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 Abstract - Cyclic genetic algorithms were developed to evolve 
single loop control programs for robots.  These programs have 
been used for three levels of control: individual leg movement, 
gait generation, and area search path finding. In all of these ap-
plications the cyclic genetic algorithm learned the cycle of actua-
tor activations that could be continually repeated to produce the 
desired behavior. Although very successful for these applications, 
it was not applicable to control problems that required different 
behaviors in response to sensor inputs. Control programs for this 
type of behavior require multiple loops with conditional state-
ments to regulate the branching. In this paper, we present modi-
fications to the standard cyclic genetic algorithm that allow it to 
learn multi-loop control programs that can react to sensor input. 
 
 Index Terms - Evolutionary robotics, learning, control, genetic 
algorithms. 
 

I.  INTRODUCTION 

 Cyclic genetic algorithms (CGAs) [1] have been success-
fully used to evolve control programs for differing levels of 
robot control. They are capable of learning the sequence of 
instructions needed to produce a desired behavior. In addition, 
they can be used to learn a cycle of instructions to produce 
repeated behavior such as a gait cycle. This method is distinct 
from other evolutionary robotics approaches. Cyclic genetic 
algorithms are a means of generating code in the form of a 
single loop program. Although very successful in doing this 
and in generating controllers for individual leg movement, 
gait cycles, and learning the sequence of turns and straights to 
produce a good search pattern, they have been limited to con-
trol programs requiring only a single loop. This makes their 
use for learning control programs that process sensor input 
very limited. In order to process sensor input, the control pro-
gram must have branching. Although the instructions in a sin-
gle loop control program can be conditionals, without other 
possible loops, the result of sensor input can only be to exe-
cute one sequence of a selection of instructions. This limita-
tion does not allow the robot to switch into another cyclic be-
havior in response to sensor input. What is needed is a means 
for cyclic genetic algorithms to generate multi-loop control 
programs with conditionals that allow the control to jump 
from one loop to another. In this paper, we address the task of 
learning obstacle avoidance while moving toward a light. 

Mondada and Floreano developed Khepera, a miniature 
mobile robot, to study the evolution of control structures and 
had the robot perform, among other tasks, navigation and ob-

stacle avoidance [2]. The controller consisted of an artificial 
neural network.  Its weights were evolved using a combina-
tion of neural networks and standard genetic algorithms with 
fitness scaling and “biased mutations" [3].   Tuci, Quinn, and 
Harvey used a Khepera  robot that was placed in an arena with 
the task to navigate towards/search for a target placed at one 
end of the arena [4]. No obstacle avoidance was implemented 
to help during the navigation; if the robot crashed into a wall, 
the trial was terminated. They used a neural network control-
ler with fixed-connection weights and “leaky integrator” neu-
rons, and a simple genetic algorithm for learning.  At the Na-
tional University of Singapore, controller evolution was stud-
ied using an incremental approach on a Khepera robot doing 
navigation and obstacle avoidance [5]. The goal was to test 
this incremental approach by first creating a neural controller 
for the mobile robot to perform straight navigation while 
avoiding obstacles and then later extend it to a wall following 
behavior.  

Ram, Arkin, Boone, and Pearce applied genetic algo-
rithms to the learning of robot navigation behaviors for reac-
tive control systems [6]. The task to be performed was naviga-
tion of dynamic environments. Three schemas were imple-
mented: move to goal, avoid static obstacle and noise. The 
parameters controlling the behavior of these schemas were 
determined autonomously using a GA. The GA was used to 
tune schema-based reactive control systems by learning pa-
rameter settings that optimized performance metrics of interest 
in various kinds of environments. Thus, the GA optimized 
reactive control by optimizing the individual reactive behav-
iors. Only simulation results were obtained.  

