
Learning Gaits for the Stiquito

Gary B. Parker, David W. Braun, and Ingo Cyliax
Department of Computer Science

Indiana University
Bloomington, IN 47405

Abstract

It has been shown that the use of Cyclic Genetic
Algorithms can be an effective means of gait generation
for hexapod robot simulations. They can, with only
low-level primitives, produce reasonable gaits in
minimal time. In addition, their output requires little in
intermediate controller complexity as it is a sequence of
these primitives, which can be fed directly into the
robot. In this paper, we test the applicability of these
algorithms on an actual robot. A model for simulation
was produced based on the measured capabilities of the
Stiquito robot. This model was trained with the CGA
using five random initial populations; gaits quickly
evolved for all five. Tests on the actual semi-
autonomous robot showed that after 1000 generations
gaits comparable to the best designed by human
engineers were produced.

KEYWORDS: genetic, cyclic, robot, hexapod, gait,
control

1. INTRODUCTION

The development of learning algorithms for generating
hexapod gaits is an important step in the realization of
adaptive autonomous robots. This issue has been
addressed resulting in viable alternatives that are
usually tested on simulations, but in a few cases have
also been tested on actual robots.

Marc Donner (Donner,1986) developed control
strategies for the SSA six legged robot using
decomposition of the task’s elements and locality of
control. He also developed a programming language,
OWL, to provide real-time performance. Rodney
Brooks (Brooks,1989) used subsumption architecture
in the development of his robots. Randall Beer and
John Gallagher used genetic algorithms to develop a
neural net to control a simulated cockroach (Beer,1992)
and showed that it was capable of controlling an actual
hexapod robot (Gallagher,1994). Although
promising for robots with complex

controllers that have a structure capable of using a
priori knowledge of tripod gaits, these works have
techniques that are inappropriate for small inexpensive
robots that require a repeatable sequence of activations
for control.

Graham Spencer (Spencer,1992) used genetic
programming and minimal a priori knowledge to
evolve programs that could produce gaits. Although
the programs learned were capable of producing gaits
with sustained forward movement, they did not result in
the optimal tripod gait. In addition, his tests were done
only on simulations and not on an actual robot. In
previous work (Parker,1996) we developed Cyclic
Genetic Algorithms (CGAs), which generate gaits using
minimal a priori knowledge. In addition, their output
can be applied directly to robots at any complexity
level since it is the sequence of primitive instructions
that should be continually repeated to produce a gait.
Tests showed that these quickly converging algorithms
could produce optimal gaits on robot simulations where
all robot leg capabilities were the same.

In this paper we use the CGA to develop a usable gait
for an actual semi-autonomous hexapod robot. This
was accomplished by developing a model with specific
information taken from an individual robot. Tests were
done to see if the CGA could generate reasonable gaits
from this model. The results were verified by
experimentation on the robot. Success was judged by
measuring the distance traveled by the robot during
physical tests. The results showed that the CGA was
capable of generating useful gaits that were comparable
to those developed by the robotics hardware technician.
The algorithm was quickly converging and produced
the primitives required for direct manipulation of the
robot actuators. Leg coordination, inhibition, and the
proper sequence and number of activations for the
specific robot were all learned. The CGA should be
applicable to any robot requiring a repetition of a
sequence of primitives for control; no other gait control
is required.

2. THE STIQUITO II

The robot used was the Stiquito II (Mills,1994). It is a
small, inexpensive hexapod robot that has many of the
motion characteristics of larger complex robots.
Control is transmitted through a thin cable connected to
the parallel port of an IBM compatible computer or
through an infrared transmitter connected to a Sparc
workstation. This modified version, used for the
research in this paper, has autonomous characteristics
that allow full freedom of movement.

