Genetic Algorithms for the Development of Real-Time
Multi-Heuristic Search Strategies

Man-Tak Shing and Gary B. Parker*
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Abstract

Search of an unknown space by a physical
agent (such as an autonomous vehicle) is
unique in search. There is a real-time aspect
since the agent is actually moving; using
energy each step of the way. The customari-
ly most important goa (to reduce the com-
putation time required to obtain the shortest
distance) is not as important as minimal
movement. Having limited energy
resources and knowledge of the terrain
(only adjacent nodes), the key factor for the
physical agent’s search algorithm is reduc-
tion of steps. Any heuristic that can help
keep step count to a minimum must be con-
sidered. In this paper, we present a ssimple
genetic-algorithm-based method to produce
adaptive, efficient multi-heuristic search
strategies for the real-time problem. Exten-
sve empirical study shows that this ap-
proach produced search strategies with
much better performance than existing
search agorithms for most terrain types.
The methodologies used to develop these
improved strategies for our specific case,
are also applicable to a multitude of real-
time search/optimization problems in the
general case.

1 INTRODUCTION

Search of an unknown space by a physical agent (such
as an autonomous vehicle) is unique in search. There is
a real-time aspect since the agent is actually moving;
having limited time to determine its next move and us-
ing energy each step of the way. The physical agent

" LCDR Gary B. Parker, USN is stationed on the USS AMERI-
CA. Research reported here was done while LCDR Parker was
with the Computer Science Department, Naval Postgraduate
School.

traversing a terrain in the real-time problem knows only
its current position, the goal’s position, and whether ad-
jacent and previously adjacent nodes are passable or
not. It learns about the terrain only as it moves from
node to node examining all nodes adjacent. Informa
tion about past nodes, visited or adjacent, can be stored
to build up its knowledge base. Computational time to
determine the next move is important, as stopping to
compute before each move is undesirable. On the other
hand, insufficient computations can result in unneces-
sary steps and wasted energy.

Having limited energy resources and knowledge of the
terrain the key factor in the physical agent’'s search is
the reduction of physical steps. Papadimitriou and Yan-
nakakis (1989) showed that the computational problem
of deriving optimal search strategies for the real-time
problem is PSPACE-complete. Hence, any heuristic that
can help keep step count to a minimum must be con-
sidered. Korf (1990) studied this problem and
developed the real-time-A* search, which uses, for
every adjacent node v, the physical agent’s distance
from the node (g(v)) in addition to the distance from
goa heurigtic (h(v)) to determine the best next move
by minimizing the objective function f(v) =
g(v) + h(v). Shing and Mayer (1991) developed per-
sistence search which included a persistence factor (pf
= 0.0 to 1.0) to bias the distance from current node.
The next move is determined by minimizing the objec-
tive function f (v) = pf xg(v) + h(v) for every frontier
node v. Experimental results led to the conclusion that
the pf factor could be adjusted to optimize search
depending on terrain type and the density of obstacles.

Extending on these works, we believe a combination of
additional heuristics can be beneficia in minimizing
physica agent steps. As the number of heuristics in-
creases, it is essential to have some efficient means of
assigning bias factors to various heuristics to produce
an effective multi-heuristic search for different terrain
types and densities of obstacles. If the combinatorial
explosion required to produce all possible combinations
of heuristics is not intractable, the required testing of
each to select the best makes this means computational -

ly prohibitive. Since enumeration is probably not possi-
ble, some random means of attaining a near-optimal
combination seems to be the most plausible. DeJong
(1975) made clear the advantages of genetic algorithms
over purely random selection, and Grefenstette et al
have successfully used SAMUEL, a learning system
based on genetic algorithm, to assist autonomous agents
to learn robust reactive strategies in evasion, tracking,
mine avoidance and local navigation problems (Grefen-
stette at al 1988, Grefenstette 1991, Schultz 1991).

In this paper, we present a simple genetic-algorithm-
based method to produce adaptive, efficient and
effective multi-heuristic search strategies for the real-
time problem. The genetic-algorithm-based learning re-
ported in this paper is "off-line" learning, as oppose to
the "anytime" learning conducted by SAMUEL (Gre-
fenstette 1992). Here, the robot cannot change its
search strategies in the middle of its maze exploration.
Extensive empirical study shows that a genetic algo-
rithm, even with only very simple crossover and muta-
tion operators, can produce search strategies with much
better performance (reduced number of steps without
prohibitive computation time) than existing search algo-
rithms for most terrain types. The methodologies used
to develop these improved strategies for our specific
case are aso applicable to a multitude of rea-time
search/optimization problems in the general case.