For our research we used a LEGO Mindstorms robot. 
This was mainly because this portion of research was part of a 
larger research project that involved the co-evolution of the 
morphology and control of LEGO Mindstorms robots. Lund 
explored the concept of development of LEGO robot control 
systems without programming by children [7]. Neural net-
works were used as robot controllers for LEGO robots and an 
interactive GA was applied in combination with reinforcement 
learning, so that the development time could be reduced. Both 
simulation and real world tests were performed. The LEGO 
robots were equipped with light and IR sensors, motors, 
wheels, etc. After the child had seen the evolved behaviors of 
all the robots in the population, the child’s preferred robots 
were chosen for reproduction. Mutation was applied to the 
selected robots. The loop continued until the child was satis-



fied with the evolved behavior of a robot. Obstacle avoidance 
was implemented.  

In our approach, controller evolution is achieved with a 
multi-loop cyclic genetic algorithm. Training is done in simu-
lation; tests are done both in a simulated environment and 
with the actual robot.  The GA is not being used to learn 
weights for a neural network or parameters for a reactive con-
trol system.  The controller is not executing a prewritten pro-
gram using the learned values to guide the computation of an 
output from the input.  The CGA is learning a control program 
that can be interpreted and directly executed on the controller.   

II.  CYCLIC GENETIC ALGORITHM 

A cyclic genetic algorithm (CGA) [1] is much like a regu-
lar genetic algorithm [8] except that the gene groupings of the 
chromosome represent tasks to be completed as opposed to 
traits of the solution. These tasks can be anything from a sin-
gle action to a sub-cycle of tasks. Using this method of repre-
sentation, it is possible to break up a chromosome into multi-
ple genes with each gene acting as a cycle. Each gene or sub-
cycle contains two distinct sections, one part representing an 
action or set of actions, and the second part representing the 
number of times that action is to be repeated. The entire set of 
genes in the chromosome can also be executed repetitively, in 
which case the whole chromosome becomes a cycle. 

Parker used CGAs to evolve single-loop programs for ro-
botic control of individual leg cycles, gait cycles for hexapod 
robots, and area coverage patterns [9]. The CGA was well 
suited for these problems because the solutions are cyclic in 
nature and required a single loop for control. Problems that 
require dynamic changes in behavior depending on sensor 
input call for multi-loop control programs for which a system 
of conditional branching must be implemented in the CGA. 
Robotic control presents an interesting problem for learning 
algorithms since it usually requires sequential solutions where 
a series of actions is continually repeated. The Cyclic Genetic 
Algorithm (CGA) has proven to be an effective method for 
evolving single loop control programs such as the ones used 
for gait generation. The current limitation of the CGA is that it 
does not allow for conditional branching or a multi-loop pro-
gram, which is required to integrate sensor input. 

Parker, Parashkevov, Blumenthal, and Guldimann ex-
tended the use of CGAs to multi-loop programs that required 
sensor input [9]. The problem solved was the development of 
a search program for a predator robot to find a stationary prey. 
Their chromosome was 128 bits long and was designed for 
four different states, thus it had four segments, each of which 
represented a control loop, a cycle that the robot repeated as 
long as the sensors’ inputs stayed the same. Each segment was 
linked to all of the other segments; there was one segment for 
each of the possible combinations of sensor inputs. Each seg-
ment consisted of four genes. The genes consisted of a pair of 
integers. The first integer of the gene determined which action 
was to be taken and the other dictated the number of repeti-
tions of that action. After performing one action the specified 
number of repetitions, the robot checked the state of the sen-

sors. If the sensor states were the same as the last time they 
were checked, the robot went on with the next gene in the 
same segment. If the last gene in the segment was reached, the 
cycle continued at the beginning again with the execution of 
the first gene in the segment. If the sensor inputs were differ-
ent than the last ones, the robot halted the current cycle and 
jumped to the first gene of the segment that corresponded to 
the new sensor inputs. This worked well for the problem being 
solved, but it is not reasonable for the obstacle avoidance 
while moving toward a light problem. The drawbacks of this 
approach for this problem are: a segment was needed for 
every possible combination of sensor inputs and the multi-
loop program didn’t work with continuous sensor values. 

