
Generating Arachnid Robot Gaits with
Cyclic Genetic Algorithms

Gary B. Parker
Department of Computer Science

Indiana University
Bloomington, IN 47405
gaparker@cs.indiana.edu

http://www.cs.indiana.edu/hyplan/gaparker.html

ABSTRACT
Learning gaits for walking robots is

difficult because the elements of
control require repetition of a sequence
of integrated steps. Controllers for the
six-legged robots, such as the Stiquito,
and the eight-legged spider robots, in
development, exemplify the difficulties
of evolving gaits. The controllers for
these robots store the actuator
commands in a field-programmable
gate array as a list of integers. This list
must be ordered in the proper
sequence of activations that, when
continually repeated, produces a gait.
This paper discusses the Cyclic Genetic
Algorithm (CGA) used to evolve gait
actuation lists, and discusses the
extension of the CGA from use on the
six-legged ant robot to the eight-legged
spider robot. Optimal gaits for the six-
legged were evolved in previous work,
expanding the operators used in the
CGA produced optimal gaits for the
eight-legged robot.

1. Introduction
Robotic control presents an interesting problem for learning
algorithms since it usually requires sequential solutions
where a series of actions is continually repeated. Although
learning to actuate a single leg for a single step is not
difficult, learning to walk requires all legs to repeat steps in
the correct sequence, and transition smoothly from one step
to the next, which increases in difficulty when more legs are
added and an optimal gait is required. Additionally,

unpredictable changes in robot capability make adaptivity a
requirement. This dynamic system suggests that some form
of evolutionary computation should serve well as the
learning algorithm. This can be especially true when the
robot has a simple control interface where its accepted
inputs are just a list of primitive activations. This is the
case with the gait controllers of some primitive robots that
possess hardware that can only store a list of integers which
the controller can interpret and use to activate actuators.
The coordinated pattern of the gait must be stored in this
input integer list. In addition, it must contain the activations
required to manipulate the state of the robot in such a way
that allows smooth transitions while continually looping.

Gait generation for six-legged robots, has been addressed
with several approaches. Donner (1986) developed control
strategies for the SSA six-legged robot using decomposition
of the task’s elements and locality of control. He also
developed a programming language, OWL, to provide real-
time performance. Brooks (1989) used subsumption
architecture in the development of his robots. Beer and
Gallagher (1992) used a neural net to control a simulated
cockroach and an actual hexapod robot (1994). These
solutions proved to be successful for the robots used but we
wanted a solution that could work on the most primitive of
robots and that required less a priori knowledge of how to
walk.

Spencer (1994) used genetic programming to develop
gaits for a simulated robot using minimal knowledge about
the intricacies of walking. Although his results were
promising in that the system consistently learned gaits which
generated sustained forward movement, we wanted a system
that would learn the optimal gait for our model which had a
very primitive control interface and no means of feedback.
In addition, we wanted it to be continually adaptive to robot
capabilities and be a quickly converging algorithm suitable
for anytime learning as described by Grefenstette and
Ramsey (1992). To this end, cyclic genetic algorithms were
developed (Parker and Rawlins, 1996). They are capable of
generating the proper sequence of primitive instructions that
can be continually repeated to produce a gait. Tests showed
that these quickly converging algorithms could produce
optimal gaits on six-legged robot simulations.

Further tests done by Parker, Braun, and Cyliax (1997)
showed that the gaits produced on the simulation could
effectively be transferred to the actual robot. This was
accomplished by training on a model loaded with specific
information taken from an individual robot through careful
measurement. Tests were done to see if the CGA could
generate reasonable gaits from this model. Gaits were
generated by running a CGA for 2000 generations on
populations made up of 64 individuals (all sections of the
starting chromosomes were initialized with a random
number within the appropriate range). The results of
training were verified by experimentation on the robot.
Success was judged by measuring the distance traveled by
the robot during physical tests. The results showed that the
CGA was capable of generating useful gaits that were
comparable to those developed by the robotics hardware
technician.

