
Genetic Algorithms for the Development of Real-Time
Multi-Heuristic Search Strategies

Man-Tak Shing and Gary B. Parker*
Computer Science Department

Naval Postgraduate School

S

Abstract

Monterey, CA 93943

earch of an unknown space by a physical

u
agent (such as an autonomous vehicle) is

nique in search. There is a real-time aspect

e
since the agent is actually moving; using
nergy each step of the way. The customari-

-
p
ly most important goal (to reduce the com
utation time required to obtain the shortest

l
m
distance) is not as important as minima

ovement. Having limited energy
n

(
resources and knowledge of the terrai
only adjacent nodes), the key factor for the

-
t
physical agent’s search algorithm is reduc
ion of steps. Any heuristic that can help

-
s
keep step count to a minimum must be con
idered. In this paper, we present a simple

e
a
genetic-algorithm-based method to produc
daptive, efficient multi-heuristic search

-
s
strategies for the real-time problem. Exten
ive empirical study shows that this ap-

m
proach produced search strategies with

uch better performance than existing
.

T
search algorithms for most terrain types

he methodologies used to develop these
,

a
improved strategies for our specific case
re also applicable to a multitude of real-

g
time search/optimization problems in the

eneral case.

N
S

1 INTRODUCTIO
earch of an unknown space by a physical agent (such

s
a
as an autonomous vehicle) is unique in search. There i

real-time aspect since the agent is actually moving;

i
having limited time to determine its next move and us-
ng energy each step of the way. The physical agent

� ���������������������������
LCDR Gary B. Parker, USN is stationed on the USS AMERI-

C

*

A. Research reported here was done while LCDR Parker was

S
with the Computer Science Department, Naval Postgraduate

chool.

traversing a terrain in the real-time problem knows only
-

j
its current position, the goal’s position, and whether ad
acent and previously adjacent nodes are passable or

n
not. It learns about the terrain only as it moves from
ode to node examining all nodes adjacent. Informa-

t
tion about past nodes, visited or adjacent, can be stored
o build up its knowledge base. Computational time to

o
c
determine the next move is important, as stopping t
ompute before each move is undesirable. On the other

-
s
hand, insufficient computations can result in unneces
ary steps and wasted energy.

e
t
Having limited energy resources and knowledge of th
errain the key factor in the physical agent’s search is

-
n
the reduction of physical steps. Papadimitriou and Yan
akakis (1989) showed that the computational problem

e
p
of deriving optimal search strategies for the real-tim
roblem is PSPACE-complete. Hence, any heuristic that

s
can help keep step count to a minimum must be con-
idered. Korf (1990) studied this problem and

r
e
developed the real-time-A* search, which uses, fo
very adjacent node v , the physical agent’s distance

g
from the node (g (v)) in addition to the distance from
oal heuristic (h (v)) to determine the best next move

g
by minimizing the objective function f (v) =

(v) + h (v). Shing and Mayer (1991) developed per-

=
sistence search which included a persistence factor (pf

0.0 to 1.0) to bias the distance from current node.

t
The next move is determined by minimizing the objec-
ive function f (v) = pf ×g (v) + h (v) for every frontier

t
t
node v . Experimental results led to the conclusion tha
he pf factor could be adjusted to optimize search

E

depending on terrain type and the density of obstacles.

xtending on these works, we believe a combination of

p
additional heuristics can be beneficial in minimizing

hysical agent steps. As the number of heuristics in-
f

a
creases, it is essential to have some efficient means o
ssigning bias factors to various heuristics to produce

t
an effective multi-heuristic search for different terrain
ypes and densities of obstacles. If the combinatorial

o
explosion required to produce all possible combinations

f heuristics is not intractable, the required testing of
-each to select the best makes this means computational

b
ly prohibitive. Since enumeration is probably not possi-

le, some random means of attaining a near-optimal

(
combination seems to be the most plausible. DeJong
1975) made clear the advantages of genetic algorithms

l
h
over purely random selection, and Grefenstette et a

ave successfully used SAMUEL, a learning system
s

t
based on genetic algorithm, to assist autonomous agent
o learn robust reactive strategies in evasion, tracking,

s
mine avoidance and local navigation problems (Grefen-
tette at al 1988, Grefenstette 1991, Schultz 1991).

