
Using Cyclic Genetic Algorithms to Evolve
Multi-Loop Control Programs

Gary B. Parker Ramona A. Georgescu
Computer Science Electrical and Computer Engineering

Connecticut College Boston University
New London, CT 06320, USA Boston, MA 02215, USA

parker@conncoll.edu rageo@bu.edu

 Abstract - Cyclic genetic algorithms were developed to evolve
single loop control programs for robots. These programs have
been used for three levels of control: individual leg movement,
gait generation, and area search path finding. In all of these ap-
plications the cyclic genetic algorithm learned the cycle of actua-
tor activations that could be continually repeated to produce the
desired behavior. Although very successful for these applications,
it was not applicable to control problems that required different
behaviors in response to sensor inputs. Control programs for this
type of behavior require multiple loops with conditional state-
ments to regulate the branching. In this paper, we present modi-
fications to the standard cyclic genetic algorithm that allow it to
learn multi-loop control programs that can react to sensor input.

 Index Terms - Evolutionary robotics, learning, control, genetic
algorithms.

I. INTRODUCTION

 Cyclic genetic algorithms (CGAs) [1] have been success-
fully used to evolve control programs for differing levels of
robot control. They are capable of learning the sequence of
instructions needed to produce a desired behavior. In addition,
they can be used to learn a cycle of instructions to produce
repeated behavior such as a gait cycle. This method is distinct
from other evolutionary robotics approaches. Cyclic genetic
algorithms are a means of generating code in the form of a
single loop program. Although very successful in doing this
and in generating controllers for individual leg movement,
gait cycles, and learning the sequence of turns and straights to
produce a good search pattern, they have been limited to con-
trol programs requiring only a single loop. This makes their
use for learning control programs that process sensor input
very limited. In order to process sensor input, the control pro-
gram must have branching. Although the instructions in a sin-
gle loop control program can be conditionals, without other
possible loops, the result of sensor input can only be to exe-
cute one sequence of a selection of instructions. This limita-
tion does not allow the robot to switch into another cyclic be-
havior in response to sensor input. What is needed is a means
for cyclic genetic algorithms to generate multi-loop control
programs with conditionals that allow the control to jump
from one loop to another. In this paper, we address the task of
learning obstacle avoidance while moving toward a light.

Mondada and Floreano developed Khepera, a miniature
mobile robot, to study the evolution of control structures and
had the robot perform, among other tasks, navigation and ob-

stacle avoidance [2]. The controller consisted of an artificial
neural network. Its weights were evolved using a combina-
tion of neural networks and standard genetic algorithms with
fitness scaling and “biased mutations" [3]. Tuci, Quinn, and
Harvey used a Khepera robot that was placed in an arena with
the task to navigate towards/search for a target placed at one
end of the arena [4]. No obstacle avoidance was implemented
to help during the navigation; if the robot crashed into a wall,
the trial was terminated. They used a neural network control-
ler with fixed-connection weights and “leaky integrator” neu-
rons, and a simple genetic algorithm for learning. At the Na-
tional University of Singapore, controller evolution was stud-
ied using an incremental approach on a Khepera robot doing
navigation and obstacle avoidance [5]. The goal was to test
this incremental approach by first creating a neural controller
for the mobile robot to perform straight navigation while
avoiding obstacles and then later extend it to a wall following
behavior.

Ram, Arkin, Boone, and Pearce applied genetic algo-
rithms to the learning of robot navigation behaviors for reac-
tive control systems [6]. The task to be performed was naviga-
tion of dynamic environments. Three schemas were imple-
mented: move to goal, avoid static obstacle and noise. The
parameters controlling the behavior of these schemas were
determined autonomously using a GA. The GA was used to
tune schema-based reactive control systems by learning pa-
rameter settings that optimized performance metrics of interest
in various kinds of environments. Thus, the GA optimized
reactive control by optimizing the individual reactive behav-
iors. Only simulation results were obtained.