Eight-legged robots offer advantages over six-legged.
They have added stability during full speed forward
movement since they can maintain four legs on the ground
whereas six-legged can have a maximum of three. In
addition, they are less susceptible to disablement caused by
failing actuators (they can maintain static stability and near
full speed forward movement with a leg or two missing).

Eight-legged robots also have disadvantages. They have
more moving parts so they are harder to build and maintain.
In addition, the additional legs add more degrees of freedom
to control. This greatly increases the complexity of the
learning problem. In this paper, we test the CGA with this
increase in complexity by employing it to generate gaits for
primitive eight-legged robots. We could not locate previous
work where evolutionary computation was used for this
purpose. The problem was found to be significantly harder
than six-legged gait generation.

2. Method of Gait Generation
The general approach used to generate a gait for the
simulated robot was to develop a model capable of
representing all states of the robot and use a cyclic genetic
algorithm to train this model to walk forward.

2.1. The Robot
The robot used in the formation of our simulated six-legged
robot and model was the Stiquito II (Figure 1). Developed
by Mills (1994) as an alternative to the larger, more complex
and expensive six-legged robots; this robot has a very simple
controller that can only store a sequence of numbers that it
can cycle through producing activations for the 12 actuators.
It is made up of a plastic body, steel wire legs, Nitinol wire
actuators, and control lines that connect to the parallel port
of an IBM compatible personal computer. Alternatively,
control can be supplied by an infrared transmitter when the
robot is in a colony cage which supplies its power while
letting it maintain autonomous movement. The Nitinol
actuators react to voltage applied by contracting; this bends

the wire legs. When the voltage is 0 the steel wire legs act
as a spring and extend the Nitinol actuators back to their
extended (relaxed) position. There are two actuators per
leg; one to lift the leg, one to pull it back. The activation of
the 12 actuators is controlled by varying the signal passed
through the parallel port. Its only inputs are activations,
which the control interface uses to tell what Nitinol wires to
contract. Due to the nature of Nitinol, the legs are always in
motion unless the Nitinol is fully contracted or relaxed.

Figure 1: Stiquito II. Used for six-legged robot tests.
An extension of the Stiquito is in development as an
eight-legged robot.

An input to the Stiquito II is a 12 bit number where each
bit represents an actuator (Nitinol wire). A signal of 1
contracts the wire and a signal of 0 relaxes it. Figure 2
shows an example of an activation and its result on the
robot. The activation can be thought of as 6 pairs of
actuations. Each pair is for a single leg with the first bit of
the pair being that leg’s vertical activation and the second
being that leg’s horizontal activation. The legs are
numbered 0 to 5 with 0,2,4 being on the right from front to
back and 1,3,5 being the left legs from front to back. The
activation 100101101001 results, as shown (a solid bold leg
means it is providing forward thrust by being on the ground
and moving back and a dashed leg means it is moving up),
in one phase of the classic tripod gait which is considered to
be the optimal gait for speed in this simple rigid robot when
all its actuators are fully functioning.

01
23
45

Activation: 100101101001

 10 01 01 10 10 01

Figure 2: Six-Legged Robot Activation

The eight-legged robot is conceptual at this point, but is
intended to be an extension of the Stiquito with a slightly
longer body and two additional legs. Although the leg
motion of this robot will not correspond closely to that of
actual spiders, future arachnid robots, in development, will
have the more spider-like pulling and pushing motion of the

front and back legs. The CGA will be used in a similar
manner to develop gaits for these arachnid robots.

The input to the arachnid robots is a 16 bit number (two
per leg). The activations work in a similar manner as
demonstrated in Figure 2. Figure 3 shows an example of an
activation and its result on the robot.

01
23
45
67

Activation: 0110100101101001

 01 10 10 01 01 10 10 01

Figure 3: Eight-Legged Robot Activation

Some sequence of these activations will result in a pattern
of leg movement that will produce a gait. An example of
such a sequence, which would produce a viable gait for the
eight-legged robot, is shown in Figure 4. The activations
before the –1 are activated by the controller only once; the
activations after are continually activated in a cycle until a
new gait is loaded in the controller or the power is
terminated.