2 PROBLEM MODEL

To best demonstrate the effectiveness of the multi-
heuristic search strategies produced by a genetic algo-
rithm, we chose to apply the strategies to random obs-
tacle distributions in the form of a two-dimensional
64x64 grid of sguares (nodes). Nodes can be either free
or obstacles, movement can be in eight directions
through free spaces only. A perimeter surrounding this
grid is a solid row/column of obstacles. The distance
from a node to its horizontal/vertical neighbor is 1.0; to
its diagonal neighbor is v2. The total distance traveled
from start to goal according to any search scheme is the
sum of each of these individual steps. The effectiveness
(fitness) of a specific search scheme is the ratio of the
shortest path length from start to goal divided by the
distance traveled. Given as a percentage, 100 is the best
possible; meaning the distance traveled is equivaent to
the shortest path. Specific nodes of the grid can be
identified by Cartesian coordinates with the left border
column being the y axis and the bottom border row be-
ing the x axis. The lowest left node is (1,1); the top
right is (64,64).

The grid is internally represented as a 66x66 two di-
mensional array (the perimeter nodes are all marked as
obstacles) made up of pointers to node records. The
records store information pertinent to terrain, search
(heuristics), graphic display, and pointers to other node
records (used in the program for various dynamic struc-
tures). The heuristic values stored include

distance from start, distance from goal, distance_
from current, side_congestion, diagonal congestion and
subtotal (refer to Section 3.1 for details). No other node
records are used in the program; other structures requir-
ing nodes are set up using pointers to these records.

The 64x64 search space grid is divided into 16x16 den-
sity blocks, each containing 4x4 nodes and having a
specified block density. Block densities range from O-
15. A block density of 9 means that, on average, nine
of the block’s 16 nodes will be obstacles (chosen at
random). These density blocks are numbered from
(0,0) to (15,15) where (0,0) is the bottom left and
(15,15) is the top right. Start and goal positions are
specified by density blocks. Most of the empirical stu-
dies reported in this paper chose the start and goal node
from blocks (2,2) and (13,13) respectively. The specific
start/goal node is located randomly in that block.

3 MULTI-HEURISTIC SEARCH

The input to the Multi-heuristic Search agorithm con-
sists of a start and a goal location in an unknown
maze, and a set of heuristics and their corresponding
bias factors. The set of heuristics is partitioned into two
groups, stable heuristics and unstable heuristics (see
Sections 3.1 and 3.2 for details). The algorithm works
as follows:

current = start;
while current # goal loop
for all nodes v within 2 moves of current loop
if v is adjacent and untouched then
v.subtotal := v .stable heuristics vector e
respective_biases vector;
add v to frontier_heap;
[* the top of frontier heap contains */
/* the node with minimum subtotal */
elseif v is frontier and any stable heuristics
of v have changed then
v.subtotal := v.subtotal + adjustment;
update v’s position in frontier heap;
end for loop;

if empty(frontier_heap) then
return big_number; /* no solution */
else
find frontier node v that minimizes f (v) =
v.subtotal + v.unstable heuristics vector e
respective_biases vector;
v.dist_traveled := current.dist_traveled + g(v);
/* g(v) is the shortest distance through */
/* known paths from current to frontier node*/
current := v and remove v from frontier_heap;
end while loop;
return goal.dist_traveled;

3.1 STABLE HEURISTICS

Stable heuristics have values that will not change when
applied to locations more than two steps away from the
current node. They include distance from goal (hg),
distance from start (hs), side congestion (hsc),
diagonal_congestion (hdc), and momentum (hm). The
subtotal fs(v) is calculated using these functions muilti-
plied by their respective bias factor and stored in
v.subtotal.

fs(v) = hgf xhg (v) + hsf xhs(v)
+ hscf xhsc (v) + hdcf xhdc (v)
+ hmf xhm(v)

(Eg. 3.1)

Distance from goal (hg(v)) - The Euclidean distance
from the node v to the goal node. This heuristic is usu-
ally considered important in any search. It is used in
combination with distance from current for Persistence
Search, and by itself for Best-first Search.

Distance from start (hs(v)) - This is usualy the actual
shortest path from the start node to the considered fron-
tier. Currently believed to be useless in a rea-time en-
vironment, it should be selectively eliminated by natur-
al selection as the genetic algorithm trains. For our im-
plementation, it is approximated by computing the Eu-
clidean distance from start to frontier. It may be
significant in some of the more complex terrains that
require a switch back.