For our research we used a LEGO Mindstorms robot.
This was mainly because this portion of research was part of a
larger research project that involved the co-evolution of the
morphology and control of LEGO Mindstorms robots. Lund
explored the concept of development of LEGO robot control
systems without programming by children [7]. Neural net-
works were used as robot controllers for LEGO robots and an
interactive GA was applied in combination with reinforcement
learning, so that the development time could be reduced. Both
simulation and real world tests were performed. The LEGO
robots were equipped with light and IR sensors, motors,
wheels, etc. After the child had seen the evolved behaviors of
all the robots in the population, the child’s preferred robots
were chosen for reproduction. Mutation was applied to the
selected robots. The loop continued until the child was satis-

fied with the evolved behavior of a robot. Obstacle avoidance
was implemented.

In our approach, controller evolution is achieved with a
multi-loop cyclic genetic algorithm. Training is done in simu-
lation; tests are done both in a simulated environment and
with the actual robot. The GA is not being used to learn
weights for a neural network or parameters for a reactive con-
trol system. The controller is not executing a prewritten pro-
gram using the learned values to guide the computation of an
output from the input. The CGA is learning a control program
that can be interpreted and directly executed on the controller.

II. CYCLIC GENETIC ALGORITHM

A cyclic genetic algorithm (CGA) [1] is much like a regu-
lar genetic algorithm [8] except that the gene groupings of the
chromosome represent tasks to be completed as opposed to
traits of the solution. These tasks can be anything from a sin-
gle action to a sub-cycle of tasks. Using this method of repre-
sentation, it is possible to break up a chromosome into multi-
ple genes with each gene acting as a cycle. Each gene or sub-
cycle contains two distinct sections, one part representing an
action or set of actions, and the second part representing the
number of times that action is to be repeated. The entire set of
genes in the chromosome can also be executed repetitively, in
which case the whole chromosome becomes a cycle.

Parker used CGAs to evolve single-loop programs for ro-
botic control of individual leg cycles, gait cycles for hexapod
robots, and area coverage patterns [9]. The CGA was well
suited for these problems because the solutions are cyclic in
nature and required a single loop for control. Problems that
require dynamic changes in behavior depending on sensor
input call for multi-loop control programs for which a system
of conditional branching must be implemented in the CGA.
Robotic control presents an interesting problem for learning
algorithms since it usually requires sequential solutions where
a series of actions is continually repeated. The Cyclic Genetic
Algorithm (CGA) has proven to be an effective method for
evolving single loop control programs such as the ones used
for gait generation. The current limitation of the CGA is that it
does not allow for conditional branching or a multi-loop pro-
gram, which is required to integrate sensor input.

Parker, Parashkevov, Blumenthal, and Guldimann ex-
tended the use of CGAs to multi-loop programs that required
sensor input [9]. The problem solved was the development of
a search program for a predator robot to find a stationary prey.
Their chromosome was 128 bits long and was designed for
four different states, thus it had four segments, each of which
represented a control loop, a cycle that the robot repeated as
long as the sensors’ inputs stayed the same. Each segment was
linked to all of the other segments; there was one segment for
each of the possible combinations of sensor inputs. Each seg-
ment consisted of four genes. The genes consisted of a pair of
integers. The first integer of the gene determined which action
was to be taken and the other dictated the number of repeti-
tions of that action. After performing one action the specified
number of repetitions, the robot checked the state of the sen-

sors. If the sensor states were the same as the last time they
were checked, the robot went on with the next gene in the
same segment. If the last gene in the segment was reached, the
cycle continued at the beginning again with the execution of
the first gene in the segment. If the sensor inputs were differ-
ent than the last ones, the robot halted the current cycle and
jumped to the first gene of the segment that corresponded to
the new sensor inputs. This worked well for the problem being
solved, but it is not reasonable for the obstacle avoidance
while moving toward a light problem. The drawbacks of this
approach for this problem are: a segment was needed for
every possible combination of sensor inputs and the multi-
loop program didn’t work with continuous sensor values.

In the work reported in this paper, we continued to ex-
pand the use of CGAs in evolving multi-loop programs by
devising a new method to deal with a more complicated prob-
lem. The capabilities of the CGA were extended to evolve the
program for a controller that incorporated sensors. As opposed
to the research described above, for which the chromosome
length grew exponentially with the number of sensors in the
system, our implementation is more flexible: as many as de-
sired sensors can be easily incorporated into the simulation by
adding instructions to the system, while the total number of
instructions depending on sensor input can remain constant.

