
Distributed Neural Network:

Dynamic Learning via Backpropagation with

Hardware Neurons using Arduino Chips

Gary Parker and Mohammad Khan
Department of Computer Science

Connecticut College

New London, CT, USA

parker@conncoll.edu, mkhan4@conncoll.edu

Abstract—In this paper we present an implementation of and

a proposed algorithm for an easily expandable hardware

Artificial Neural Network (ANN) capable of learning using

inexpensive, off-the-shelf microprocessors. While significant

work has been done in hardware ANN implementations, this

research offers a unique, general use, unspecialized, and

inexpensive model with a flexible architecture representation.

Using Arduino Pro Mini microprocessors and a flexible data

communication framework that makes use of the built-in circuit

bus called the Inter-Integrated Circuit, this implementation

involves the programming of one neuron per microchip. This one

to one ratio allows for the computational parallelism inherent in

neural networks and provides for the flexibility of building

various ANN architectures. The prototype that was developed

consists of an input layer element microchip, two hidden layer

neuron microchips, and an output layer neuron microchip.

Learning happens completely on hardware via backpropagation

without a data connection to a computer. Tests showed that the

prototype can learn the logical operations OR, AND, XOR, and

XNOR, and that the system can accommodate dynamic changes

in learning between logical operations.

Keywords—Artificial Neural Networks; backpropagation;

dynamic learning; hardware; Arduino; Inter-Integrated Circuit;

I. INTRODUCTION

An Artificial Neural Network (ANN) models a biological

neural network, which can have billions of neurons with

trillions of interconnections. Most ANNs are implemented

solely in software simulations, and those implemented in

hardware usually have the whole ANN loaded on one chip.

This research takes a step towards a new ANN implemented

by connecting a number of microchips such that each

microchip represents a single neuron. While the commercial

market does have a host of hardware ANNs, no general use,

unspecialized, and inexpensive model exists such that it has a

clear one chip to one neuron representation. Generally, extra

modules and processing parts are added to have the chip

function as a single neuron and more commonly multiple

neurons are implemented on one chip. Under-the-hood, these

representations also generally require a good grasp of

electrical engineering to fully understand how the inputs and

outputs are mapped as they use voltage, current, and similar

elements to model data. In order to manipulate these elements,

specialized and expensive parts are often needed. Moreover,

many of the architectures are built for specific tasks, and they

are not easily incorporated into bigger systems, and even

fewer have learning capabilities. This paper presents a more

accessible approach for creating general hardware ANNs

capable of learning.

In this research we develop a hardware ANN utilizing

Arduino Pro Mini (APM) microchips, which are popular, low-

priced microcontrollers, coupled with open-source software, to

function as neurons that are able to learn using the

backpropagation algorithm. In this implementation, each of

the APM chips act as a single neuron with learning

capabilities, which is a step towards a more genuine imitation

of a biological neural network. The architecture of the ANN

that we developed for this initial trial is such that one APM

chip handles the input, two APM chips are each neurons in the

hidden layer taking input from the previous APM chip, and

one APM chip is a neuron in the output layer. The

communication between the chips is supported by the I2C

(Inter-Integrated Circuit) capability of Arduino which allows a

Master-Slave connection between the output chip, the hidden

layer chips, and the input chip. This works into the theme of a

more genuine model because the output neuron fires only

when it receives input from the hidden layer neurons. This

design was implemented on a breadboard to show the dynamic

nature of the system whereby chips/neurons can be moved to

grow or shrink the ANN. The finished network has the

capability of learning four different logic operations: AND,

OR, XOR, and XNOR. Learning happens on the hardware

APMs themselves without a data connection to a computer.

The learning can be controlled by two physical switches,

which allow the user to change in real time from one

input/output combination correlating to one of the logic

operations to another.

The key to the implementation was an understanding of

the intricacies of transferring data across I2C and

modularizing the overall ANN across multiple Arduinos. A

protocol for transferring the information from chip to chip was

developed to allow backpropagation in the learning phase.