Congestion - The congestion parameters,
side congestion (hsc(v)) and diagonal congestion
(hdc(v)), are attempts to assist the physical object in
avoiding areas of increased obstacle density. This
reduces exploration of paths through high density areas,
favoring the safer path of increased options available in
the open space. The parameters are separated in case
one is more appropriate than the other. Both would be
much more effective if the physical object’s perception
were not limited to adjacent nodes. If all nodes adjacent
to the frontier node could be seen, these factors' impor-
tance would increase significantly. The side congestion
heuristic examines the known horizontal/vertical neigh-
bors of the frontier node to count the number of obsta-
cles. Nodes with more known obstacle neighbors are
less desirable. The minimum vaue is 0 and 4 is the
maximum. The diagonal _congestion heuristic is similar
to side congestion with the count being made of the
frontier node's diagonal vice horizontal/vertical neigh-
bors.

Momentum (hm(v)) - This heuristic attempts to avoid
zigzag by making forward (in relation to last move)
nodes the most desirable. It should be useful in
valey/ridge terrains where the best path is straight
through the valley. By maintaining momentum, the
physical object avoids steps wasted in popping in and
out of each crevice which has nodes closer to the goal.
Straight ahead movement results in a value of 0, a 45°
shift makes it 1, a 90° shift is 2, and a 135° shift or

non-adjacent move results in a value of 3 (making only
the adjacent nodes subject to change after a move).

3.2 UNSTABLE HEURISTICS

Unstable heuristics have values that are liable to
change as the current node changes. Examples in our
case: distance from current (hc(v)) and move_
away factor (hma(v)). The algorithm minimizes Equa-
tion 3.2 below using the efficient "branch-and-bound"
search through known (visited) nodes described in Sec-
tion 4.3 of the paper by Shing and Mayer (1991).

f (v) = fs(v) + hcf xhc(v) (Eq. 3.2
+ hmaf xhma(v)

Distance from current (hc(v)) - The distance from the
current node to the frontier node; important in Real-
Time-A* and Persistence Search to determine if back-
tracking is worth the steps required. It is the actua dis-
tance computed as the actua steps required to move
from the current node to the frontier.

Move away factor (hma(v)) - It attempts to continual-
ly reduce the search space by reducing desirability of
nodes that increase the x and/or y difference between
the current and goa nodes. Increasing either the x or y
distance counts as 2, increasing both counts as 4, and
no increase results in the heuristic having a value of 0.

3.3 CHROMOSOME REPRESENTATION

A 32 member array of individual records makes up the
population. Each stores the individua’s fitness and its
chromosome which contains biases for the search
heuristics. The chromosome is a 32 bit unsigned in-
teger; subdivided into eight four-bit aleles [A1 A2 A3
A4 A5 A6 A7 A8]. Each alele represents a bias factor
with a range from 0 to 15.

The hsf, hgf, hcf, hscf, hdcf, hmaf and hmf bias factors
are stored in the individual chromosome’'s lower 28
bits, i.e. A2 through A8. The values of these bias fac-
tors are set during training. The four bits in Al are, in
our implementation, a place holder for future additional
heuristics since only seven applicable heuristics were
identified.

34 GENETIC ALGORITHM

The task of the genetic algorithm is to find the combi-
nation of the seven bias factors that will result in the
optimum search scheme stored in a single individual’s
chromosome. Application of genetic operators to a po-
pulation (32 in our case) of these individuals will, after
numerous iterations (1000 generations in our case), pro-
duce our desired optimal individual.

During training, the genetic algorithm is invoked once
after each predetermined number of cycles (5 in our
case) making up one generation. The input population
will have a fitness value (ability to get through the ter-
rain) assigned to each of it's 32 individuals (details of

this process are described in Section 4.2). Our genetic
algorithm makes use of four genetic operators. selec-
tion, allele crossover, bit crossover and mutation. The
allele crossover operator generates new strategies (with
a 0.86 probability) by cross-mixing individuals at ran-
domly chosen alele boundaries. The bit crossover
operator generates new bias value for a randomly
chosen alele (with a 0.53 probability) by cross-mixing
bits between the corresponding aleles of two individu-
als. Mutation is conducted on a bit-by-bit basis with a
0.005 probability. Selection is done using a roulette
wheel similar to the agorithm presented in chapter one
of the text by Goldberg (1989), with the additions of al-
lowing the best two individuals to go unchanged. The
result is similar to DeJong's R2 elitist model (DeJong
1975).

