

this error gradient. 

 

Wj_k(t+1) = Wj_k(t) + [ α × Yj(t) × δk(t) ] 

 

Where Yj is the actual output at the hidden layer and α is the 

constant learning rate 

 

3) The error gradient (δ) for the neurons in the hidden 

layer (j) is calculated. 

 

δj(t) = Yj(t)  ×  [ 1 – Yj(t) ] ×  [ δk(t) ×  Wj_k(t) ]  

 

This is the case when there is a single output neuron. 

 

4) The weights (Wi_j) between the input layer (i) and 

hidden layer (j) are updated using this error gradient. 

 

Wi_j(t+1) = Wi_j(t) + [ α × xi(t) ×  δj(t) ] 

    

Where xi(t) is the input to the hidden layer neuron at iteration t 

 

5) Once the weights are updated, a new iteration runs 

through forward propagation and backpropagation.  This 

process loops continuously. 

IV. IMPLEMENTATION OF HARDWARE NEURAL NETWORK 

The Arduino Pro Mini (APM) was selected for this 

implementation of a hardware ANN because it is widely 

available, small enough for quick prototyping of ANN 

architectures, and inexpensive (the pricing for the chip runs $3 

to $10 depending on distributer). The 5V and 16MHz model 

was chosen for this research. The APM has 14 digital 

input/output pins. A 6 pin header connects via an FTDI cable 

to the computer to upload programs or provide USB power. 

The size of the microchip (.7’’ x 1.3’’) allows linkage of many 

microchips together without taking up much space.  

The Inter-Integrated Circuit (I2C) bus, which is a built in 

part of the APM, was used to control communication of data 

between neurons. Each neuron was given its own memory 

address through assignments within its program. The I2C 

works such that a single bus allows communication via a 

Serial Clock Line and a Serial Data Line through Master-

Slave relationships between APM microchips. The Master 

microchip initiates the clock and demands communication 

from the Slave microchips. The Slave microchips synchronize 

with and respond to Master commands. On the APM, pin A4 

provides access to the Data Line and pin A5 provides access 

to the Clock Line. Thus, these two lines come together in 

simplified wiring along one simple I2C bus that connects all 

APMs within the hardware ANN.  

In order to embed a ANN framework within the APMs 

using the I2C bus, the Arduino Wire library was needed. This 

library comes with the Arduino Integrated Development 

Environment and is preset with functions that allow 

communication between microchips connected together with 

the I2C bus. The two main commands used were read() and 

write() which allow data flow to happen in two directions. 

Other commands were also used, such as: requestFrom() 

which allows a microchip to ask for data from another 

microchip and available() which is a  Boolean functions that 

returns true if data is available from a microchip. 



A. I2C Data Transfer 

The transfer of data in the Arduino I2C is limited to bytes 

or characters. This means that a double precision value - which 

consists of 4 bytes in Arduino - cannot easily be transferred 

over wire. Precision is vital for the weights learning portion of 

the Neural Network. We worked around this limitation by 

using a Union - a data type in the C programming language 

that allows storing of different data types in the same memory 

location: 
 

union T { byte b[4]; double d; }  T; 

Here the same memory location refers to a double and a byte. 

Hence, a double can be encoded as an array of bytes, packaged 

and sent over Wire to an APM neuron address: 

 int dataSize = 4; 

  byte packet[dataSize]; 

  for (byte i = 0; i < dataSize; i++) 

            packet[i] = T.b[i]; 

  Wire.write(packet, dataSize); 

The receiving end utilizes another Union that reverses this 

masking to obtain the double precision and store it into a 

variable: 

  for (byte i = 0; i < 4; i++) 

               T.b[i] = Wire.read(); 

  double value = T.d; 

 

B. Configuration of Individual Microchips 

Each microchip was configured with a program written in 
the Arduino language which is based on C/C++ functions. A 
single neuron class was developed for a hidden layer neuron 
and an output layer neuron. Similarly, a class was developed 
for the input element. Within the context of the I2C bus 
framework, each APM program included a memory address to 
be used while probing and communicating through the bus. 
This is very beneficial to making the hardware ANN a dynamic 
system whereby the architecture can be changed easily with 
minimal adjustment.  

Weights and inputs are each stored in different arrays of 
type double within each hidden and output neuron. The 
learning rate is set at .35 for all neurons - this can be easily 
adjusted based on observation of learning performance.  