In the work reported in this paper, we continued to ex-
pand the use of CGAs in evolving multi-loop programs by 
devising a new method to deal with a more complicated prob-
lem. The capabilities of the CGA were extended to evolve the 
program for a controller that incorporated sensors. As opposed 
to the research described above, for which the chromosome 
length grew exponentially with the number of sensors in the 
system, our implementation is more flexible: as many as de-
sired sensors can be easily incorporated into the simulation by 
adding instructions to the system, while the total number of 
instructions depending on sensor input can remain constant.  

In order for our robot to react properly to sensor input, the 
controller had to be running a multi-loop program, which is 
only possible if a system of conditional branching can be im-
plemented. The gene structure of the CGA chromosome was 
modified so that the implementation of a system of conditional 
branching was possible. The evolved behavior enabled the 
robot to properly interpret sensor input to avoid walls and 
efficiently locate the desired stationary target (light source).  

III.  PROBLEM DESCRIPTION 

The goal of the research reported in this paper was to 
evolve a multi-loop controller for a robot with sensors. The 
task chosen for investigation was navigation through an ob-
stacle maze towards a light source. 

A.  The Robot and Colony Space 
The robot, named Amsterdam, was constructed out of 

LEGO pieces.  It was a combination / modification of the 
Roverbot with Single Bumper and Light Sensors [10] and the 
Bugbot [11]. The robot was assigned two tasks: navigation 
through an obstacle maze until reaching a light source and 
wall following. The RCX of Amsterdam, i.e. the programma-
ble, microcontroller-based brick in the Lego Mindstorms Set, 
which can simultaneously operate three motors, three sensors, 
and an infrared serial communications interface, was pro-
grammed in NotQuiteC (NQC).  

Amsterdam was equipped with two LEGO light sensors 
which could read light from 0.6 Lux through 760 Lux. Then, 
the RCX scaled this to a 0-100 percent measure. In our meas-
urements, the source was considered to have a luminosity of 
100%. The robot could see light coming directly from the 
source or light emitted by the source that had been reflected 
by the walls of the experiment area.  



The actual experimental area set up in the lab for real 
world testing was an 8 x 8 foot area, having wooden walls, a 
powerful light source placed in the lower left corner and five 
obstacles whose placement depended on the configuration 
analyzed (see Section 4b). The 1 x 1 foot obstacles were 
placed between the robot and the light source.  In order to be 
able to sense obstacles, Amsterdam was equipped with one 
bump sensor placed in the front. 

B. The Simulation 
The simulation occurred within a 300 x 300 (arbitrary 

units) area. All individuals started at position (285, 285) with 
an angle of 225, i.e. directly facing the light source. Also, this 
position had the advantages that the initial luminosities to the 
left and to the right were equal and the robot was not biased to 
move in a certain direction.  

The experiment area was modeled as closely as possible 
in the simulation, special attention being paid to the light dis-
tribution over the experiment area. Each point in this area had 
been assigned values for luminosity in a way that would best 
mimic reality. Thus, the corners had been given fixed lumi-
nosity values. Along the walls, luminosity was assumed to 
decrease linearly with distance; when closer to the light, how-
ever, the change was less. For the inner points of the experi-
ment area, the intersection point of the beam line coming from 
the left and right light sensors of the robot with each wall was 
computed. Depending on the angle of the beam, the wall the 
robot was facing could be determined. Therefore, the luminos-
ity of the point of the beam projection on the wall could be 
computed. Then, the luminosity decreased linearly with the 
distance from the wall.  

The obstacle locations were fixed throughout each test.  
The obstacles could have been randomly placed for the com-
putation of each chromosome’s fitness but then the compari-
son would have been inconsistent.  Within a generation, one 
chromosome might have faced a configuration almost impos-
sible to navigate through, while in another generation, the 
same chromosome might have been in a very easy to solve 
configuration. Three configurations were developed and used 
in the test runs; each for 5 tests making a total of 15 tests.  

In the real world tests, Amsterdam was used, while in the 
simulation, the size of the robot was assumed to be a point. 
Each time the robot made a move, after the end of the move, 
the algorithm checked to see if the robot hadn’t bump into an 
obstacle. If this was the case, the coordinates were adjusted to 
the point that the robot encountered the obstacle.  