4 EVALUATION

To evauate the effectiveness of the bias factors gen-
erated by the genetic algorithm, ten populations were
trained and compared to previously established search
strategies, using ten different density distributions

41 DENSITY DISTRIBUTIONS (TERRAIN
TYPES)

Once the different density distributions are established,
the block densities remain unchanged from the start of
training through testing. Although the block densities
remain constant, actual obstacle placement is deter-
mined stochastically and changes from run to run. The
point is to investigate the adaptability of genetic algo-
rithm to produce the best strategy for directing the
search through terrains where the general density distri-
bution is known but actual obstacle placement is not.
Ten sets of block densities were used to simulate ten
different terrain types. The first six terrain types are
considered natura terrains since they closely resemble
actual topological conditions. The start density block is
always (2,2) unless otherwise stated. The goal density
block is always (13,13) unless otherwise stated. See
Figure 1 for the block density distributions used.

4.2 TRAINING

Training of the population is analogous to selectively
breeding a random group of asexual organisms to ob-
tain superior capability in a specific area. The capabili-
ty one wishes to optimize is transit from start to goal in
the least number of steps. The specific area is a specific
terrain layout where one has a general idea about obsta-
cle density distribution, but have no information about
the location of specific obstacles.

The first step is to generate a series of specific terrains
from a general obstacle density distribution. This can
be done by placing obstacles in each area if a randomly
generated number is less than the specified density. In
our implementation, we simply loop through the 64x64

node array assigning each nodes state to OBSTACLE if
the random number is less than the density value of the
corresponding density block. The second step is to gen-
erate a population of 32 individuals giving them ran-
domly generated chromosomes. Now the training be-
gins:

for each of 1000 generations loop
for each of 5 cycles loop
loop until a successful A* search;
create a terrain from the density array;
shortest_path := A* search;
end until loop
run each individual through the terrain
accumulating its fitness sum by comparing
its actual path to the shortest path;
end for loop;

compute each individual’s average fitness from
fitness sum and number of cycles;
apply the genetic agorithm to the population;
end for loop;
return a trained population;

43 TESTING

Testing of the trained populations was performed by
comparing the search conducted by the best individual
in each population to searches accomplished using
Hill-climbing (Winston 1992), Best-first (Winston
1992), Red-Time-A* (Korf 1990), and Persistence
Search (Shing and Mayer 1991). The following equa-
tion was used to compute fitness for al search schemes:

fitness = (Eq. 4.1)
integer (((shortest _path)/(actual _path))x100)

Each search scheme was tested on 500 distinct terrains
produced using the corresponding density matrix. Aver-
age fitnesses over the 500 were assigned and a com-
parison of these fitnesses is presented in the results.

Our implementation of the Persistence Search is a
modification of the origina work, where the equation
f (v) = pfxg(v) + h(v) in the paper by Shing and
Mayer (1991) is replaced by Equation 4.2 shown below.
The gf and hf factors are introduced to effectively
replace/discretize/lexpand the persistence factor (pf)
which can have any value between 0.0 and 1.0. We
found that an infinite range of possibilities for this fac-
tor was not required. A discrete, yet sufficient, span can
be obtained by setting gf and hf to any number of
possibilities where gf < hf . Setting hf to 15 and in-
crementing gf from O to 15 gives us the equivalent of
a 0.0 to 1.0 range with increments of 0.067 each.

f (v) = gf xg(v) + hf xh (V) (Eq. 4.2)

There is aso now the expanded capability of having the
g(v) be the more important factor in the search
(gf >hf). The best values for the gf and hf bias fac-
tors for the modified Persistence Search were deter-

mined before testing by running 32 combinations (chro-
mosomes of 00f00000 to 00ffO000 and 000f0O000 to
00ff0000) through 50 distinct terrains. From this, the
best combinations of the two factors was used to
represent Persistence Search. Likewise, the best
bias factor_vector used by the Multi-Heuristic Search
for each terrain type was chosen by running the indivi-
duas in the populations produced by the genetic algo-
rithm through 50 distinct terrains of the corresponding
terrain type. The individua with the highest fitness was
chosen to represent the GA-trained population.