(1)

II. RELATED WORKS

Most commonly ANNs are implemented as software and

trained on computers. This technique is inherently non-parallel

due to the sequential von-Neumann architecture of computers.

In contrast, the past two decades have shown strides being

made in the development of dedicated hardware to develop

faster and more genuine networks that are processed in

parallel [1]. However, there is much room for improvement.

Dias, Antunes, and Mota note in a review of commercial ANN

hardware that much of this hardware is specialized and

expensive in development time and resources, and not much is

known about its commercial implementations [2]. Goser notes

in a paper on limitations of hardware ANN that one problem

in developing hardware models of ANNs is dedicated,

complex wiring due to specialized hardware [3]. It is

important to consider how the architecture of an ANN is

represented in hardware. Generally, multiple neurons are

implemented on one chip and often the full ANN is put on one

chip. Liao notes in a survey of Neural Networks hardware that

almost all hardware neuron designs are such that they include

an activation block, weights block, transfer function block,

and other processing elements [4]. The activation block is

always on the chip, but the other blocks need not be. In other

words, much of these implementations do not focus on

building a hardware neuron in a single chip. There have also

been highly specialized products that explore learning through

implementation of the backpropagation algorithm on several

different hardware structures [5]. These products, however,

deal more with hardware manipulation in parallel computers

than representation on the microcontroller level.

One method for creating hardware ANNs is the use of

Field Programmable Gate Arrays (FPGAs). FPGAs are

integrated circuits that are physically configurable and serve

as programmable logic. Significant work has been done in

using FPGAs for ANN development [6, 8, 9]. Sahin, Becerikli

and Yazici implemented a multiple layer ANN such that an

FPGA was configured to link neurons together with

multipliers and adders were representative of connections

between neurons [7]. This framework allowed for

manipulation of the ANN architecture by having a dynamic

number of layers and neurons. The weights were learned

beforehand and mapped onto the FPGA. Although no clear

learning method was explored on the hardware itself, this

work took an accessible product commonly used for

prototyping to develop a hardware ANN. It is important to

note that even though the ANN architecture can be changed in

these frameworks, it does require physical configuration and

rededication of parts within the hardware itself.

A general theme with development of hardware ANNs has

been an architectural representation such that multiple neurons

exist on one chip. Ienne and Kuhn give an analysis of multiple

commercial chips [10]. For example, the Philips’ Lneuro-1

consists of 16 neurons while the Philips’ Lneuro-2.3 consists

of 12 neurons. The Ricoh RN-200 also consists of a 16

neurons in a multiple layered ANN and includes

backpropagation learning. Some implementations add extra

processing parts to a chip to make it a faster system. For

example, Ienne and Kuhn also describe the Intel’s Ni1000

which consists of three parts where the microcontroller is

combined with a classifier and an external interface that does

conversion calculation to decrease the load on the chip itself.

Other specialized designs have been considered, and many

intricate methods for modeling neurons have been explored.

Joubert, Belhadj, Temam, and Héliot give an analysis of the

Leaky Integrate-and-Fire neuron which although is a single

neuron representation, has a specific architecture split among

three main parts: the synapse, the neuron core, and the

comparator [11]. A number of these implementations are

based on electrical properties such as current, capacitance,

voltage, and similar elements. Although this may be a more

genuine representation of a biological neuron it does take a

good amount of electrical engineering expertise to implement

and reproduce, and the parts are specialized and expensive.

In summary, there has been much research in the

development of novel hardware ANNs that are efficient and

fast. However, most of these hardware implementations are

built with specialized parts, the resources are expensive, and

there does not exist a clear general, unspecialized, and

inexpensive “one neuron to one chip” implementation. Hence,

the ultimate goal of the research reported in this paper is to

provide an alternative, to develop a hardware ANN system

where each neuron is implemented on a single inexpensive,

readily available chip. In addition, each neuron/chip will have

learning capability (initially through backpropagation) and the

implementation will be accessible to typical users. In this

research we used the APM microchip because it is

inexpensive, widely available, small enough for quick

prototyping of ANN architectures down to the level of the

neuron, and allows for a communication framework for

learning through backpropagation.

III. ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks (ANNs) consist of single

neurons that are linked together by weighted connections via

which information is transferred. Every neuron receives a set

of inputs with corresponding weights and produces only a

single output. The output of one neuron becomes the input for

neurons in a subsequent layer. For example, Figure 1 includes

an input layer (consists of no neurons - it just provides input),

a hidden layer with two neurons, and an output layer with one

neuron. A threshold value (θ) symbolically represents the

activation potential of a biological neuron. Normally a

weighted sum of all the inputs is compared to this value to

determine an output. We treat the threshold as a constant input

value of -1 and give it a corresponding weight. The weighted

sum (X) of all the inputs is fed into an activation function to

determine an output (Y). The production of an output is called

activation. Here, we employ the sigmoid activation function as

such:

 Y =
1

1 + e -X

(2)

(3)

(4)

(5)

(6)

Figure 1. Visual representation of a multiple layered ANN with two inputs,

two hidden layer neurons, and an output layer neuron.

The standard learning mechanism for feed-forward ANNs

consists of two stages, forward propagation and

backpropagation. Learning happens when these stages are

continually repeated with a set of desired input/output pairs.

The learning process starts by initially setting all of the

weights in each neuron to random values within a small range.

The input layer provides the input to each neuron in the

hidden layer. The hidden layer neurons produce an activation,

which is passed to the next layer. Activations continue to be

output in each subsequent layer until the output layer neurons

are reached. An actual output is produced after activation at

the output layer, and forward propagation ends. This value is

compared to the desired output corresponding to the current

input and an error value is produced as the difference between

the two values. Using this error, the process of

backpropagation begins as described below. Error gradients

are used to adjust weights in the case of multi-layered ANNs

because hidden layers do not have a clear desired output

value, and thus cannot have an error by the definition above.

Below, the equation formatting is similar to that which is used

in the Neural Networks chapter of Artificial Intelligence: A

Guide to Intelligent Systems by Negnevitsky [12]. The

backpropagation algorithm was utilized for the learning

portion of this ANN. The algorithm follows as such:

1) The error gradient (δ) for the neuron in the output

layer (k) at the current iteration (t) is calculated.

 δk(t)= Yk(t) × [1 – Yk(t)] × ek(t)

Where Yk is the actual output at the output layer and

ek is the error at the output layer neuron such that:

 ek (t) = Yd_k(t) – Yk(t)

Where Yd_k is the desired output at the output layer neuron.

2) The weights (Wj_k) between the hidden layer (j) and

output layer (k) are updated for the next iteration (t+1) using

this error gradient.

Wj_k(t+1) = Wj_k(t) + [α × Yj(t) × δk(t)]

Where Yj is the actual output at the hidden layer and α is the

constant learning rate

3) The error gradient (δ) for the neurons in the hidden

layer (j) is calculated.

δj(t) = Yj(t) × [1 – Yj(t)] × [δk(t) × Wj_k(t)]

This is the case when there is a single output neuron.

4) The weights (Wi_j) between the input layer (i) and

hidden layer (j) are updated using this error gradient.

Wi_j(t+1) = Wi_j(t) + [α × xi(t) × δj(t)]

Where xi(t) is the input to the hidden layer neuron at iteration t

5) Once the weights are updated, a new iteration runs

through forward propagation and backpropagation. This

process loops continuously.