In order for our robot to react properly to sensor input, the
controller had to be running a multi-loop program, which is
only possible if a system of conditional branching can be im-
plemented. The gene structure of the CGA chromosome was
modified so that the implementation of a system of conditional
branching was possible. The evolved behavior enabled the
robot to properly interpret sensor input to avoid walls and
efficiently locate the desired stationary target (light source).

III. PROBLEM DESCRIPTION

The goal of the research reported in this paper was to
evolve a multi-loop controller for a robot with sensors. The
task chosen for investigation was navigation through an ob-
stacle maze towards a light source.

A. The Robot and Colony Space
The robot, named Amsterdam, was constructed out of

LEGO pieces. It was a combination / modification of the
Roverbot with Single Bumper and Light Sensors [10] and the
Bugbot [11]. The robot was assigned two tasks: navigation
through an obstacle maze until reaching a light source and
wall following. The RCX of Amsterdam, i.e. the programma-
ble, microcontroller-based brick in the Lego Mindstorms Set,
which can simultaneously operate three motors, three sensors,
and an infrared serial communications interface, was pro-
grammed in NotQuiteC (NQC).

Amsterdam was equipped with two LEGO light sensors
which could read light from 0.6 Lux through 760 Lux. Then,
the RCX scaled this to a 0-100 percent measure. In our meas-
urements, the source was considered to have a luminosity of
100%. The robot could see light coming directly from the
source or light emitted by the source that had been reflected
by the walls of the experiment area.

The actual experimental area set up in the lab for real
world testing was an 8 x 8 foot area, having wooden walls, a
powerful light source placed in the lower left corner and five
obstacles whose placement depended on the configuration
analyzed (see Section 4b). The 1 x 1 foot obstacles were
placed between the robot and the light source. In order to be
able to sense obstacles, Amsterdam was equipped with one
bump sensor placed in the front.

B. The Simulation
The simulation occurred within a 300 x 300 (arbitrary

units) area. All individuals started at position (285, 285) with
an angle of 225, i.e. directly facing the light source. Also, this
position had the advantages that the initial luminosities to the
left and to the right were equal and the robot was not biased to
move in a certain direction.

The experiment area was modeled as closely as possible
in the simulation, special attention being paid to the light dis-
tribution over the experiment area. Each point in this area had
been assigned values for luminosity in a way that would best
mimic reality. Thus, the corners had been given fixed lumi-
nosity values. Along the walls, luminosity was assumed to
decrease linearly with distance; when closer to the light, how-
ever, the change was less. For the inner points of the experi-
ment area, the intersection point of the beam line coming from
the left and right light sensors of the robot with each wall was
computed. Depending on the angle of the beam, the wall the
robot was facing could be determined. Therefore, the luminos-
ity of the point of the beam projection on the wall could be
computed. Then, the luminosity decreased linearly with the
distance from the wall.

The obstacle locations were fixed throughout each test.
The obstacles could have been randomly placed for the com-
putation of each chromosome’s fitness but then the compari-
son would have been inconsistent. Within a generation, one
chromosome might have faced a configuration almost impos-
sible to navigate through, while in another generation, the
same chromosome might have been in a very easy to solve
configuration. Three configurations were developed and used
in the test runs; each for 5 tests making a total of 15 tests.

In the real world tests, Amsterdam was used, while in the
simulation, the size of the robot was assumed to be a point.
Each time the robot made a move, after the end of the move,
the algorithm checked to see if the robot hadn’t bump into an
obstacle. If this was the case, the coordinates were adjusted to
the point that the robot encountered the obstacle.

IV. THE EVOLUTION OF CONTROL

In order to use a CGA to learn the control programs the
required NQC instructions were converted into machine code.
A chromosome was developed that would have a sufficient
number of loops possible and a sufficient number of instruc-
tions in each loop to solve the problem. A population of ran-
dom individuals was created and involved for 350 generations
using a simulation of the robot and its environment. The re-
sultant multi-loop control programs were tested on the actual
robot.