The Stiquito II is made up of a plastic body, steel wire
legs, nitinol wire actuators, power contacts (for the
semi-autonomous version), and a control system. The
nitinol actuators react by contracting when voltage is
applied; this bends the wire legs. There are two
actuators per leg; one to lift the leg, one to pull it back.
The activation of the 12 actuators is controlled by
varying the signal passed through the control system.
For example: an impulse of 001000000000 results in
the lifting of the left front leg; 000001000000 results in
the pulling back of the second right leg.
001001000000 would activate both at the same time.
Once one of these impulses is sent, the control
continues to execute until it is told to stop. Repeated
sequences of impulses can be devised by a person, or
evolved by a CGA, so that the robot walks forward.

3. CYCLIC GENETIC ALGORITHMS

Cyclic Genetic Algorithms (CGAs) (Parker,1995) solve
the problem of evolving repetitive behavior that
requires continual cycles of sequential actions. They
are based on Genetic Algorithms, which were
introduced by John Holland (Holland,1975), and use
the standard selection, crossover and mutation
operators. They differ in that the CGA chromosome
has a cycle of genes that can accommodate the cyclic
nature of gaits. In addition, the genes can represent
tasks that must be completed in a predetermined
segment of time. For our purposes the tasks to be
completed are a set of impulses to the robot that will
result in a reasonable gait. Figure 1 shows examples of
a basic GA chromosome, a CGA chromosome with
tasks for its genes, and a CGA chromosome with a
cycle.

CGAs can have either fixed or variable length
chromosomes. Both varieties can develop cycle
lengths appropriate for gait generation, but the fixed
was found to be the most efficient yet adaptive enough
to accommodate severe robot degradation (disablement

of leg). All tests in this paper were done using a CGA
with a fixed chromosome length and a population size
of 64. All training sessions started with a random
population.

Figure 1: GA and CGA Chromosomes

3.1 CHROMOSOME STRUCTURE

The chromosome structure used for evolution was
made up of four parts (Figure 2). The coordinators
affected individual legs. The back-down coordinator
ensured the leg was down if moving back. The up-
forward ensured that the leg was moving forward if it
was up. A 12 bit number was used to represent the
coordinators as there were two possible per leg. The
inhibitors prevented designated pairs of legs from being
moved back or forward at the same time.

A single 15 bit number represented the inhibitors. Each
bit position corresponded to a specific pair of legs (15
possible). If the bit was 1 it did not allow both legs to
move back at the same time even if the activation
commanded it. The lower numbered leg could move
while the higher numbered leg was inhibited.

The start-section was the part of the chromosome that
held the activations that were executed only once. The
purpose of this section was to allow the robot to
transition from a standing state to a state that was part
of the gait cycle. The iterative-section was repeated as
many times as desired. This section was designed to
form a sequence of instructions that when repeated
would result in sustained cyclic behavior. The start-
section was made up of a single gene and the iterative-
section was made up of 12 genes.

The genes had 2 parts (Figure 2). The activations part
was a 12 bit number that contained the encoding
required to activate two possible primitives per leg.
The nitinol that moved the leg back could either be
activated or relaxed. Activated meant it was
contracting and moving the leg back, relaxed meant it is
being elongated by the spring action of the leg resulting
in the leg moving forward. When the nitinol reached
its full contraction the leg would hold its full back
position. Similarly, when the nitinol was fully extended
the leg would stay at its full forward position. The
activation for up and relaxation for down worked in the
same way. This meant the leg was always moving
(unless at full throw) and each activation was either on
or off.

The moves part was an 8 bit number that designated
the number of times to repeat the activations part.
This moves part was what gave the CGA the ability to
vary the length of the sequence of primitives being sent
to the robot in each cycle.

Figure 2: Cyclic Genetic Algorithm Chromosome and
Gene Breakdown

The conversion from chromosome to a set of primitive
commands went as follows:
1. i_act = apply inhibitors to each activation.
2. ci_act = apply coordinators to each i_act.
3. Write the ci_act from the start-section moves
number of times.