-
b
In this paper, we present a simple genetic-algorithm
ased method to produce adaptive, efficient and

-
t
effective multi-heuristic search strategies for the real
ime problem. The genetic-algorithm-based learning re-

t
ported in this paper is "off-line" learning, as oppose to
he "anytime" learning conducted by SAMUEL (Gre-

s
fenstette 1992). Here, the robot cannot change its
earch strategies in the middle of its maze exploration.

r
Extensive empirical study shows that a genetic algo-
ithm, even with only very simple crossover and muta-

b
tion operators, can produce search strategies with much

etter performance (reduced number of steps without

r
prohibitive computation time) than existing search algo-
ithms for most terrain types. The methodologies used

c
c
to develop these improved strategies for our specifi
ase are also applicable to a multitude of real-time

2

search/optimization problems in the general case.

PROBLEM MODEL
-

h
To best demonstrate the effectiveness of the multi

euristic search strategies produced by a genetic algo-
-

t
rithm, we chose to apply the strategies to random obs
acle distributions in the form of a two-dimensional

o
64×64 grid of squares (nodes). Nodes can be either free

r obstacles, movement can be in eight directions
s

g
through free spaces only. A perimeter surrounding thi
rid is a solid row/column of obstacles. The distance

i
from a node to its horizontal/vertical neighbor is 1.0; to
ts diagonal neighbor is 2. The total distance traveled

f
√
� �

rom start to goal according to any search scheme is the
s

(
sum of each of these individual steps. The effectivenes
fitness) of a specific search scheme is the ratio of the

e
d
shortest path length from start to goal divided by th

istance traveled. Given as a percentage, 100 is the best

t
possible; meaning the distance traveled is equivalent to
he shortest path. Specific nodes of the grid can be

r
c
identified by Cartesian coordinates with the left borde
olumn being the y axis and the bottom border row be-

r
ing the x axis. The lowest left node is (1,1); the top
ight is (64,64).

The grid is internally represented as a 66×66 two di-

o
mensional array (the perimeter nodes are all marked as

bstacles) made up of pointers to node records. The

(
records store information pertinent to terrain, search
heuristics), graphic display, and pointers to other node

-
t
records (used in the program for various dynamic struc
ures). The heuristic values stored include

distance� from� start, distance� from� goal, distance�
d

s
from� current, side	 congestion, diagonal
 congestion an
ubtotal (refer to Section 3.1 for details). No other node

-
i
records are used in the program; other structures requir
ng nodes are set up using pointers to these records.

-
s
The 64×64 search space grid is divided into 16×16 den
ity blocks, each containing 4×4 nodes and having a

-
1
specified block density. Block densities range from 0

5. A block density of 9 means that, on average, nine
t

r
of the block’s 16 nodes will be obstacles (chosen a
andom). These density blocks are numbered from

d
(
(0,0) to (15,15) where (0,0) is the bottom left an
15,15) is the top right. Start and goal positions are

-
d
specified by density blocks. Most of the empirical stu
ies reported in this paper chose the start and goal node

c
s
from blocks (2,2) and (13,13) respectively. The specifi
tart/goal node is located randomly in that block.

T

3 MULTI-HEURISTIC SEARCH
he input to the Multi-heuristic Search algorithm con-

m
sists of a start and a goal location in an unknown

aze, and a set of heuristics and their corresponding
o

g
bias factors. The set of heuristics is partitioned into tw
roups, stable heuristics and unstable heuristics (see

s
a
Sections 3.1 and 3.2 for details). The algorithm work
s follows:

current := start;
pwhile current ≠ goal loo

for all nodes v within 2 moves of current loop
if v is adjacent and untouched then

v .subtotal := v .stable� heuristics� vector

;respective� biases� vector
;add v to f rontier� heap

/* the top of f rontier� heap contains */
/

e
/* the node with minimum subtotal *

lse if v is frontier and any stable� heuristics
nof v have changed the

;
u
v .subtotal := v .subtotal + adjustment
pdate v ’s position in f rontier� heap ;

i

end for loop;

f empty(frontier� heap) then
/return big� number; /* no solution *

eels
find frontier node v that minimizes f (v) =

�v .subtotal + v .unstable� heuristics� vector
respective� biases� vector;

v .dist� traveled := current .dist� traveled + g (v);
/* g (v) is the shortest distance through */