A. Machine Code
Using the NQC programming language a program was

written to control Amsterdam in performing the task of navi-
gating towards a light source while performing obstacle
avoidance. This was done to identify all of the commands in
NQC that were needed to perform the task. Some of the im-
portant commands needed for the operation of the robot were:
OnFwd(OUT_X), S1<S3 and Wait(x). OUT_X stood for ei-
ther A or C, indicating the left or right motor, respectively.
OnFwd(OUT_X) turned on the specified motor and started
rotating the axle of the motor counterclockwise, so that the
robot started moving forward. S1<S3 asked for a comparison
between the value of the light intensity measured by the left
light sensor (S1) and the value of the light intensity measured
by the right light sensor (S3). For example, if the left sensor,
S1, measured a larger light intensity. The direction of the in-
frared beam of S1 would become the target line of movement
of the robot. Thus, the robot would turn so that its symmetry
line would overlap the direction of the beam of S1 at the time
S1 took the measurement for the intensity of the light, and the
robot would start advancing on this line. Wait(x) took as a
parameter an integer, which represented, in hundredths of a
second, the time during which the robot should keep execut-
ing the instructions currently on the queue. Section 3.3 de-
scribes in more detail in how the queue was created and exe-
cuted.

In order to allow the CGA to generate code, the individual
instructions needed to be represented in binary. Using back-
ward engineering, we generated machine code for each of the
possible instructions needed for the task. While creating this
code, we fixed the maximum number of loops in our multi-
loop program to eight.

The NQC instructions in the program were used in the de-
sign a machine code that assigned each possible instruction a
9 bit binary number. For example, the machine code equiva-
lent of the instruction OnFwd(OUT_A), i.e. the left motor of
the robot was turned on, resulting in the axle of the motor
rotating counterclockwise and the robot moving forward, is
000000101.

Some instructions, if encountered, broke the execution of
the current loop and started the execution of another loop in
the same chromosome, the next loop to be executed being
specified by the instruction. For example, if 001 010 000 was
encountered, the program identified the first three bits (001)
as the instruction S1<S3. Then, the intensity of the light meas-
ured by the left light sensor (S1) was compared to the
intensity of the light measured by the right sensor (S3). If
S1<S3 was true, the next loop to be executed was indicated by
bits 4, 5 and 6 of the instruction, in this example, 010, which
read, using binary, that the next loop to be executed was loop
number 2. On the other hand, if S1<S3 was false, then the
next gene to be executed was indicated by bits 7, 8 and 9 of
the instruction, in our case, 000, which read, using binary, that
the next loop to be executed was loop number 0.

Measurements of how a robot would move when given
each instruction separately or in combination with other in-

structions were taken to increase the accuracy of the simula-
tion. For example, if the robot was given the series of instruc-
tions: OnRev(OUT_A), OnFwd(OUT_C), Wait(45), the robot
would move 0 cm in the x direction, 0 cm in the y direction
and 45 degrees in a counter clockwise fashion. The wait time
had a linear effect on the motion of the robot: if the robot was
given the series of instructions: OnRev(OUT_A),
OnFwd(OUT_C), Wait(90), the robot would move 0 cm in the
x direction, 0 cm in the y direction and 90 degrees in a counter
clockwise fashion. The coordinates of the robot were updated
in the following manner: Current X = Previous X + ∆X.

B. Cyclic Genetic Algorithm Setup
A population of 64 chromosomes was used, each chromo-

some consisting of 7 genes, each gene consisting of a 2 bit
number followed by six 9 bit numbers. The gene represented a
“for” loop with the two bit number specifying how many
times the loop should be executed; the possible values being
01 (once), 10 (twice), 11 (three times) and 00 (infinite). The
six 9 bit numbers represented the instructions in the loop.
These numbers were determined to be large enough for the
problem, but not so large that the GA could not converge on a
good solution. An example of a chromosome is given in Fig-
ure 1. The quotes indicate that we used a Scheme string for-
mat in order not to automatically erase the leading zeros.