44 EXPERIMENTAL

The fitness of each search scheme in these results is the
number of its required steps divided by the minimum
steps possible (Eq. 4.1), averaged over the 500 terrains
used for testing in each terrain type. Fitness is present-
ed as a percentage, with a 100% search scheme being
one that can, on the average, search a terrain type in
the minimum steps possible. In general, the easier the
density layout of the terrain, the higher the fitness will
be. A graph comparing the fitness of applicable search
schemes is presented for each natural terrain density
layout (Figure 2). The genetic algorithm was extremely
successful in producing the best search strategies for all
natural terrains. A closer look at the resultant chromo-
somal make-ups reviews that the genetic algorithm was
able to learn the characteristics of different terrains and
produce bias factors to take advantage of the different
situations. Although the genetic-algorithm-produced
strategies was always at least as good as the next best
in all random terrains, it was not a substantial improve-
ment over Persistent Search. Only in the most complex
of the four random terrains did the genetic-algorithm-
produced scheme realy excel. This seems to suggest
that the additiona heuristics are only essentia in natur-
al terrains where some pattern in obstacle density exists
or in random terrains of high complexity. As suggested
by Delong (1992), the genetic algorithm can only op-
timize to a certain point (depending on implementation)
before reaching a state of dynamic equilibrium. The
first three random terrains were of insufficient complex-
ity to allow the genetic algorithm to convincingly sur-
pass al conventional search schemes.

Since the genetic-algorithm-produced search strategies
are substantially better for our natural terrains and as
least as good as standard search schemes for random
terrains, they should be advantageous to use on any ac-
tual natural terrain. This is of course contingent on the
physical agent’s dependence on minimal steps and its
computational speed. If it's computational speed is
sufficient to avoid delays before each step and/or
minimal steps are essential, the genetic algorithm pro-
duced scheme should aways be used. Table 1 shows a
comparison of the average time required for each stra-
tegy to search from start to goa for each of the ter-
rains. As expected, the more complicated strategies re-
quire additional computation time, but are not con-

sidered slow enough to prohibit their use except in
cases of high speed agents with dow computational
Speed.

5 CONCLUSIONS

Heuristics previously used for search of an unknown
space by a physical agent are distance from goal and
distance from current. These are insufficient to
minimize energy expenditure (steps taken) when some
general knowledge of the area is known. The additional
heuristics found to be pertinent are distance from start,
congestion factors which account for obstacle density
around the considered frontier node, move away factor
which encourages reduction of the search space, and
momentum which avoids wasted steps in course varia-
tions. These seven heuristics with their proper individu-
a biases were found to be superior to standard search
schemes. In this paper, we show that genetic algo-
rithms, even with only very simple crossover and muta-
tion operators, can produce very effective heuristic
biases that are adaptable to unknown search spaces if
some genera knowledge of the search space is avail-
able. Training done with randomly generated search
spaces having common characteristics lead to robust
search schemes which are, on the average, more fit than
previously used strategies.

We believe that this methodology of fitting a set of
known heuristics into a binary representation, and ap-
plying genetics-based training is aso applicable to a
multitude of real-time search/optimization problems.
Tests in other specific areas are needed to prove our
conjecture. In addition, further research could be done
in the application of more advanced genetic-algorithm-
based learning techniques. The approach reported in
this paper addresses only the problem of optimizing a
set of known heuristics before actual maze exploration.
A more challenging problem is to have the robot con-
duct "real-time" learning, modify its strategy as it
learns more about the maze through actual exploration
and generate new heuristics on its own. More sophisti-
cated representations of the search space, perhaps simi-
lar to those used by SAMUEL (Grefenstette et al
1990), are needed to support these complex learning ac-
tivities.

Acknowledgements

Work on this paper was supported in part with funds
provided by the Naval Postgraduate School.

References

K. DeJong (1975). An Analysis of the Behavior of a
Class of Genetic Adaptive Systems. Doctoral disserta-
tion, Department of Computer and Communication Sci-
ences, University of Michigan, Ann Arbor.

K. Dedong (1992). Genetic Algorithms Are NOT Func-
tional Optimizers. Technical Report, Computer Science
Department, George Mason University.

J. Grefenstette (1991). Lamarckian Learning in Multi-
agent Environments. Proceedings of the Fourth Inter-
national Conference on Genetic Algorithms (pp. 303-
310). San Diego, CA.

D. Goldberg (1989). Genetic Algorithms in Search,
Optimization and Machine Learning. Reading, Ma
Addison-Wedley. 1989.

J. CGrefenstette, C. Ramsey and A. Schultz (1990).
Learning Sequential Decision Rules Using Simulation
Models and Competition. Machine Learning 5(4) (pp.
355-381).

J. Grefenstette and C. Ramsey (1992). An Approach to
Anytime Learning. Proceedings of the Ninth Machine
Learning Conference. Aberdeen, Scotland.