IV. IMPLEMENTATION OF HARDWARE NEURAL NETWORK

The Arduino Pro Mini (APM) was selected for this

implementation of a hardware ANN because it is widely

available, small enough for quick prototyping of ANN

architectures, and inexpensive (the pricing for the chip runs $3

to $10 depending on distributer). The 5V and 16MHz model

was chosen for this research. The APM has 14 digital

input/output pins. A 6 pin header connects via an FTDI cable

to the computer to upload programs or provide USB power.

The size of the microchip (.7’’ x 1.3’’) allows linkage of many

microchips together without taking up much space.

The Inter-Integrated Circuit (I2C) bus, which is a built in

part of the APM, was used to control communication of data

between neurons. Each neuron was given its own memory

address through assignments within its program. The I2C

works such that a single bus allows communication via a

Serial Clock Line and a Serial Data Line through Master-

Slave relationships between APM microchips. The Master

microchip initiates the clock and demands communication

from the Slave microchips. The Slave microchips synchronize

with and respond to Master commands. On the APM, pin A4

provides access to the Data Line and pin A5 provides access

to the Clock Line. Thus, these two lines come together in

simplified wiring along one simple I2C bus that connects all

APMs within the hardware ANN.

In order to embed a ANN framework within the APMs

using the I2C bus, the Arduino Wire library was needed. This

library comes with the Arduino Integrated Development

Environment and is preset with functions that allow

communication between microchips connected together with

the I2C bus. The two main commands used were read() and

write() which allow data flow to happen in two directions.

Other commands were also used, such as: requestFrom()

which allows a microchip to ask for data from another

microchip and available() which is a Boolean functions that

returns true if data is available from a microchip.

A. I2C Data Transfer

The transfer of data in the Arduino I2C is limited to bytes

or characters. This means that a double precision value - which

consists of 4 bytes in Arduino - cannot easily be transferred

over wire. Precision is vital for the weights learning portion of

the Neural Network. We worked around this limitation by

using a Union - a data type in the C programming language

that allows storing of different data types in the same memory

location:

union T { byte b[4]; double d; } T;

Here the same memory location refers to a double and a byte.

Hence, a double can be encoded as an array of bytes, packaged

and sent over Wire to an APM neuron address:

 int dataSize = 4;

 byte packet[dataSize];

 for (byte i = 0; i < dataSize; i++)

 packet[i] = T.b[i];

 Wire.write(packet, dataSize);

The receiving end utilizes another Union that reverses this

masking to obtain the double precision and store it into a

variable:

 for (byte i = 0; i < 4; i++)

 T.b[i] = Wire.read();

 double value = T.d;

B. Configuration of Individual Microchips

Each microchip was configured with a program written in
the Arduino language which is based on C/C++ functions. A
single neuron class was developed for a hidden layer neuron
and an output layer neuron. Similarly, a class was developed
for the input element. Within the context of the I2C bus
framework, each APM program included a memory address to
be used while probing and communicating through the bus.
This is very beneficial to making the hardware ANN a dynamic
system whereby the architecture can be changed easily with
minimal adjustment.

Weights and inputs are each stored in different arrays of
type double within each hidden and output neuron. The
learning rate is set at .35 for all neurons - this can be easily
adjusted based on observation of learning performance.

Below, software components of each type of microchip are
outlined.

a) Input Element Microchip (Slave)

A desired output set is defined as a 2D array matrix
such that each element is a chain of desired outputs to the
corresponding logic operation input values, ordered as
XOR, OR, AND, and XNOR:

{{0,1,1,0}, {1,1,1,0},{1,0,0,0}, {1,0,0,1}}

Similarly a 2D array matrix defines the training set of
inputs:

 {{1,1},{1,0},{0,1},{0,0}}

 A requestEvent() function waits continuously for a
request from the output APM Master neuron for a desired
output value. Then, this value is packaged via the I2C
process above and sent over wire. Simultaneously, the
next input pair is chosen to be sent to each hidden neuron
for the next forward propagation iteration.

b) Hidden Neuron Microchip (Slave)