(("11" "000000101" "000011000" "000000010" "100000110" "000000101" "000000110")
 ("10" "000000001" "000000101" "000000011" "000000111" "000011001" "000011111")
 ("00" "000111101" "000011111" "000011010" "000011001" "101000001" "000011010")
 ("11" "000000110" "000011111" "000011000" "101101101" "000000101" "000000011")
 ("10" "000011101" "000111011" "000011000" "101011011" "000000110" "001000010")
 ("00" "000111001" "000011010" "000000111" "000000010" "010000011" "000011000")
 ("01" "000011001" "001010100" "000000110" "000000011" "000011010" "000000111"))

Figure 1: Sample chromosome written in Scheme.

In the initial population, the 2 bit numbers in the begin-
ning of each gene were randomly generated while the 9 bit
numbers that followed were randomly picked by the computer
with equal probability (1 in 19) from the pool of implemented
instructions. For the instructions that stopped the execution of
the current gene and started the execution of another gene
specified in the instruction, the computer selected the fixed 3
or 6 bit part of the instruction with probability 1 in 19 and
randomly generated the remaining number of bits.

Each test was run for 350 generations. The computation
of the fitness of a chromosome is shown in Equation (1). The
position (x, y) represents the final position of the robot. The
light source location is at position (0, 0). The farthest possible
point from the light source in the experimental area is (300,
300).

 fitness =))0()0(())0300()0300((2222 −+−−−+− yx (1)

The selection of two chromosomes for crossover was
made in a roulette wheel fashion. Then a random index be-
tween 0 and the chromosome length was chosen and the re-
sulting chromosome was made up of the [0, index] genes of
the first chromosome and the (index, chromosome length]
genes of the second chromosome.

After crossover, the new chromosome was subject to two
types of mutations. The first type of mutation occurred more

often, with the probability of 1 in 300 for each bit in the
chromosome to be flipped. The second type of mutation oc-
curred less often, with probability 1 in 5000 for each 9 bit
number to be replaced with another 9 bit number randomly
picked with equal probability (1 in 19) from the pool of im-
plemented instructions.

The best chromosome from each generation was auto-
matically included in the next generation. However, the same
chromosome, when run a second time, would most probably
not have the same fitness due to the randomness associated
with the instruction Wait (random (50)).

After the fitness of all chromosomes in a generation was
evaluated, the best chromosome was identified and printed to
file. In addition, the trajectory of its movement was recorded
so that it could be displayed in a plot made with Matlab 6.5.

C. Fitness Evaluation in Simulation
The algorithm took a chromosome as input to evaluate its

fitness. The first gene was analyzed, i.e. the algorithm deter-
mined how many times the gene should be executed (once,
twice, three times or infinitely many times) and read its six 9
bit numbers to an input queue. See Figure 2 for an example.

Then, the algorithm searched in the input queue for the
first occurrence of one of these four types of instructions: a
Wait instruction, a touch sensor instruction, a light sensor
instruction, and a jump to another gene instruction. These are
the types of instruction that would result in the robot moving.
In the following discussion, this instruction will be referred to
as the main instruction. If the gene had no main instruction,
for example (“01” OnFwd OnFwd OnRev null Off null), the
robot wouldn’t move from its initial position.

- gene = ("01" "000000110" "000000011" "001010100"
 "000011010" "000011001" "000000000")
- “01” = the gene will be executed once
- input queue = OnFwd (OUT_C)
 Wait (50)
 If (S1<S3)
 Start executing gene 010 (gene 2)
 Else Start executing gene 100 (gene 4)
 OnRev (OUT_C)
 OnRev (OUT_A)
 Null
- main instruction = Wait(50)
- partial queue = OnFwd (OUT_C)
- new queue = If (S1<S3)
 Start executing gene 010 (gene 2)
 Else Start executing gene 100 (gene 4)
 OnRev (OUT_C)
 OnRev (OUT_A)
 Null, i.e. do nothing

Figure 2: An example of how the instructions in a gene are executed.

After the main instruction had been identified, the input

queue was split into two queues: the queue consisting of all
instructions given prior to the main instruction which was
called the “partial queue” and the queue consisting of all in-

structions given after the main instruction which was called
the “new queue”.