P. Hart, N. Nilsson and B. Raphael (1968). A Formal
Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Trans. Syst. Sci. Cybern. SSC-4(2) (pp.
100-107).

R. Korf (1990). Rea-Time Heuristic Search. Artificial
Intelligence 42(2-3) (pp. 189-211).

C. Papadimitriou and M. Yannakakis (1989). Shortest
Paths Without a Map. Proceedings of the 1989 ICALP
Conference.

A. Schultz (1991). Using a Genetic Algorithm to Learn
Strategies for Collision Avoidance and Local Naviga-
tion. Proceedings of the Seventh International Sympo-
sium on Unmanned Untethered Submersible Technology
(pp. 213-225). Durham, NH.

M. Shing and M. Mayer (1991). Persistence Search - A
New Search Strategy for the Dynamic Shortest Path
Problem. Technical report NPSCS-91-011, Computer
Science Dept., Naval Postgraduate School.

P. Winston (1992). Artificial Intelligence. Reading,
Ma: Addison-Wesley.

Table 1: Average Seconds Required To
Search Each Terrain

Best Persis- Hill Real- GA-
First tence Climb | Time-A* | produced
central
moun- || 0.0239 | 0.0274 | 0.0065 0.0163 0.0615
tain
single
left 0.0232 | 0.0264 | 0.0075 0.0176 0.0694
ridge
single
right 1.3051 | 0.1496 | 0.0199 0.1405 0.2718
ridge
double
ridge || 3.2553 | 1.3562 | 0.0420 0.4131 2.3420
single
left 0.1071 | 0.0982 | 0.0167 0.0626 0.1481
plateau
plateau
with 0.0769 | 0.0856 | 0.0146 0.0487 0.1310
ridge
random
one 0.0177 | 0.0265 | 0.0064 | 0.0114 0.0478
random
two 0.0313 | 0.0267 | 0.0056 0.0150 0.0644
random
three 0.0294 | 0.0258 | 0.0065 0.0151 0.0521
random
four 0.1629 | 0.2255 | 0.0165 0.0481 0.1563

Lo R - N BRSPSt B
Lo R - N BRSPSt B
L et o T R LR TR T R L e W Pl e el |
0 O e L0000 W M N D T 00 LD e el 0
ol Tl o LDV OO M N O T OO LD g
Lo R - N BRSPSt B
Cad Tl b LD 00 0 M N O T 00 LD g o
L et o T R LR TR T R L e W Pl e el |
ol Tl o LDV OO M N O T OO LD g
L K TN N RS LS e Pl oY N
Lo R - N BRSPSt B

Lt et Y o T W LR T e W T, it e R |
L Wt It ot I R E e, e Fa o [N R W |
ad ol o T 0w LD 00 00 LD g el el O 0 D
L Bt N N I P To R o [N AN Y -
L K It AN Y N I I N I [N I Y [

L Rt R R AV I i AN AN AN I I Y [N
ad nd ol ol ol ol e L0 LD e O O)
sl a0 ol ol] o LD 000 00 LD T O 0
L N I P I R e m W R R [t Rt [|
LR R Rt R T TR - TR S Y N
SRS RN AN R . Y P SN PN |

ol el R LD 0D W O U M O T 0D LD e
ol ol o LD 00 O N O 00 D e O
ol ol o LD 00 O N O 00 D e O
0l o D 0D W O M M D T 0D LD
ol el R LD 0D W O U M O T 0D LD e
ol el R LD 0D W O U M O T 0D LD e
ol ol o LD 00 O N O 00 D e O
el sl oo LD 0D D N N O 0D D o e
0l o D 0D W O M M D T 0D LD
ol el R LD 0D W O U M O T 0D LD e

ArHArAAAAAAAAAAAA™
T O O O O O 0D 00 O OV O O D O
7 00 L L7 L0 L0 L0 L0 L0 L L0 L0 L Lo
T 7% W O~ [~ [~ [~ [~ [~ [~ [~ [~ [~ L1 &
™ % LN O~ O S o0 T T T O L0
L KU TN e R e e e e R R T R]
L R R T R N R e i e e B el R SR TR |
L R NN I TR, - e SN T]
L R N =R U - R S R]
L A DN el e e i e e R N R T]
L KU TN e R e e e e R R T R]
T 00 L C= 00 O 0 0O OO0 T - Lo
T €7 W 0= [~ [~ [~ [~ [~ [~ [~ [~ [~ L1 o
T ©% LN L7 L0 L0 L0 L0 W0 LA L0 L0 LT
T O O O O O 0D 00 O OV O O D O
ArHArAAAAAAAAAAAA™