Below, software components of each type of microchip are 
outlined. 

a) Input Element Microchip (Slave) 

A desired output set is defined as a 2D array matrix 
such that each element is a chain of desired outputs to the 
corresponding logic operation input values, ordered as 
XOR, OR, AND, and XNOR:  

{{0,1,1,0}, {1,1,1,0},{1,0,0,0}, {1,0,0,1}} 

Similarly a 2D array matrix defines the training set of 
inputs:  

           {{1,1},{1,0},{0,1},{0,0}}  

     A requestEvent() function waits continuously for a 
request from the output APM Master neuron for a desired 
output value. Then, this value is packaged via the I2C 
process above and sent over wire. Simultaneously, the 
next input pair is chosen to be sent to each hidden neuron 
for the next forward propagation iteration. 

b) Hidden Neuron Microchip (Slave) 

There are two main functions in the Slave hidden 
neuron class: requestEvent() and receiveEvent(). 
requestEvent() waits continuously for a request from the 
output APM Master neuron, and upon triggering the 
function, an output value after activation is packaged and 
sent over wire as part of the forward propagation phase. 
receiveEvent() is triggered upon the arrival of data from 
the output neuron in the backpropagation phase. If the 
correct amount of data, 4 bytes, arrives then this means 
that the output neuron sent an error gradient value back for 
learning. Using this value, the weights are updated. 

c) Output Neuron Microchip (Master) 

There are two main functions that allow data to flow 
into the Master output neuron: readHidden() and 
readOutput(). readHidden() requests a neuron output from 
each hidden layer neuron via I2C and reads these as inputs 
for the output neuron itself. Once the inputs are received, 
an actual output is produced for forward propagation. 
readOutput() requests a desired output value for the 
current logic operation row from the input element via I2C 
and stores this value to be compared to the actual output. 
This comparison allows the calculation of an error. Using 
this new value backpropagation is initiated. The weights 
are updated, and an error gradient is calculated and sent 
back to each hidden layer neuron via I2C. 

C. Neural Network Circuit Design  

For this proof-of-concept there are 4 APM microchips. As 
shown on Figure 2, there is one input element, two hidden 
layer neurons, and one output layer neuron. This ANN 
architecture mirrors Figure 1 except a single APM input 
element provides both inputs. The communication functions 
such that the output neuron in the ANN is the labeled Master 
APM and the hidden neurons and input layer in the ANN are 
the labeled Slave APMs. The I2C bus connects the A4 and A5 
pins of all the Slave APMs to the A4 and A5 pins of the Master 
APM. Two wires from each APM, one for Data and one for 
Clock, allow this connection. Meanwhile, the APM input 
element provides constant logic operation row input through 
two wires (can be established via any input/output Arduino 
pins) to the two respective pins on the hidden APM neurons as 
values of 0 or 1 - respectively LOW (0V) and HIGH (5V). 
Two physical switches are connected to the input layer element 
to allow the user to dynamically change between logic 
operations to be learned; a switch state of 00 learns XOR, 01 
learns AND, 10 learns OR, and 11 learns XOR. Moreover, the 
current desired output for the corresponding logic operation 
row at the output neuron is obtained through an I2C request to 



the input layer element. Power is provided through the VCC 
pin for each APM, and all APMs are grounded through the 
GND pin. 

 
 

Figure 2. A schematic of the APM circuit is shown. Each neuron is labeled as a 
node. The two switches are attached to the input element. A pushbutton to 
toggle between learning and testing, and 3 LEDs to visualize output are 
attached to the output layer neuron. 

For presentation purposes, 2 LEDs are added to two input 

layer element output pins to help visualize the current inputs 

(OFF and ON correlate to an input of 0 and 1 respectively). 

An array of 3 LEDs is provided at the output neuron to 

visualize the current output. Thus, the spectrum of LED states 

provide a visualization of the range of outputs (see Table 1). A 

button is also connected to a pin on the output APM neuron to 

provide a means to switch between learning and testing. Upon 

testing (button is pressed down), the backpropagation stops 

and there is a 1.5 second delay at each APM data transfer to 

slow down changes between the different inputs to allow the 

visualization of the LED brightness states. Refer to Figure 3 

for visual of finished prototype on breadboard. 

TABLE I.  THE NUMBER OF LEDS ILLUMINATED SHOWS THE RANGE OF 

THE OUTPUT. IN THE THREE DIGIT NUMBER, 0 AND 1 CORRESPOND TO OFF AND 

ON, RESPECTIVELY, FOR EACH OF THE 3 DIODS. 

OUTPUT 

LED STATE 

OUTPUT 

RANGE 

000 0   -  .3 

001 .31  -  .5 

011 .51  -  .7 

111 .71  -  1 

 

D. Procedure 

The following algorithm works with the forward 
propagation phase and the backpropagation phase to allow for 
data transfer between APM chips utilizing the I2C Master-
Slave framework: 

1) Upon being powered, all APM neurons have a 

threshold input variable set to -1 within their programs. 

2) Initially, random weights between -1 and 1 are set in 

arrays within each hidden and output neuron program. 

3) Initiation of the forward propagation process starts at 

the output (Master) neuron.  It requests 4 bytes from each 

hidden node. The hidden neurons each forward propagate 

using inputs from the input APM element and their 

corresponding weights, and send an output to the Master 

neuron upon request via I2C. The output neuron takes these 

values as inputs. 