/
c

/* known paths from current to frontier node*
urrent := v and remove v from f rontier� heap ;

r
end while loop;
eturn goal.dist� traveled;

S

3.1 STABLE HEURISTICS

table� heuristics have values that will not change when
e

c
applied to locations more than two steps away from th
urrent node. They include distance from! goal (hg),

,
d
distance" from# start (hs), side$ congestion (hsc)

iagonal% congestion (hdc), and momentum (hm). The
-

p
subtotal f s (v) is calculated using these functions multi

lied by their respective bias factor and stored in
v .subtotal.

f s (v) = hgf ×hg (v) + hsf ×hs (v) (Eq. 3.1)

+
+ hscf ×hsc (v) + hdcf ×hdc (v)

hmf ×hm (v)

Distance& from' goal (hg (v)) - The Euclidean distance
-

a
from the node v to the goal node. This heuristic is usu
lly considered important in any search. It is used in

e
S
combination with distance(from) current for Persistenc

earch, and by itself for Best-first Search.

l
s
Distance* from+ start (hs (v)) - This is usually the actua
hortest path from the start node to the considered fron-

-
v
tier. Currently believed to be useless in a real-time en

ironment, it should be selectively eliminated by natur-
-

p
al selection as the genetic algorithm trains. For our im
lementation, it is approximated by computing the Eu-

s
clidean distance from start to frontier. It may be
ignificant in some of the more complex terrains that

C

require a switch back.

ongestion - The congestion parameters,

(
side, congestion (hsc (v)) and diagonal- congestion
hdc (v)), are attempts to assist the physical object in

s
r
avoiding areas of increased obstacle density. Thi
educes exploration of paths through high density areas,

t
favoring the safer path of increased options available in
he open space. The parameters are separated in case

e
m
one is more appropriate than the other. Both would b

uch more effective if the physical object’s perception
t

t
were not limited to adjacent nodes. If all nodes adjacen
o the frontier node could be seen, these factors’ impor-

h
tance would increase significantly. The side. congestion
euristic examines the known horizontal/vertical neigh-

-
c
bors of the frontier node to count the number of obsta
les. Nodes with more known obstacle neighbors are

e
m
less desirable. The minimum value is 0 and 4 is th

aximum. The diagonal/ congestion heuristic is similar

f
to side0 congestion with the count being made of the
rontier node’s diagonal vice horizontal/vertical neigh-

M

bors.

omentum (hm (v)) - This heuristic attempts to avoid
)

n
zigzag by making forward (in relation to last move

odes the most desirable. It should be useful in
t

t
valley/ridge terrains where the best path is straigh
hrough the valley. By maintaining momentum, the

o
physical object avoids steps wasted in popping in and
ut of each crevice which has nodes closer to the goal.

Straight ahead movement results in a value of 0, a 45o

s o ohift makes it 1, a 90 shift is 2, and a 135 shift or

non-adjacent move results in a value of 3 (making only

3

the adjacent nodes subject to change after a move).

.2 UNSTABLE HEURISTICS

o
c
Unstable1 heuristics have values that are liable t
hange as the current node changes. Examples in our

a
case: distance2 from3 current (hc (v)) and move4
way5 factor (hma (v)). The algorithm minimizes Equa-

s
tion 3.2 below using the efficient "branch-and-bound"
earch through known (visited) nodes described in Sec-

tion 4.3 of the paper by Shing and Mayer (1991).

f (v) = f s (v) + hcf ×hc (v) (Eq. 3.2)

D

+ hmaf ×hma (v)

istance6 from7 current (hc (v)) - The distance from the
-

T
current node to the frontier node; important in Real

ime-A* and Persistence Search to determine if back-
-

t
tracking is worth the steps required. It is the actual dis
ance computed as the actual steps required to move

M

from the current node to the frontier.

ove8 away9 factor (hma (v)) - It attempts to continual-
f

n
ly reduce the search space by reducing desirability o

odes that increase the x and/or y difference between

d
the current and goal nodes. Increasing either the x or y
istance counts as 2, increasing both counts as 4, and

3

no increase results in the heuristic having a value of 0.