Single Left Ridge Single Right Ridge

Central Mountain

[t R Rt B B N Rt R Rl Rl s It [sl N

el 00 00 D0 00 200 00 O3 00 00 OO0 O 30 00 00 O

[Run]
Lol Ru e
Lol Ru e
[y i)
[Run]
[Run]
Lol Ru e
Lot f==]
[y i)
[Run]
[Run]
Lol Ru e
[y i)
[y i)

[t a]
Lol Ru e
Lot f==]
[y i)
[Run]
[Run]
Lol Ru e
[y i)
[y i)
[Run]
Lol Ru e
Lol Ru e
[y i)
Lo R=e]
[Run]
Lol Ru e

LT}
LR}
LT}
[T}
[T}
LT}
LT}
LT}
[T}
LT}
LT}
ol

a

L]

4 a3 a a4 a3 a3 aaa
LR e s e e
4 4 4 4 4 4 a4 34 a4 3 4 a ¢
L= R - - T -~ NN - A
4 4 4 a4 a4 a4 aaaacd
4 4 4 a a4 a4 aaaacd
4 a3 a3 a4 a3 aaaac
4 a3 a3 a4 a3 aaaac
4 4 4 4 4 4 a4 34 a4 3 4 a ¢
4 4 4 4 4 4 a4 34 a4 3 4 a ¢
L e I e

A A A A A A A A A A A A aaB 2
A 034 a4 A A A A& oA aaaoaaad 2

L=]

L]

A& A4 & &4 & da & aoaoaaaf 2
A A A A A A A A A A oA A a A B2
A A A4 A A A A A A oA aoaaaBd 2
A 0A4 a4 4 A & & A A oA oaoaaad o2
A A A A A A A A A A A A aaB 2
A A A A A A A A A A A A aaBd 2
A& A4 & &4 & da & aoaoaaaf 2
RN N N - - T - - T T TP N -
A A A4 A A A A A A oA aoaaaBd 2

cocoococoe oo oo oG

(4]
T

T T T

L]

L]

L]

WO 0D O
L=]
L=]
T 0D
T 00
T 00
L=]
L E--E]
T 0D
T 00
T 00
L=]
T 0D
T 0D

Tl D
00 00
L E--E]
T 0D
T 00
T 00
L=]
T 0D
T 0D
T 00
LAY
L=]
T 0D
LX- XN
T 00
L=]

LN R o T RN NN
LN TN NN

VT 00) LD LD 0w D O 0

VOO O LD LD 0 T LD) O

OO0 LD
LN
T 00 O 00
T 00 O 00
OO0 00
OO O 00
LN
o0 L0 O 00

O Oul LD T 00 LD LD O 0O

£ O w90 L0 D T O 00

ol e el LD LD o o O 00
LA I R LT s ol et e}

L]
kg

4 4 a a a a a aaa

LA Y]

(4]
o
o
o
=]
(4]
o
o
o
(4]
(4]

H
-
-
-
‘H
H
-
-
-
H
H

LD D
AT LD
AT LD
VT LD) O
D 0)
LD D
AT LD
AT LD
VT LD) O
LD D
LD D

Single Left Plateau with Ridges

Single Left Plateau

Double Ridge

oL O T N D T S T
S LM AT LT 00 LD D O Al O 0D LD N 0
LI Ty RN W sl S T W e ey e R e
e TR S e e N T]
WD D TN T T %D T o LN
[IgF- T TR LW TN AR R et I) TN |
L Lo S O Ol o O LD D
LU = U e T TR R W R e T e
LB R R R e K U TR R Fe R
=T L - R TN ST Y S T)
SCmC-mn D Gon g O s W
IR =T N AT R R R R N R R T]
w [~ [~ = g @ 00 O L0 T L0 D= 00 o 0
L=l L R o WF I LT R TR e T AN |
0 OO T D D T D LD D O
BR=1 o L=~ R R R o K R

LM el D D 00 O O LD LD L o
LT G TR e W TR o, U R RN T]
(R = e B N I = TR T o B e e I o e e]
LR R WA~ =D - T
O) o LD DT T 00 7 O 00 LN
WM O OO0 00 D 0 LD O O
L= B Tyt I e TR o W P TN R T o ey o]
WL D A DD O WD T L g
R TSR R e R o T N R - P
00 00 00 O T owp 0 O LD D 00 TS O e
QMO TS O Uu T OO W ol
L= T R N e i e e e R e I e B e |
OO - WD oWl o0
V.5 SN R TR TR S A R TN L Y]
o D T D W o 0 T LT D) 0 OO0 LD O
oo g 00 T o o 00 T D) o o