There are two main functions in the Slave hidden
neuron class: requestEvent() and receiveEvent().
requestEvent() waits continuously for a request from the
output APM Master neuron, and upon triggering the
function, an output value after activation is packaged and
sent over wire as part of the forward propagation phase.
receiveEvent() is triggered upon the arrival of data from
the output neuron in the backpropagation phase. If the
correct amount of data, 4 bytes, arrives then this means
that the output neuron sent an error gradient value back for
learning. Using this value, the weights are updated.

c) Output Neuron Microchip (Master)

There are two main functions that allow data to flow
into the Master output neuron: readHidden() and
readOutput(). readHidden() requests a neuron output from
each hidden layer neuron via I2C and reads these as inputs
for the output neuron itself. Once the inputs are received,
an actual output is produced for forward propagation.
readOutput() requests a desired output value for the
current logic operation row from the input element via I2C
and stores this value to be compared to the actual output.
This comparison allows the calculation of an error. Using
this new value backpropagation is initiated. The weights
are updated, and an error gradient is calculated and sent
back to each hidden layer neuron via I2C.

C. Neural Network Circuit Design

For this proof-of-concept there are 4 APM microchips. As
shown on Figure 2, there is one input element, two hidden
layer neurons, and one output layer neuron. This ANN
architecture mirrors Figure 1 except a single APM input
element provides both inputs. The communication functions
such that the output neuron in the ANN is the labeled Master
APM and the hidden neurons and input layer in the ANN are
the labeled Slave APMs. The I2C bus connects the A4 and A5
pins of all the Slave APMs to the A4 and A5 pins of the Master
APM. Two wires from each APM, one for Data and one for
Clock, allow this connection. Meanwhile, the APM input
element provides constant logic operation row input through
two wires (can be established via any input/output Arduino
pins) to the two respective pins on the hidden APM neurons as
values of 0 or 1 - respectively LOW (0V) and HIGH (5V).
Two physical switches are connected to the input layer element
to allow the user to dynamically change between logic
operations to be learned; a switch state of 00 learns XOR, 01
learns AND, 10 learns OR, and 11 learns XOR. Moreover, the
current desired output for the corresponding logic operation
row at the output neuron is obtained through an I2C request to

the input layer element. Power is provided through the VCC
pin for each APM, and all APMs are grounded through the
GND pin.

Figure 2. A schematic of the APM circuit is shown. Each neuron is labeled as a
node. The two switches are attached to the input element. A pushbutton to
toggle between learning and testing, and 3 LEDs to visualize output are
attached to the output layer neuron.

For presentation purposes, 2 LEDs are added to two input

layer element output pins to help visualize the current inputs

(OFF and ON correlate to an input of 0 and 1 respectively).

An array of 3 LEDs is provided at the output neuron to

visualize the current output. Thus, the spectrum of LED states

provide a visualization of the range of outputs (see Table 1). A

button is also connected to a pin on the output APM neuron to

provide a means to switch between learning and testing. Upon

testing (button is pressed down), the backpropagation stops

and there is a 1.5 second delay at each APM data transfer to

slow down changes between the different inputs to allow the

visualization of the LED brightness states. Refer to Figure 3

for visual of finished prototype on breadboard.

TABLE I. THE NUMBER OF LEDS ILLUMINATED SHOWS THE RANGE OF

THE OUTPUT. IN THE THREE DIGIT NUMBER, 0 AND 1 CORRESPOND TO OFF AND

ON, RESPECTIVELY, FOR EACH OF THE 3 DIODS.

OUTPUT

LED STATE

OUTPUT

RANGE

000 0 - .3

001 .31 - .5

011 .51 - .7

111 .71 - 1

D. Procedure

The following algorithm works with the forward
propagation phase and the backpropagation phase to allow for
data transfer between APM chips utilizing the I2C Master-
Slave framework:

1) Upon being powered, all APM neurons have a

threshold input variable set to -1 within their programs.