.3 CHROMOSOME REPRESENTATION

e
p
A 32 member array of individual records makes up th

opulation. Each stores the individual’s fitness and its

h
chromosome which contains biases for the search
euristics. The chromosome is a 32 bit unsigned in-

A
teger; subdivided into eight four-bit alleles [A1 A2 A3

4 A5 A6 A7 A8]. Each allele represents a bias factor

T

with a range from 0 to 15.

he hsf, hgf, hcf, hscf, hdcf, hmaf and hmf bias factors

b
are stored in the individual chromosome’s lower 28
its, i.e. A2 through A8. The values of these bias fac-

o
tors are set during training. The four bits in A1 are, in

ur implementation, a place holder for future additional

i
heuristics since only seven applicable heuristics were
dentified.

3.4 GENETIC ALGORITHM

-
n
The task of the genetic algorithm is to find the combi
ation of the seven bias factors that will result in the

s
c
optimum search scheme stored in a single individual’
hromosome. Application of genetic operators to a po-

r
n
pulation (32 in our case) of these individuals will, afte
umerous iterations (1000 generations in our case), pro-

D

duce our desired optimal individual.

uring training, the genetic algorithm is invoked once
r

c
after each predetermined number of cycles (5 in ou
ase) making up one generation. The input population

-
r
will have a fitness value (ability to get through the ter
ain) assigned to each of it’s 32 individuals (details of

a
this process are described in Section 4.2). Our genetic
lgorithm makes use of four genetic operators: selec-

a
tion, allele crossover, bit crossover and mutation. The
llele crossover operator generates new strategies (with

-
d
a 0.86 probability) by cross-mixing individuals at ran

omly chosen allele boundaries. The bit crossover

c
operator generates new bias value for a randomly
hosen allele (with a 0.53 probability) by cross-mixing

-
a
bits between the corresponding alleles of two individu
ls. Mutation is conducted on a bit-by-bit basis with a

e
w
0.005 probability. Selection is done using a roulett

heel similar to the algorithm presented in chapter one
-

l
of the text by Goldberg (1989), with the additions of al
owing the best two individuals to go unchanged. The

1
result is similar to DeJong’s R2 elitist model (DeJong

975).

4 EVALUATION
To evaluate the effectiveness of the bias factors gen-

t
erated by the genetic algorithm, ten populations were
rained and compared to previously established search

4

strategies, using ten different density distributions

.1 DENSITY DISTRIBUTIONS (TERRAIN

O

TYPES)

nce the different density distributions are established,

t
the block densities remain unchanged from the start of
raining through testing. Although the block densities

-
m
remain constant, actual obstacle placement is deter

ined stochastically and changes from run to run. The
-

r
point is to investigate the adaptability of genetic algo
ithm to produce the best strategy for directing the

-
b
search through terrains where the general density distri
ution is known but actual obstacle placement is not.

d
Ten sets of block densities were used to simulate ten

ifferent terrain types. The first six terrain types are
e

a
considered natural terrains since they closely resembl
ctual topological conditions. The start density block is

b
always (2,2) unless otherwise stated. The goal density
lock is always (13,13) unless otherwise stated. See

4

Figure 1 for the block density distributions used.

.2 TRAINING

Training of the population is analogous to selectively
-

t
breeding a random group of asexual organisms to ob
ain superior capability in a specific area. The capabili-

t
ty one wishes to optimize is transit from start to goal in
he least number of steps. The specific area is a specific

-
c
terrain layout where one has a general idea about obsta
le density distribution, but have no information about

T

the location of specific obstacles.

he first step is to generate a series of specific terrains

b
from a general obstacle density distribution. This can
e done by placing obstacles in each area if a randomly

n
o
generated number is less than the specified density. I

ur implementation, we simply loop through the 64×64

node array assigning each nodes state to OBSTACLE if

c
the random number is less than the density value of the
orresponding density block. The second step is to gen-

-
d
erate a population of 32 individuals giving them ran

omly generated chromosomes. Now the training be-
gins:

for each of 1000 generations loop
for each of 5 cycles loop

loop until a successful A* search;
;

s
create a terrain from the density: array
hortest; path := A* search;

r
end until loop
un each individual through the terrain

g
i
accumulating its fitness< sum by comparin
ts actual path to the shortest path;

c

end for loop;

ompute each individual’s average fitness from

a
fitness= sum and number of cycles;

pply the genetic algorithm to the population;

r
end for loop;
eturn a trained population;