IV.  THE EVOLUTION OF CONTROL 

In order to use a CGA to learn the control programs the 
required NQC instructions were converted into machine code.  
A chromosome was developed that would have a sufficient 
number of loops possible and a sufficient number of instruc-
tions in each loop to solve the problem. A population of ran-
dom individuals was created and involved for 350 generations 
using a simulation of the robot and its environment.  The re-
sultant multi-loop control programs were tested on the actual 
robot. 

A.  Machine Code 
Using the NQC programming language a program was 

written to control Amsterdam in performing the task of navi-
gating towards a light source while performing obstacle 
avoidance. This was done to identify all of the commands in 
NQC that were needed to perform the task. Some of the im-
portant commands needed for the operation of the robot were: 
OnFwd(OUT_X), S1<S3 and Wait(x). OUT_X stood for ei-
ther A or C, indicating the left or right motor, respectively. 
OnFwd(OUT_X) turned on the specified motor and started 
rotating the axle of the motor counterclockwise, so that the 
robot started moving forward. S1<S3 asked for a comparison 
between the value of the light intensity measured by the left 
light sensor (S1) and the value of the light intensity measured 
by the right light sensor (S3). For example, if the left sensor, 
S1, measured a larger light intensity. The direction of the in-
frared beam of S1 would become the target line of movement 
of the robot. Thus, the robot would turn so that its symmetry 
line would overlap the direction of the beam of S1 at the time 
S1 took the measurement for the intensity of the light, and the 
robot would start advancing on this line. Wait(x) took as a 
parameter an integer, which represented, in hundredths of a 
second, the time during which the robot should keep execut-
ing the instructions currently on the queue. Section 3.3 de-
scribes in more detail in how the queue was created and exe-
cuted. 

In order to allow the CGA to generate code, the individual 
instructions needed to be represented in binary. Using back-
ward engineering, we generated machine code for each of the 
possible instructions needed for the task.  While creating this 
code, we fixed the maximum number of loops in our multi-
loop program to eight. 

The NQC instructions in the program were used in the de-
sign a machine code that assigned each possible instruction a 
9 bit binary number. For example, the machine code equiva-
lent of the instruction OnFwd(OUT_A), i.e. the left motor of 
the robot was turned on, resulting in the axle of the motor 
rotating counterclockwise and the robot moving forward, is 
000000101.  

Some instructions, if encountered, broke the execution of 
the current loop and started the execution of another loop in 
the same chromosome, the next loop to be executed being 
specified by the instruction. For example, if 001 010 000 was 
encountered, the program identified the first three bits (001) 
as the instruction S1<S3. Then, the intensity of the light meas-
ured by the left light sensor (S1) was compared to the 
intensity of the light measured by the right sensor (S3). If 
S1<S3 was true, the next loop to be executed was indicated by 
bits 4, 5 and 6 of the instruction, in this example, 010, which 
read, using binary, that the next loop to be executed was loop 
number 2. On the other hand, if  S1<S3 was false, then the 
next gene to be executed was indicated by bits 7, 8 and 9 of 
the instruction, in our case, 000, which read, using binary, that 
the next loop to be executed was loop number 0.   

Measurements of how a robot would move when given 
each instruction separately or in combination with other in-



structions were taken to increase the accuracy of the simula-
tion. For example, if the robot was given the series of instruc-
tions: OnRev(OUT_A), OnFwd(OUT_C), Wait(45), the robot 
would move 0 cm in the x direction, 0 cm in the y direction 
and 45 degrees in a counter clockwise fashion. The wait time 
had a linear effect on the motion of the robot: if the robot was 
given the series of instructions: OnRev(OUT_A), 
OnFwd(OUT_C), Wait(90), the robot would move 0 cm in the 
x direction, 0 cm in the y direction and 90 degrees in a counter 
clockwise fashion. The coordinates of the robot were updated 
in the following manner: Current X = Previous X + ∆X. 