2) Initially, random weights between -1 and 1 are set in

arrays within each hidden and output neuron program.

3) Initiation of the forward propagation process starts at

the output (Master) neuron. It requests 4 bytes from each

hidden node. The hidden neurons each forward propagate

using inputs from the input APM element and their

corresponding weights, and send an output to the Master

neuron upon request via I2C. The output neuron takes these

values as inputs.

4) The Master neuron sends a request to the input APM

element to send a 4 byte desired output double value.

5) The input APM element sends the desired output to

the Master neuron via I2C.

6) Activation happens at the output layer, and the Master

neuron produces an actual output.

7) The backpropagation algorithm starts here:

8) Using the actual output and the desired output, an

error is calculated at the Master neuron. Using this, an output

layer error gradient is also calculated. This value is used to

calculate a hidden layer error gradient.

9) This hidden layer error gradient is sent to each hidden

layer neuron.

10) The weights of the output layer are updated using the

output layer error gradient.

11) The weights of the hidden layer are updated using the

hidden layer error gradient.

12) Loop back to step 3. This time, the input element

changes the current input/desired output pair to the next row in

the current logical operation.

When the testing button is pressed, the backpropagation
steps 7-11 are skipped and the data flow is slowed down by 1.5
seconds to visually show via LEDs the corresponding output to
the current input.

Figure 3. This is a photo of the implemented circuit design (compare to
Figure 2). Here the green LEDs show the current input, and the red LEDs show
the corresponding output.

V. RESULTS

The hardware ANN successfully learned the logic
operations OR, AND, XOR, and XNOR. Refer to Table 2 for
the results of 5 trials. The times and average times it takes to
learn each logic operation within 49% and 30% error are
shown. These benchmarks mean, for example, that if a desired
output is 1 and an error of 49% is reached, then the actual
output of the ANN would be .51, and if the desired output is 0
and an error of 49% is reached then the actual output of the
ANN would be .49. This error benchmark was selected
because at this point the ANN would always yield the correct
output as long as the actual output was rounded to the nearest
integer (0 or 1). A similar test was done at 30% error. At this
point all outputs definitely correspond to the desired output
with the actual output more fine-tuned. Recorded trials were
run 5 times from a random weights start, and time was taken
when the error was reached for the two benchmarks. In context
of the 30% benchmark, XOR took the least time to learn while
AND took the most, respectively around 43 seconds and 2
minutes, 36 seconds. With further training all logical
operations were learned with 2% error or less for each
corresponding input/output. The Neural Network was also able
to learn dynamically upon switching to other logic operations.
This means, for example, that after having learned a logical
operation such as XOR to within a low percentage error, the
switches were used to change to another logical operation such
as AND. After the switch, the AND logical operation was also
learned within a low percentage error. Every combination of
change between logic operations successfully worked to learn
the logical operation changed to within 30% error. Tests of
changing the architecture - adding more hidden layer nodes -
were also done with positive results.

VI. CONCLUSION

A hardware implementation of artificial Neural Networks

with individual neurons on individual chips and

backpropagation can be accomplished using inexpensive, off

the shelf hardware. Tests showed that the constructed ANN

can learn different logic operations dynamically. This system

of individual neurons constructed provides a great framework

for adjusting the ANN architecture. Simple one-line changes

in the code to add unique memory addresses are needed upon

addition of APM chips. This is an inexpensive, quick to

implement ANN system that can be deployed within minutes,

which provides a strong foundation for the ability to build

more complex Neural Networks.

VII. FUTURE WORK

Research is being conducted in expanding robustness of the
ANN system such that while learning, APM neurons will be
removed to simulate failure of chip in a real world environment
and to show that the learning still is successful without a
shutdown of the system. Furthermore, instead of inputting
binary values and learning logic operations, a future stage of
this research is to explore obstacle avoidance using a remote
controlled car and taking input as sensor values using this
hardware ANN prototype. The flexible I2C framework and
procedure that was developed will be further built upon to

make more complex ANN architectures. Specifically, more
layers will be added, and more neurons per each added layer
along with multiple output neurons will also be explored.