4) The Master neuron sends a request to the input APM 

element to send a 4 byte desired output double value. 

5) The input APM element sends the desired output to 

the Master neuron via I2C. 

6) Activation happens at the output layer, and the Master 

neuron produces an actual output. 

7) The backpropagation algorithm starts here: 

8) Using the actual output and the desired output, an 

error is calculated at the Master neuron. Using this, an output 

layer error gradient is also calculated. This value is used to 

calculate a hidden layer error gradient. 

9) This hidden layer error gradient is sent to each hidden 

layer neuron. 

10) The weights of the output layer are updated using the 

output layer error gradient. 

11) The weights of the hidden layer are updated using the 

hidden layer error gradient.  

12) Loop back to step 3. This time, the input element 

changes the current input/desired output pair to the next row in 

the current logical operation. 

When the testing button is pressed, the backpropagation 
steps 7-11 are skipped and the data flow is slowed down by 1.5 
seconds to visually show via LEDs the corresponding output to 
the current input. 

Figure 3. This is a photo of the implemented circuit design (compare to 
Figure 2). Here the green LEDs show the current input, and the red LEDs show 
the corresponding output. 



V. RESULTS 

The hardware ANN successfully learned the logic 
operations OR, AND, XOR, and XNOR. Refer to Table 2 for 
the results of 5 trials. The times and average times it takes to 
learn each logic operation within 49% and 30% error are 
shown. These benchmarks mean, for example, that if a desired 
output is 1 and an error of 49% is reached, then the actual 
output of the ANN would be .51, and if the desired output is 0 
and an error of 49% is reached then the actual output of the 
ANN would be .49. This error benchmark was selected 
because at this point the ANN would always yield the correct 
output as long as the actual output was rounded to the nearest 
integer (0 or 1). A similar test was done at 30% error. At this 
point all outputs definitely correspond to the desired output 
with the actual output more fine-tuned. Recorded trials were 
run 5 times from a random weights start, and time was taken 
when the error was reached for the two benchmarks. In context 
of the 30% benchmark, XOR took the least time to learn while 
AND took the most, respectively around 43 seconds and 2 
minutes, 36 seconds. With further training all logical 
operations were learned with 2% error or less for each 
corresponding input/output. The Neural Network was also able 
to learn dynamically upon switching to other logic operations. 
This means, for example, that after having learned a logical 
operation such as XOR to within a low percentage error, the 
switches were used to change to another logical operation such 
as AND. After the switch, the AND logical operation was also 
learned within a low percentage error. Every combination of 
change between logic operations successfully worked to learn 
the logical operation changed to within 30% error. Tests of 
changing the architecture - adding more hidden layer nodes - 
were also done with positive results. 

VI. CONCLUSION 

A hardware implementation of artificial Neural Networks 

with individual neurons on individual chips and 

backpropagation can be accomplished using inexpensive, off 

the shelf hardware. Tests showed that the constructed ANN 

can learn different logic operations dynamically. This system 

of individual neurons constructed provides a great framework 

for adjusting the ANN architecture. Simple one-line changes 

in the code to add unique memory addresses are needed upon 

addition of APM chips. This is an inexpensive, quick to 

implement ANN system that can be deployed within minutes, 

which provides a strong foundation for the ability to build 

more complex Neural Networks. 

VII. FUTURE WORK 

Research is being conducted in expanding robustness of the 
ANN system such that while learning, APM neurons will be 
removed to simulate failure of chip in a real world environment 
and to show that the learning still is successful without a 
shutdown of the system. Furthermore, instead of inputting 
binary values and learning logic operations, a future stage of 
this research is to explore obstacle avoidance using a remote 
controlled car and taking input as sensor values using this 
hardware ANN prototype. The flexible I2C framework and 
procedure that was developed will be further built upon to 

make more complex ANN architectures. Specifically, more 
layers will be added, and more neurons per each added layer 
along with multiple output neurons will also be explored. 
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TABLE II.  FIVE TRIALS FROM RANDOM START WEIGHTS WERE RUN. THE TIMES BELOW ARE ROUNDED IN SECONDS FOR THE CORRESPONDING ERROR 

BENCHMARKS. 

 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average 

Logical 

Operation 

 

   49% 

 

30% 

 

49% 

 

30% 

 

49% 

 

30% 

 

49% 

 

30% 

 

49% 

 

30% 
 

49% 

 

30% 

OR 1:23 2:17 1:24 2:16 1:23 2:16 1:23 2:16 1:24 2:16 1:23 2:16 

AND 1:56 2:37 1:53 2:35 1:54 2:36 1:53 2:35 1:53 2:35 1:54 2:36 

XOR 0:02 0:44 0:02 0:43 0:02 0:43 0:02 0:43 0:02 0:43 0:02 0:43 

XNOR 13:45 1:24 15:16 1:27 14:93 1:25 16:38 1:27 16:78 1:27 0:15 1:26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
 

 