4. Write a marker separating the start and iterative
sections.
5. Write each ci_act from the iterative-section moves
number of times.
The result was a list of primitive activations separated
by a marker that could be put in a file. The robot
control program ran through the list of primitives
before the marker on startup sending each activation
for 100 msec. The list of primitives following the
marker was repeated a specified number of iterations.
Again each activation was in effect for 100 msec.

3.2 GENETIC OPERATORS

Probability for selection was determined by the
individual’s fitness. It was computed one activation at a
time by summing the fitness of individual activations as
each is applied to the current state of the simulation.
The algorithm for computing an individual’s fitness
follows:

Fitness = 0
For each Activation do
 RobotState =
 AddVerticalMovement(Activation, RobotState)
 LegsOnGround =
 DetermineLegsOnGround(RobotState)
 Balance = GetBalance(LegsOnGround)
 RightSideThrust =
 ComputeThrust(R,Actvation,LegsOnGround)
 LeftSideThrust =
 ComputeThrust(L,Actvation,LegsOnGround)
 RobotState =
 AddHorizontalMovement(Activation, RobotState)
 Thrust = LeastOf(RightSideThrust, LeftSideThrust)
 - LackOfBalanceAdustment(Balance)
 - ThrustAsymmetry(RightSideThrust,
 LeftSideThrust)
 Fitness = Fitness + Thrust

First, the vertical activations were applied to the model
(the state of the legs) which could then be used to
determine which legs were on the ground. Horizontal
activations were then applied to all legs but forward
motion was affected only by those on the ground. The
forward motion for each side was calculated by taking
the average movement of the legs on that side. The
activation forward motion was determined by taking the
least of the two side motions. The resultant forward
movement would then be reduced if the robot was out
of balance or had asymmetrical movement (one side
producing more thrust than the other). This was
repeated from one activation to the next for each

activation in the start section and continued in the
iterative section until a total of 100 activations was
reached. This fitness was computed for each individual
in the population. Pairs of individuals were
stochastically selected for reproduction.

Two types of crossover were used. Chromosome
crossover was performed at two points between the
genes in the iterative section resulting in section swaps
between the two cycles. Gene-by-gene crossover
allowed corresponding genes to swap encoded
information. Crosses could happen between the
individual members of the list or within the bits of the
specific numbers in the list. This was done in both the
start and iterative sections.

Mutation also had two operators each of which had
minimal probability of occurrence. Gene-replace
deleted the old gene (moves and activations) and
replaced it with an entirely new one. Gene-mutate
changed only one bit in the gene.

A Gene-by-gene evaluator was also used. This
operator would randomly pick one or two individuals
from the population and evaluate them one gene at a
time. It removed genes that were significantly worse
than preceding genes and reduced the moves of genes
that had productive activations initially but dropped in
effectiveness after some repetitions. It also moved
genes with a moves number of 0 to the end so that the
active genes were always at the start of the iterative
section. The result of this operator was to clean up the
chromosomes and speed up the elimination of poor
activations.

4. THE SIMULATION MODEL

The model was a data structure that could hold the
essential information needed to determine the state of
the legs and the subsequent movement calculated from
the control activation input. Fields for each leg were
included to store the leg’s capabilities and current
position. To determine each leg’s resting vertical
position, the robot was placed on a level surface. Legs
touching the ground were at position 0, all others were
relative to where their 0 position would be if they were
on the ground. All future references to each leg’s
vertical position were relative to this initial 0 position.
Each leg’s horizontal position was measured relative to
its at rest full forward position.

4.1 DATA STRUCTURE

The model data structure included the following fields
for each leg:
current up -- current vertical position of leg
max up -- position off ground when full up
max down -- position off ground when full down
current back -- current horizontal position of leg
max back -- position relative to full forward when

full back

These fields were applicable to all legs:
rate up/down -- rate of vertical movement when

actuator excited/relaxed
rate back/forward -- rate of horizontal movement

when actuator excited/relaxed

Measurements to fill the position fields were taken by
activating each control individually and recording the
leg’s maximum throw. An average rate per activation
was calculated for horizontal and vertical movement
by dividing the maximum throw by the minimum
number of activations required to attain it.