T

4.3 TESTING

esting of the trained populations was performed by
l

i
comparing the search conducted by the best individua
n each population to searches accomplished using

n
1
Hill-climbing (Winston 1992), Best-first (Winsto

992), Real-Time-A* (Korf 1990), and Persistence
-

t
Search (Shing and Mayer 1991). The following equa
ion was used to compute fitness for all search schemes:

)f itness = (Eq. 4.1
integer (((shortest> path)/(actual? path))×100)

s
p
Each search scheme was tested on 500 distinct terrain
roduced using the corresponding density matrix. Aver-

-
p
age fitnesses over the 500 were assigned and a com
arison of these fitnesses is presented in the results.

a
m
Our implementation of the Persistence Search is

odification of the original work, where the equation
d

M
f (v) = pf ×g (v) + h (v) in the paper by Shing an

ayer (1991) is replaced by Equation 4.2 shown below.

r
The gf and hf factors are introduced to effectively
eplace/discretize/expand the persistence factor (pf)

f
which can have any value between 0.0 and 1.0. We
ound that an infinite range of possibilities for this fac-

b
tor was not required. A discrete, yet sufficient, span can
e obtained by setting gf and hf to any number of

-
c
possibilities where gf ≤ hf . Setting hf to 15 and in
rementing gf from 0 to 15 gives us the equivalent of

a 0.0 to 1.0 range with increments of 0.067 each.

f (v) = gf ×g (v) + hf ×h (v) (Eq. 4.2)

g
There is also now the expanded capability of having the

(v) be the more important factor in the search
-

t
(gf >hf). The best values for the gf and hf bias fac
ors for the modified Persistence Search were deter-

m
mined before testing by running 32 combinations (chro-

osomes of 00f00000 to 00ff0000 and 000f0000 to
e

b
00ff0000) through 50 distinct terrains. From this, th

est combinations of the two factors was used to
t

b
represent Persistence Search. Likewise, the bes
ias@ factorA vector used by the Multi-Heuristic Search

-
d
for each terrain type was chosen by running the indivi

uals in the populations produced by the genetic algo-

t
rithm through 50 distinct terrains of the corresponding
errain type. The individual with the highest fitness was

4

chosen to represent the GA-trained population.

.4 EXPERIMENTAL

The fitness of each search scheme in these results is the

s
number of its required steps divided by the minimum
teps possible (Eq. 4.1), averaged over the 500 terrains

-
e
used for testing in each terrain type. Fitness is present
d as a percentage, with a 100% search scheme being

n
t
one that can, on the average, search a terrain type i
he minimum steps possible. In general, the easier the

l
b
density layout of the terrain, the higher the fitness wil

e. A graph comparing the fitness of applicable search
y

l
schemes is presented for each natural terrain densit
ayout (Figure 2). The genetic algorithm was extremely

l
n
successful in producing the best search strategies for al
atural terrains. A closer look at the resultant chromo-

a
somal make-ups reviews that the genetic algorithm was
ble to learn the characteristics of different terrains and

t
s
produce bias factors to take advantage of the differen
ituations. Although the genetic-algorithm-produced

t
i
strategies was always at least as good as the next bes
n all random terrains, it was not a substantial improve-

o
ment over Persistent Search. Only in the most complex

f the four random terrains did the genetic-algorithm-
t

t
produced scheme really excel. This seems to sugges
hat the additional heuristics are only essential in natur-

o
al terrains where some pattern in obstacle density exists

r in random terrains of high complexity. As suggested
-

t
by DeJong (1992), the genetic algorithm can only op
imize to a certain point (depending on implementation)

fi
before reaching a state of dynamic equilibrium. The

rst three random terrains were of insufficient complex-
-

p
ity to allow the genetic algorithm to convincingly sur
ass all conventional search schemes.

s
a
Since the genetic-algorithm-produced search strategie
re substantially better for our natural terrains and as

t
least as good as standard search schemes for random
errains, they should be advantageous to use on any ac-

p
tual natural terrain. This is of course contingent on the

hysical agent’s dependence on minimal steps and its
s

s
computational speed. If it’s computational speed i
ufficient to avoid delays before each step and/or

-
d
minimal steps are essential, the genetic algorithm pro
uced scheme should always be used. Table 1 shows a

-
t
comparison of the average time required for each stra
egy to search from start to goal for each of the ter-

-
q
rains. As expected, the more complicated strategies re

uire additional computation time, but are not con-

sidered slow enough to prohibit their use except in
l

s
cases of high speed agents with slow computationa
peed.