B.  Cyclic Genetic Algorithm Setup 
A population of 64 chromosomes was used, each chromo-

some consisting of 7 genes, each gene consisting of a 2 bit 
number followed by six 9 bit numbers. The gene represented a 
“for” loop with the two bit number specifying how many 
times the loop should be executed; the possible values being 
01 (once), 10 (twice), 11 (three times) and 00 (infinite). The 
six 9 bit numbers represented the instructions in the loop.  
These numbers were determined to be large enough for the 
problem, but not so large that the GA could not converge on a 
good solution. An example of a chromosome is given in Fig-
ure 1. The quotes indicate that we used a Scheme string for-
mat in order not to automatically erase the leading zeros.   
 
(("11"  "000000101"  "000011000"  "000000010"  "100000110"  "000000101"  "000000110") 
 ("10"  "000000001"  "000000101"  "000000011"  "000000111"  "000011001"  "000011111") 
 ("00"  "000111101"  "000011111"  "000011010"  "000011001"  "101000001"  "000011010") 
 ("11" "000000110"   "000011111"  "000011000"  "101101101"  "000000101"  "000000011") 
 ("10" "000011101"  "000111011"  "000011000"  "101011011"  "000000110"  "001000010") 
 ("00" "000111001"  "000011010"  "000000111"  "000000010"  "010000011"  "000011000") 
 ("01" "000011001"  "001010100"  "000000110"  "000000011"  "000011010"  "000000111")) 

Figure 1: Sample chromosome written in Scheme. 

In the initial population, the 2 bit numbers in the begin-
ning of each gene were randomly generated while the 9 bit 
numbers that followed were randomly picked by the computer 
with equal probability (1 in 19) from the pool of implemented 
instructions. For the instructions that stopped the execution of 
the current gene and started the execution of another gene 
specified in the instruction, the computer selected the fixed 3 
or 6 bit part of the instruction with probability 1 in 19 and 
randomly generated the remaining number of bits. 

Each test was run for 350 generations. The computation 
of the fitness of a chromosome is shown in Equation (1).  The 
position (x, y) represents the final position of the robot.  The 
light source location is at position (0, 0). The farthest possible 
point from the light source in the experimental area is (300, 
300).  

   fitness = ))0()0(())0300()0300(( 2222 −+−−−+− yx      (1) 

The selection of two chromosomes for crossover was 
made in a roulette wheel fashion. Then a random index be-
tween 0 and the chromosome length was chosen and the re-
sulting chromosome was made up of the [0, index] genes of 
the first chromosome and the (index, chromosome length] 
genes of the second chromosome.  

After crossover, the new chromosome was subject to two 
types of mutations. The first type of mutation occurred more 

often, with the probability of 1 in 300 for each bit in the 
chromosome to be flipped. The second type of mutation oc-
curred less often, with probability 1 in 5000 for each 9 bit 
number to be replaced with another 9 bit number randomly 
picked with equal probability (1 in 19) from the pool of im-
plemented instructions.  

The best chromosome from each generation was auto-
matically included in the next generation. However, the same 
chromosome, when run a second time, would most probably 
not have the same fitness due to the randomness associated 
with the instruction Wait (random (50)).  

After the fitness of all chromosomes in a generation was 
evaluated, the best chromosome was identified and printed to 
file. In addition, the trajectory of its movement was recorded 
so that it could be displayed in a plot made with Matlab 6.5. 

C.  Fitness Evaluation in Simulation 
The algorithm took a chromosome as input to evaluate its 

fitness. The first gene was analyzed, i.e. the algorithm deter-
mined how many times the gene should be executed (once, 
twice, three times or infinitely many times) and read its six 9 
bit numbers to an input queue.  See Figure 2 for an example. 

Then, the algorithm searched in the input queue for the 
first occurrence of one of these four types of instructions: a 
Wait instruction, a touch sensor instruction, a light sensor 
instruction, and a jump to another gene instruction. These are 
the types of instruction that would result in the robot moving. 
In the following discussion, this instruction will be referred to 
as the main instruction. If the gene had no main instruction, 
for example (“01” OnFwd OnFwd OnRev null Off null), the 
robot wouldn’t move from its initial position.  
 