5. TESTS

Gaits were generated by running a CGA for 1000
generations on five starting random populations of 64
individuals. All sections of the chromosome were
initialized with a random number within the appropriate
range. Performance tests were done to determine the
fitness of the resulting populations from each of the
five starting populations. Considering the 500 and
1000 generation fitnesses, the median of each of these
was selected for actual robot testing. The 500 and
1000 generation gaits were tested in sequence on the
Stiquito used for the original measurements. Each run
lasted for 400 activations. The robot started with its
rear legs on a starting line. The distance traveled,
measured in millimeters, was the shortest line from this
line to the nearest leg after the run. Five runs were
made for each gait.

6. RESULTS

A comparison of the performance of simulations ran on
the five starting populations is shown in Figure 3.
Performance at 0, 10, 100, 200, 500, and 1000
generations is shown for each. In all cases the CGA
quickly improved the model’s performance and
showed continual improvement over the generations.

Generations Trained

F
it

n
es

s

0
100
200
300
400
500
600
700
800
900

1000

0 200 400 600 800 1000

Figure 3: Comparison of the Performance of
Simulations Ran on the Five Starting Populations

An analysis of the CGA 1000 generation gait revealed
the following (the right legs from front to back are
numbered 0, 2 & 4; the left legs from front to back are
numbered 1, 3 & 5 as in Figure 4):

��

��

��

��

��

��

Figure 4: Stiquito Gait

1. The moves number in the start-section was 0. No
initial movements were required as there were two
points in the gait cycle where all legs were on or near
the ground.

2. The iterative-section had five active genes. Their
activations and moves resulted in the following after
the inhibitors and coordinators were added:
a. Move legs (0 3 4) back and legs (1 2 5) up for five
moves (shown as the first drawing in Figure 4). The
solid legs are providing thrust and the dashed legs are
lifting.
b. Move legs (0 3 4) back and legs () up for two moves.
The first drawing is still appropriate except that the
dashed legs are coming back down.
c. Move legs (0 3 4) back and legs () up for two moves.
This is a duplicate of b. The activations in the original
genes were different, but the application of the
inhibitors and coordinators resulted in equivalent
primitives.
 d. Move legs (1 2 5) back and legs (0 3 4) up for five
moves (shown as the second drawing in Figure 4). The

solid legs are providing thrust and the dashed legs are
lifting.
e. Move legs (1 2 5) back and legs () up for four moves.
The second drawing is still appropriate except that the
dashed legs are coming back down.

3. The result was a tripod gait with two cycles of nine
activation pull backs on alternating sets of legs. There
were two considerations that had to be balanced in
order to get this result:
a. One of the legs had a max throw of 8.0 mm. The
back-rate was 1.0, so 8 activations would result in 7.25
mm (recall that the first activation results in only 1/4 of
the movement of subsequent activations). Using 9
activations would yield 8.25 mm, which would result in
some leg dragging.
b. The timing of lifting and relaxing made 9 the
optimal sequence length as a lift of 5 followed by a
relax of 4 put the leg back to approximately its resting
position due to the 1/4 movement on first activation.
This timing consideration must have been sufficient to
offset the drag consideration.

Tests on the actual Stiquito robot using the 500
generation and 1000 generation gaits from the median
population are shown in Figure 5.

Generations Trained

D
is

ta
n

ce
 T

ra
ve

le
d

 (
m

m
)

0

20

40

60

80

100

120

140

160

0 500 1000 1500

Figure 5: Tests Using the 500 and 1000 Generation
Gaits on the Stiquito Robot

The horizontal dashed line shows the average robot
performance over five trials using the human generated
gait. The solid line connects the averages for the CGA
generated gaits. As can be observed, the 1000
generation gait was, on average, roughly equivalent in
performance to the gait produced by the human. This
was robotics hardware technician’s gait design. Using
knowledge of the tripod gait, the technician determined
the proper coordinators and inhibitors required to
produce the gait. Timing for the duration of each of the

activations in the required sequence was determined by
trial and error on the robot. The result was that the
entire cycle’s timing was roughly equivalent to 20
activations of the control program. The technician and
the CGA developed similar gaits through significantly
different means.