ACKNOWLEDGMENTS

 We would like to thank Tony Knapp (University of
Edinburgh) for exploring possible microprocessors for the task
and suggesting the Arduino. We would also like to thank James
Meyers (United States Coast Guard) and Jonathan Ray (United
States Coast Guard) for their work on earlier versions of
Arduino communication and hardware prototyping.

REFERENCES

[1] Misra, J., & Saha, I. (2010). Artificial neural networks in hardware: A
survey of two decades of progress. Neurocomputing, 74(1-3), 239-255.
doi:10.1016/j.neucom.2010.03.021

[2] Dias, F. M., Antunes, A., & Mota, A. M. (2004). Artificial neural
networks: A review of commercial hardware. Engineering Applications
of Artificial Intelligence, IFAC, 17(8), 945-952.

[3] Goser, K. (1996). Implementation of artificial neural networks into
hardware: Concepts and limitations. Mathematics and Computers in
Simulation, 41(1-2), 161-171.

[4] Liao, Y. (2001). Neural networks in hardware: A survey. (). Davis, CA:
Department of Computer Science, University of California, Davis.

[5] Kumar, V., Shekhar, S., & Amin, M. B. (1994). A scalable parallel
formulation of the backpropagation algorithm for hypercubes and
related architectures. IEEE Transactions on Parallel and Distributed
Systems, 4(10), 1073-1090.

[6] Omondi, A. R., & Rajapakse, J. C. (Eds.). (2006). FPGA
implementations of neural networks. Netherlands: Springer.

[7] Sahin, S., Becerikli, Y. & Yazici, S. (2006). Neural network
implementation in hardware using FPGAs. NIP, Neural Information
Processing, 4234(3), 1105–1112.

[8] Maguire, L. P., McGinnity, T. M., Glackin, B., Ghani, A., Belatreche,
A., & Harkin, J. (2007). Challenges for large-scale implementations of
spiking neural networks on FPGAs. Neurocomputing, 71(1-3), 13-29.
doi:10.1016/j.neucom.2006.11.029

[9] Zhu, J., & Sutton, P. (2003). FPGA implementations of neural
networks–a survey of a decade of progress. In Field Programmable
Logic and Application (pp. 1062-1066). Springer Berlin Heidelberg.

[10] Ienne, P., & Kuhn, G. (1995). Digital systems for neural networks.
Digital Signal Processing Technology, 57, 311-45.

[11] Joubert, A., Belhadj, B., Temam, O., & Héliot, R. (2012, June).
Hardware spiking neurons design: Analog or digital?. In Neural
Networks (IJCNN), The 2012 International Joint Conference on (pp. 1-
5). IEEE.

[12] Negnevitsky, M. (2005). Artificial intelligence: A guide to intelligent
systems. (2nd ed., pp. 165-216). England: Pearson Education Limited.

TABLE II. FIVE TRIALS FROM RANDOM START WEIGHTS WERE RUN. THE TIMES BELOW ARE ROUNDED IN SECONDS FOR THE CORRESPONDING ERROR

BENCHMARKS.

 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average

Logical

Operation

 49%

30%

49%

30%

49%

30%

49%

30%

49%

30%

49%

30%

OR 1:23 2:17 1:24 2:16 1:23 2:16 1:23 2:16 1:24 2:16 1:23 2:16

AND 1:56 2:37 1:53 2:35 1:54 2:36 1:53 2:35 1:53 2:35 1:54 2:36

XOR 0:02 0:44 0:02 0:43 0:02 0:43 0:02 0:43 0:02 0:43 0:02 0:43

XNOR 13:45 1:24 15:16 1:27 14:93 1:25 16:38 1:27 16:78 1:27 0:15 1:26