The instructions in the partial queue and the main instruc-
tion were executed in the order they had been added to the
input queue and afterwards the process continued with the
new queue as the input queue.

The algorithm executed a chromosome in the following
manner. It started searching for a main instruction in the first
gene (repeating the search if the first number of the gene,
which indicates how many times to repeat the “for” loop, was
something other than 01). If it didn’t find it, the algorithm
went to the second gene, etc, until it found a main instruction.
It then executed all of the instructions in the partial queue as
explained earlier in this section. As the algorithm finished
executing each gene, it went on to the next gene in the chro-
mosome, unless a jump in the gene sent the point of execution
to another gene. This was continued until the whole chromo-
some had been executed, at which time the program would
halt. The algorithm was capable of identifying consecutive
Wait commands. For example, if the following sequence was
encountered: OnFwd(OUT_A), Wait(50), Wait(50), the in-
struction OnFwd(OUT_A) would be run for a total time of
100. The value of the Wait time was added to a timer that ex-
pired at 25000. This timer was needed so that the program
would stop when executing an infinite loop.

D. Testing
Five tests were performed for each of three obstacle con-

figurations; a total of 15 tests were performed. In two of the
configurations, the obstacles were placed with sufficient dis-
tance from each other so that the robot could penetrate
through the maze, and in the other configuration, the obstacles
were placed next to each other so that the robot was forced to
turn and find a way around them.

The three obstacle configurations were used for training
and testing done in simulation and testing with the actual ro-
bot navigating inside the experimental area. The time it took
Amsterdam to find the light (execution time) was recorded for
each test. The trajectory of the robot in the simulated tests was
also recorded. In the real robot tests, the trajectory was ob-
served and sketched to compare it with the simulated track.

V. RESULTS: THE SIMULATION TESTS

Three configurations for the placement and number of the
obstacles were used for the tests in order to see how depend-
ent the performance of the algorithm was on the placement of
the obstacles. In the end, no evidence of the performance be-
ing dependent on the placement or the number of the obstacles
was found.

When the obstacles were placed in the experiment area at
a distance from each other that would allow the robot to free
itself from them rather easily by navigating through them, the
CGA produced some robots that went straight toward the light
until they reached it at (0, 0) and then wandered in the prox-
imity of the light source. This wandering was the reason why
the robot might not have been assigned the maximum fitness
179776 even though it had reached the (0, 0) position at some

point in its evolution. Its fitness however would be over
178000 when it wandered in the area close to the light source.
The robot never left the area close to the light source once it
reached the light source.

When obstacles were next to each other in the experiment
area and the robot was forced to go around them, the robot
had the tendency to avoid them, run into a wall and then do
wall following until the light source was reached. This is ex-
plained by the way the luminosity was assigned to each of the
points in the experiment area. The luminosity decreased line-
arly with the distance from the wall and it also decreased line-
arly along the wall.

Figure 3: Fitness evolution for the five tests performed on configuration 3

using population sizes of 64 individuals and 350 generations. The x axis (0 to
350) shows the number of generations and the y axis (0 to 18000) shows the
best fitness at each generation. The average of the best fitnesses is in bold.

Five tests were made for each of the three obstacle con-

figurations and Figure 3 displays the fitnesses of the best
chromosome in the population over the 350 generations for
each of the 5 tests performed with configuration 3. For the
tests with configurations 1 and 2, similar growth curves were
obtained. In all tests, the best chromosome passed through the
light source position, i.e. (0, 0).

VI. RESULTS: ACTUAL ROBOT TESTS

The chromosome with the highest fitness at generation
350 obtained in the test runs made in the simulation was trans-
lated from the machine code chromosome into NQC code and
used for tests made with the real robot. Five tests using the
same controller were performed for each of the three obstacle
configurations. The time it took the robot to find the light
(execution time) was recorded for each (Table 1).

Table 1: Execution times for the tests performed with the real robot.