- gene = ("01"  "000000110"  "000000011"  "001010100"   
                         "000011010" "000011001" "000000000") 
- “01” = the gene will be executed once 
- input queue =  OnFwd (OUT_C) 
  Wait (50) 
  If (S1<S3)  
        Start executing gene 010 (gene 2)  
                                Else Start executing gene 100 (gene 4) 
                          OnRev (OUT_C) 
                          OnRev (OUT_A) 
               Null 
- main instruction = Wait(50)  
- partial queue = OnFwd (OUT_C) 
- new queue =  If (S1<S3)  
       Start executing gene 010 (gene 2)  
                               Else Start executing gene 100 (gene 4) 
                          OnRev (OUT_C) 
                          OnRev (OUT_A) 
                          Null, i.e. do nothing 

Figure 2: An example of how the instructions in a gene are executed. 

 
After the main instruction had been identified, the input 

queue was split into two queues: the queue consisting of all 
instructions given prior to the main instruction which was 
called the “partial queue” and the queue consisting of all in-



structions given after the main instruction which was called 
the “new queue”.  

The instructions in the partial queue and the main instruc-
tion were executed in the order they had been added to the 
input queue and afterwards the process continued with the 
new queue as the input queue. 

The algorithm executed a chromosome in the following 
manner. It started searching for a main instruction in the first 
gene (repeating the search if the first number of the gene, 
which indicates how many times to repeat the “for” loop, was 
something other than 01). If it didn’t find it, the algorithm 
went to the second gene, etc, until it found a main instruction. 
It then executed all of the instructions in the partial queue as 
explained earlier in this section. As the algorithm finished 
executing each gene, it went on to the next gene in the chro-
mosome, unless a jump in the gene sent the point of execution 
to another gene. This was continued until the whole chromo-
some had been executed, at which time the program would 
halt. The algorithm was capable of identifying consecutive 
Wait commands. For example, if the following sequence was 
encountered: OnFwd(OUT_A), Wait(50), Wait(50), the in-
struction OnFwd(OUT_A) would be run for a total time of 
100. The value of the Wait time was added to a timer that ex-
pired at 25000. This timer was needed so that the program 
would stop when executing an infinite loop.  

D.  Testing 
Five tests were performed for each of three obstacle con-

figurations; a total of 15 tests were performed. In two of the 
configurations, the obstacles were placed with sufficient dis-
tance from each other so that the robot could penetrate 
through the maze, and in the other configuration, the obstacles 
were placed next to each other so that the robot was forced to 
turn and find a way around them. 

The three obstacle configurations were used for training 
and testing done in simulation and testing with the actual ro-
bot navigating inside the experimental area. The time it took 
Amsterdam to find the light (execution time) was recorded for 
each test. The trajectory of the robot in the simulated tests was 
also recorded. In the real robot tests, the trajectory was ob-
served and sketched to compare it with the simulated track. 

V.  RESULTS: THE SIMULATION TESTS 

Three configurations for the placement and number of the 
obstacles were used for the tests in order to see how depend-
ent the performance of the algorithm was on the placement of 
the obstacles. In the end, no evidence of the performance be-
ing dependent on the placement or the number of the obstacles 
was found.  

When the obstacles were placed in the experiment area at 
a distance from each other that would allow the robot to free 
itself from them rather easily by navigating through them, the 
CGA produced some robots that went straight toward the light 
until they reached it at (0, 0) and then wandered in the prox-
imity of the light source. This wandering was the reason why 
the robot might not have been assigned the maximum fitness 
179776 even though it had reached the (0, 0) position at some 

point in its evolution. Its fitness however would be over 
178000 when it wandered in the area close to the light source. 
The robot never left the area close to the light source once it 
reached the light source.  