MO S0 S AL W SO - D D
LR N =R P R - R LR R P R R Ty
(=1 =T N - P o - R E- R R R
W T DD DL A D
==l ol Y - TR = =]
F=E R =R R = = o P - R TR
a0 w w0 - D e T D
HH WD A o S D WD 00 WD - DO
A H S-S S s e T T
o 0020 D 00 O S0 o 20
e R B--N--E=R—R Tk RE-R T - LY L - -]
Ho Mo Wi W O W
LIET- =1 - A T T = R T -
Aoy L S0 o D M O D S T
o WEHT Do o W g O H ST
Lo OH AL TS S D Sl T

Random Two Random Three

Random One

mEmT AL H O %O m T T T
ol DD 0D T A T L S W T T
L ST TR, TR B R N o Ty
Fa Rt A AT T R BT R el o EETRTE N o8
DTS Wl o T W W LD W Lo
T TR~ O T LW W -G
(=R o BT R TR - RER L B e e W R N
O OV O D e WO 00 D O o 00 o
FER LTS R e - RS TR T T - o,
O D 00 00 - T LN 00 00 T T WD O
F=R o N RT-RUTRT- N o - R P = = -
07 O OO L0 T D O 00 Ol L D O
BV i R TN A e B e e e TR
Ey R R P U TR R T T R R
WoW oo YT g, AT om
PR R TR A P N R o F TR R - RN

Random Four

Figure 1: Density Distribution

Best First

Persistence gf/hf = 15/11

Hill Climb

Real-time-A*

GA-produced bias factor = f00732b9

71 1 T T 71 T 1 T T 1
0 10 20 30 40 50 60 70 80 90 100
FITNESS (percent)

Central Mountain

Best First

Persistence gf/hf = 2/15

Hill Climb

Real-time-A*

GA-produced bias factor = f00c2ca8

1 1 T T 1 T 1 _ T T 1
0 10 20 30 40 50 60 70 80 90 100
FITNESS (percent)

Single Right Ridge

Best First

Persistence gf/hf = 11/15

Hill Climb

Real-time-A*

GA-produced bias factor = f05e884f

1 1 T T 1 T 1 _ T T 1
0 10 20 30 40 50 60 70 80 90 100
FITNESS (percent)

Single Left Plateau

Best First
Persistence
Hill Climb
Real-time-A*

1 1 T T 1 T 1 _ T T 1
0 10 20 30 40 50 60 70 80 90 100
FITNESS (percent)

Random One

Best First

Persistence gf/hf = 15/5
Hill Climb

Real-time-A*

GA-produced E bias ol

1 1 T T 1 T 1 _ T T 1
0 10 20 30 40 50 60 70 80 90 100
FITNESS (percent)

Random Three

gf/hf = 15/11
GA-produced bias factor = f1e90234

Best First
Persistence

gf/hf = 15/6
GA-produced bias factor = f00828ff

Hill Climb
Redl-time-A*
T 1 T T 71 T 1 T T 1
0 10 20 30 40 50 60 70 80 90 100
FITNESS (percent)

Single Left Ridge

Best First

Persistence of/hf = 6/15

Hill Climb

Real-time-A*

GA-produced bias factor = f83b19hc

T 1 T T 1 T _T1_ T T 1
0 10 20 30 40 50 60 70 80 90 100
FITNESS (percent)

Double Ridge

Best First

Persistence gf/hf =11/15

Hill Climb

Real-time-A*

GA-produced bias factor = f07c033d

I T 1 1 1 1T T T T 1 1
0 10 20 30 40 50 60 70 80 90 100
FITNESS (percent)

Single Left Plateau with Ridges

Best First
Persistence
Hill Climb

of/nf = 15/4
GA-produced bias factor = f0b947cl

Real-time-A*
T 1 T T 1 1 1 T T 1
0 10 20 30 40 50 60 70 80 90 100
FITNESS (percent)

Random Two

Best First

Persistence of/hf = 14/15

Hill Climb

Real-time-A*

GA-produced bias factor = f0b51535

T 1 T T 1 T _1_ T T 1
0 10 20 30 40 50 60 70 80 90 100
FITNESS (percent)

Random Four

Figure 2: Experimental Results