5 CONCLUSIONS
Heuristics previously used for search of an unknown

d
d
space by a physical agent are distanceB fromC goal an
istanceD fromE current. These are insufficient to

e
g
minimize energy expenditure (steps taken) when som

eneral knowledge of the area is known. The additional
,

c
heuristics found to be pertinent are distanceF fromG start
ongestion factors which account for obstacle density

r
w
around the considered frontier node, moveH awayI facto

hich encourages reduction of the search space, and
-

t
momentum which avoids wasted steps in course varia
ions. These seven heuristics with their proper individu-

s
al biases were found to be superior to standard search
chemes. In this paper, we show that genetic algo-

-
t
rithms, even with only very simple crossover and muta
ion operators, can produce very effective heuristic

f
s
biases that are adaptable to unknown search spaces i
ome general knowledge of the search space is avail-

s
able. Training done with randomly generated search
paces having common characteristics lead to robust

p
search schemes which are, on the average, more fit than

reviously used strategies.

We believe that this methodology of fitting a set of
-

p
known heuristics into a binary representation, and ap

lying genetics-based training is also applicable to a
.

T
multitude of real-time search/optimization problems

ests in other specific areas are needed to prove our

i
conjecture. In addition, further research could be done
n the application of more advanced genetic-algorithm-

t
based learning techniques. The approach reported in
his paper addresses only the problem of optimizing a

.
A
set of known heuristics before actual maze exploration

more challenging problem is to have the robot con-
t

l
duct "real-time" learning, modify its strategy as i
earns more about the maze through actual exploration

-
c
and generate new heuristics on its own. More sophisti
ated representations of the search space, perhaps simi-

l
1
lar to those used by SAMUEL (Grefenstette et a

990), are needed to support these complex learning ac-

A

tivities.

cknowledgements

Work on this paper was supported in part with funds

R

provided by the Naval Postgraduate School.

eferences

K. DeJong (1975). An Analysis of the Behavior of a
-

t
Class of Genetic Adaptive Systems. Doctoral disserta
ion, Department of Computer and Communication Sci-

ences, University of Michigan, Ann Arbor.

t
K. DeJong (1992). Genetic Algorithms Are NOT Func-
ional Optimizers. Technical Report, Computer Science

J

Department, George Mason University.

. Grefenstette (1991). Lamarckian Learning in Multi-
-

n
agent Environments. Proceedings of the Fourth Inter

ational Conference on Genetic Algorithms (pp. 303-

D

310). San Diego, CA.

. Goldberg (1989). Genetic Algorithms in Search,

A
Optimization and Machine Learning. Reading, Ma:

ddison-Wesley. 1989.

J. Grefenstette, C. Ramsey and A. Schultz (1990).

M
Learning Sequential Decision Rules Using Simulation

odels and Competition. Machine Learning 5(4) (pp.

J

355-381).

. Grefenstette and C. Ramsey (1992). An Approach to
e

L
Anytime Learning. Proceedings of the Ninth Machin

earning Conference. Aberdeen, Scotland.

l
B
P. Hart, N. Nilsson and B. Raphael (1968). A Forma

asis for the Heuristic Determination of Minimum Cost
.

1
Paths. IEEE Trans. Syst. Sci. Cybern. SSC-4(2) (pp

00-107).

R. Korf (1990). Real-Time Heuristic Search. Artificial

C

Intelligence 42(2-3) (pp. 189-211).

. Papadimitriou and M. Yannakakis (1989). Shortest

C
Paths Without a Map. Proceedings of the 1989 ICALP

onference.