When obstacles were next to each other in the experiment 
area and the robot was forced to go around them, the robot 
had the tendency to avoid them, run into a wall and then do 
wall following until the light source was reached. This is ex-
plained by the way the luminosity was assigned to each of the 
points in the experiment area. The luminosity decreased line-
arly with the distance from the wall and it also decreased line-
arly along the wall.  

 
Figure 3: Fitness evolution for the five tests performed on configuration 3 

using population sizes of 64 individuals and 350 generations.  The x axis (0 to 
350) shows the number of generations and the y axis (0 to 18000) shows the 
best fitness at each generation.  The average of the best fitnesses is in bold. 

 
Five tests were made for each of the three obstacle con-

figurations and Figure 3 displays the fitnesses of the best 
chromosome in the population over the 350 generations for 
each of the 5 tests performed with configuration 3. For the 
tests with configurations 1 and 2, similar growth curves were 
obtained. In all tests, the best chromosome passed through the 
light source position, i.e. (0, 0).  

VI.  RESULTS: ACTUAL ROBOT TESTS 

The chromosome with the highest fitness at generation 
350 obtained in the test runs made in the simulation was trans-
lated from the machine code chromosome into NQC code and 
used for tests made with the real robot. Five tests using the 
same controller were performed for each of the three obstacle 
configurations. The time it took the robot to find the light 
(execution time) was recorded for each (Table 1). 

Table 1: Execution times for the tests performed with the real robot. 

 Test 1 Test 2 Test 3  Test 4 Test 5 
Configuration 

1 
3min 
20sec  

2min 
40sec  

1min 
10sec  1min  

1min 
15sec 

Configuration 
2 

2min 
30sec  

2min 
45sec  

1min 
45sec  

2min 
40sec 

2min 
20sec  

Configuration 
3 1min  2min  3min 

2min 
15sec  

2min 
20sec  

 



Configuration 1 and configuration 3 were very similar re-
garding the performance of the robot. The only difference 
between these two configurations was that the obstacles that 
were closest to the upper and right walls were closer to these 
walls for configuration 3 then for configuration 1. This differ-
ence was responsible for the higher average execution time of 
the tests made with configuration 3 then the average execution 
time of the tests made with configuration 1.  
 

 
Figure 4: A typical track of the real robot in tests where it finds a way through 

the set of obstacles.  
 
In tests 3, 4 and 5 with configuration 1 and also in test 1 

with configuration 3, the robot bumped into the central obsta-
cle and then went straight for the light (Figure 4), thus the 
shorter execution times (~1 min) compared to the other execu-
tion times for the tests made with configurations 1 and 3.  

For configuration 2, the robot could not move through the 
obstacles so it typically made one attend and then did wall 
following until it reached the goal.  The actual robot moved 
clockwise three tests and counter clockwise in two tests.   

 

 
Figure 5: A typical track of the real robot doing wall following after initially 

attempting to find a way through the obstacles.  
 

 
A typical track followed by the real robot when it did wall 

following is shown in Figure 5. This figure is a drawing of the 
trajectory the real robot followed during the actual test. In 
approximately half the tests, the robots moved clockwise and 
in the other half counter clockwise in the case where they did 
not take a more direct route. 

  

VII.  CONCLUSIONS 

In this research, we successfully evolved multi-loop con-
trol programs for robots with fixed morphology using a cyclic 
genetic algorithm. The only a priori knowledge that went into 
the learning system was to limit the machine code instructions 
to those that were pertinent to the robot configuration and had 
a possible contribution to the solution and to make judgements 
on the maximum number of loops that would be required and 
the maximum number of instructions needed in each.  Apart 
from these decisions in the setup, the learning system gener-
ated the needed code that, after interpretation, was directly 
executed on the controller.  In the 15 test runs made with three 
different obstacle configurations, the robot always reached its 
goal, i.e. it successfully navigated through an obstacle maze in 
its search for the light source and after reaching the light 
source it stayed in its proximity.  

In future work, we will continue to develop the multi-loop 
capabilities of CGAs by comparing them to other learning 
methods and using them to evolve programs for other applica-
tions requiring more than one loop. 
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