 Test 1 Test 2 Test 3 Test 4 Test 5
Configuration

1
3min
20sec

2min
40sec

1min
10sec 1min

1min
15sec

Configuration
2

2min
30sec

2min
45sec

1min
45sec

2min
40sec

2min
20sec

Configuration
3 1min 2min 3min

2min
15sec

2min
20sec

Configuration 1 and configuration 3 were very similar re-
garding the performance of the robot. The only difference
between these two configurations was that the obstacles that
were closest to the upper and right walls were closer to these
walls for configuration 3 then for configuration 1. This differ-
ence was responsible for the higher average execution time of
the tests made with configuration 3 then the average execution
time of the tests made with configuration 1.

Figure 4: A typical track of the real robot in tests where it finds a way through

the set of obstacles.

In tests 3, 4 and 5 with configuration 1 and also in test 1

with configuration 3, the robot bumped into the central obsta-
cle and then went straight for the light (Figure 4), thus the
shorter execution times (~1 min) compared to the other execu-
tion times for the tests made with configurations 1 and 3.

For configuration 2, the robot could not move through the
obstacles so it typically made one attend and then did wall
following until it reached the goal. The actual robot moved
clockwise three tests and counter clockwise in two tests.

Figure 5: A typical track of the real robot doing wall following after initially

attempting to find a way through the obstacles.

A typical track followed by the real robot when it did wall

following is shown in Figure 5. This figure is a drawing of the
trajectory the real robot followed during the actual test. In
approximately half the tests, the robots moved clockwise and
in the other half counter clockwise in the case where they did
not take a more direct route.

VII. CONCLUSIONS

In this research, we successfully evolved multi-loop con-
trol programs for robots with fixed morphology using a cyclic
genetic algorithm. The only a priori knowledge that went into
the learning system was to limit the machine code instructions
to those that were pertinent to the robot configuration and had
a possible contribution to the solution and to make judgements
on the maximum number of loops that would be required and
the maximum number of instructions needed in each. Apart
from these decisions in the setup, the learning system gener-
ated the needed code that, after interpretation, was directly
executed on the controller. In the 15 test runs made with three
different obstacle configurations, the robot always reached its
goal, i.e. it successfully navigated through an obstacle maze in
its search for the light source and after reaching the light
source it stayed in its proximity.

In future work, we will continue to develop the multi-loop
capabilities of CGAs by comparing them to other learning
methods and using them to evolve programs for other applica-
tions requiring more than one loop.

REFERENCES
[1] G. Parker and G. Rawlins, “Cyclic Genetic Algorithms for the Locomo-

tion of Hexapod Robots,” Proceedings of the World Automation Congress
(WAC '96), Volume 3, Robotic and Manufacturing Systems, 1996.

[2] F. Mondada and D. Floreano, “Evolution of Neural Control Structures:
Some Experiments on Mobile Robots,” Robotics and Autonomous Sys-
tems, 16, 183-195, 1995.

[3] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, Reading, MA, 1989.

[4] E. Tuci, M. Quinn, and I. Harvey, “Evolving Fixed-Weight Networks for
Learning Robots,” Proceedings of Congress on Evolutionary Computa-
tion (CEC2002), 2002.

[5] D. Bajaj and M. Ang, “An Incremental Approach in Evolving Robot
Behavior,” Proceedings of the Sixth International Conference on Con-
trol, Automation, Robotics and Vision, 2000.

[6] A. Ram, R. Arkin, G. Boone, and M. Pearce, “Using Genetic Algorithms
to Learn Reactive Control Parameters for Autonomous Robotic Naviga-
tion,” Adaptive Behavior, vol. 2, issue 3, 1994.

[7] H. Lund, O. Miglino, L. Pagliarini, A. Billard, and A. Ijspeert,
“Evolutionary Robotics - A Children's Game,” Proceedings of IEEE 5th
International Conference on Evolutionary Computation, 1998.

[8] J. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor, MI,
The University of Michigan Press, 1975.

[9] G. Parker, I. Parashkevov, H. Blumenthal, and T. Guildman, “Cyclic
Genetic Algorithms for Evolving Multi-Loop Control Programs,” Pro-
ceedings of the 2004 World Automation Congress, 2004.

[10] Robotics Invention Systems 2.0 Constructopedia. LEGO Mindstorms,
2000.

[11] D. Baum, Definitive Guide to LEGO MINDSTORMS. Apress, Berkeley,
CA. (2000).