A. Schultz (1991). Using a Genetic Algorithm to Learn
-

t
Strategies for Collision Avoidance and Local Naviga
ion. Proceedings of the Seventh International Sympo-

(
sium on Unmanned Untethered Submersible Technology
pp. 213-225). Durham, NH.

M. Shing and M. Mayer (1991). Persistence Search - A
h

P
New Search Strategy for the Dynamic Shortest Pat

roblem. Technical report NPSCS-91-011, Computer

P

Science Dept., Naval Postgraduate School.

. Winston (1992). Artificial Intelligence. Reading,
Ma: Addison-Wesley.

Table 1: Average Seconds Required To

J

Search Each Terrain

KLK

F
Best Persis- Hill Real- GA-

irst tence Climb Time-A* produced
MM MLM MM MLM

central
moun- 0.0239 0.0274 0.0065 0.0163 0.0615

N tainOLO
single

left 0.0232 0.0264 0.0075 0.0176 0.0694

P ridgeQLQ
single
right 1.3051 0.1496 0.0199 0.1405 0.2718

R ridgeSLS
double
ridge 3.2553 1.3562 0.0420 0.4131 2.3420

TT TLT
single

left 0.1071 0.0982 0.0167 0.0626 0.1481

U plateauVLV
plateau

with 0.0769 0.0856 0.0146 0.0487 0.1310

W ridgeXLX
random

one 0.0177 0.0265 0.0064 0.0114 0.0478

YY YLY
random

two 0.0313 0.0267 0.0056 0.0150 0.0644

ZZ ZLZ
random

three 0.0294 0.0258 0.0065 0.0151 0.0521

[[[L[
random

four 0.1629 0.2255 0.0165 0.0481 0.1563

\

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]]
\ \L\

]]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

Figure 1: Density Distribution

Central Mountain Single Left Ridge Single Right Ridge

Double Ridge Single Left Plateau Single Left Plateau with Ridges

Random One Random Two Random Three

Random Four

Figure 2: Experimental Results

Best First

Persistence

Hill Climb

Real-time-A*

GA-produced

FITNESS (percent)

0 10 20 30 40 50 60 70 80 90 100

gf/hf = 15/11

bias factor = f00732b9

Central Mountain

Best First

Persistence

Hill Climb

Real-time-A*

GA-produced

FITNESS (percent)

0 10 20 30 40 50 60 70 80 90 100

gf/hf = 15/6

bias factor = f00828ff

Single Left Ridge

Best First

Persistence

Hill Climb

Real-time-A*

GA-produced

FITNESS (percent)

0 10 20 30 40 50 60 70 80 90 100

gf/hf = 2/15

bias factor = f00c2ca8

Best First

Persistence

Hill Climb

Real-time-A*

GA-produced

FITNESS (percent)

0 10 20 30 40 50 60 70 80 90 100

gf/hf = 6/15

bias factor = f83b19bc

Single Right Ridge Double Ridge

Best First

Persistence

Hill Climb

Real-time-A*

GA-produced

FITNESS (percent)

0 10 20 30 40 50 60 70 80 90 100

gf/hf = 11/15

bias factor = f05e884f

Best First

Persistence

Hill Climb

Real-time-A*

GA-produced

FITNESS (percent)

0 10 20 30 40 50 60 70 80 90 100

gf/hf = 11/15

bias factor = f07c033d

Single Left Plateau Single Left Plateau with Ridges

Best First

Persistence

Hill Climb

Real-time-A*

GA-produced

FITNESS (percent)

0 10 20 30 40 50 60 70 80 90 100

gf/hf = 15/11

bias factor = f1e90234

Random One

Best First

Persistence

Hill Climb

Real-time-A*

GA-produced

FITNESS (percent)

0 10 20 30 40 50 60 70 80 90 100

gf/hf = 15/4

bias factor = f0b947c1

Random Two

FITNESS (percent)

Best First

Persistence

Hill Climb

Real-time-A*

GA-produced

0 10 20 30 40 50 60 70 80 90 100

gf/hf = 15/5

bias factor
 = 1f73351

Random Three

Best First

Persistence

Hill Climb

Real-time-A*

GA-produced

FITNESS (percent)

0 10 20 30 40 50 60 70 80 90 100

gf/hf = 14/15

bias factor = f0b51535

Random Four