7. CONCLUSIONS AND DISCUSSION

CGAs can be successfully used to generate gaits for
actual hexapod robots. The gait generator quickly
produced a fast gait in simulation, which also worked
well on the robot. Being comparable in performance
to the best human designed gaits and possessing the
ability to adapt while in operation on self-sensing
robots, the CGA generated gaits can help to improve
autonomous hexapod robot locomotion.

Physical agents can have large variations in
capabilities, which need to be addressed in the model.
One solution may be to have dynamic models that are
constantly updated by on board position and rate
sensors. Our model’s current construction could
accommodate this change but the expense to install the
required sensors would probably not make this the best
option for the Stiquito. Another solution is to use a
comparison of the model’s performance to the actual
robot’s performance by making periodic cross checks.
In this way, one can evolve the model with the gait or
use this comparison to bias the gait’s performance on
the model.

The CGA converges quickly as can be observed in
Figure 3, yet was shown to be adaptable in the face of
extreme changes such as the loss of a leg
(Parker,1995). This adaptability could be further tested
by experiments on more complex robots. Hexapods
with adjustable speed rates of leg movement would add
another variable required for evolution. They could be
trained to develop gaits optimal for the desired speed.
The strength of the CGA can also be tested on our
forthcoming eight-legged robots. These will not only
add the complication of more legs but will also add an
extra degree of freedom as the legs are more complex.
In addition, adaptability tests can be more easily
performed on the actual robot since leg loss can be
solved while maintaining a gait with static stability.
Through these tests, we can press the CGA to help
define its limit in sequential cyclic control.

8. FUTURE RESEARCH

1) Develop gaits for other maneuvers such as turns,
pivots, walk backwards, etc.
2) Use feedback in the form of leg position sensors or
positional coordinates to alter the model resulting in
real-time adjustments.
3) Use the CGA to generate gaits for robots that have
adjustable rates of leg movement.
4) Use the CGA to generate gaits for robots that have
more legs and/or degrees of freedom.

Acknowledgments

This research was supported in part by NSF Graduate
Research Traineeship Grant GER93-54898.

References

1. Donner, M. D. (1986). Real-Time Control of
Walking. Boston; Basel; Stuttgart: Birkhauser.
2. Brooks, R. A. (1989). "A Robot That Walks:
Emergent Behaviors from a Carefully Evolved
Network." Neural Computation (pp. 254-262).
3. Gallagher, J. C. and Beer, R. D. (1994). “Application
of Evolved Locomotion Controllers to a Hexapod
Robot.” Technical Report CES-94-7, Department of
Computer Engineering and Science, Case Western
Reserve University. Refers to Beer, R. D., and
Gallagher, J. C. (1992). "Evolving Dynamical Neural
Networks for Adaptive Behavior." Adaptive Behavior,
1 (pp. 91-122). Cambridge: MIT Press.
4. Spencer, G. (1994). “Automatic Generation of
Programs for Crawling and Walking.” Advances in
Genetic Programming. (pp. 335-353) K. Kinnear, Jr.
(ed.), Cambridge, Ma: MIT Press.
5. Holland, J. H. (1975). Adaptation in Natural and
Artificial Systems. Ann Arbor, Mi: The University of
Michigan Press.
6. Mills, J. (1994). "Stiquito II and Tensipede: Two
Easy-to-Build Nitinol-Propelled Robots." Technical
Report #414, Computer Science Department, Indiana
University.
7. Parker, G. and Rawlins, G. (1996). “Cyclic Genetic
Algorithms for the Locomotion of Hexapod Robots.”
Proceedings of the World Automation Congress
(WAC'96), Volume 3, Robotic and Manufacturing
Systems. (pp. 617-622).