1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0
1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0
1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0
 -1
1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0
1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0
1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0
1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0
0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0
0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0
0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0
0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0
0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0
0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1
0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1
0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1
0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1
0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1
0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1
1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0
1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0
1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0

Figure 4: Sequence of Activations to Control Robot

2.2. The Model
Each of these robots was represented as a model that was
intended to capture the importance of the robot’s structure in

regards to walking. The model was a simple data structure
that held each leg’s capabilities and current state (Figure 5).

Fields specific for each leg:
current up -- current vertical position of the leg.
max up -- position off the ground when completely up.
max down -- posit off the ground when completely down.
current back -- current horizontal position of the leg.
max back -- posit relative to completely forward when

completely back.
Fields applicable to all legs:

rate up/down -- rate of vertical movement when actuator
activated.

rate back/forward -- rate of horizontal movement when
actuator activated.

Figure 5: Simulation Model Data Structure

The current up and down fields hold the leg's state. The
combination of all the leg’s states defines the robot’s state.
The remaining fields in the data structure define the leg’s
capabilities, which were measured before training and
remained static throughout. Input activations used the
capabilities to determine how much to change the current
state.

2.3. Robot Stability
In these tests, we were assuming a requirement for static
stability. This means that the legs on the ground are
sufficient to support the body even if it is in a resting state.
This is not possible for bipeds and quadrupeds during
normal gaits. Static equilibrium can be measured by
drawing a convex polygon around the insect connecting
consecutive feet on the ground (Figure 6). The stability
margin is the distance from the insect’s center of gravity to
the nearest line in the polygon (Ting, Blickhan, and Full,
1994). As long as the stability margin is above 0 the animal
is statically stable.

Figure 6: Hexapod Static Stability

Our calculations were not made to this degree of
accuracy. Stability was generalized to be determined by
which legs had their feet on the ground instead of by each
leg’s position when its foot was on the ground. For the six-

legged robot, the possibilities could be easily delineated
within a few cases. Determination of robot stability became
a bigger issue in attempting to balance a spider-like robot.
Some method was needed to determine the robot’s balance
depending on the feet on the ground. With eight legs, there
are many possible configurations that result in static
stability, but some offer greater balance than others. In
addition, we wanted to distribute the support as much as
possible around the center of gravity. Having the widest
spread of legs on the ground would be the most stable, but
no gait can keep all the extreme legs (0,1,6&7) continuously
on the ground. The method developed to determine stability
was to use pitch and bank indicators for each leg (Figure 7).

01
23
45
67

(1,2)
(1,1)
(1,-1)
(1,-2)

(-1,2)
(-1,1)
(-1,-1)
(-1,-2)

Figure 7: Robot Stability Bank and Pitch

The first number in each pair assigned to each leg is the
bank (side to side balance) whereas the second number in
each pair is the pitch (front to back balance). Addition of
these numbers will give an indication of the robots balance.
For example; if legs 0, 3, 4, & 7 are on the ground as shown
in Figure 3, the addition of the banks would be 0 since two
legs are down on each side and the addition of the pitches
will also be 0, indicating even distribution left to right and
forward and back. This method, in addition to other
indicators such as if a balanced pair (examples: 0 & 7 or 3 &
4) existed, was used to determine robot stability.

3. Cyclic Genetic Algorithms
The CGA is a variation of the classic GA introduced by
John Holland (1975). The chromosome of a classic GA is
made up of genes; each gene or a combination of them
usually represents some characteristic of the individual. The
CGA incorporates time into the chromosome structure by
making each gene a task that is to be accomplished in a set
amount of time. Figure 8 shows such a chromosome. It
represents a sequential program that can be executed in
order: task 1, then 2, etc. In addition, we can take some
portion of the chromosome and repeat the tasks; creating a
cycle.

This allows the chromosome to represent a program that
has a start section and an iterative section. The start section
can contain tasks required to initialize while the iterative
section can contain the tasks that are required in a
continuous cycle. A trailing stop section can also be added
to effect a smooth transition back to the at rest state.

Each gene (which represents a task) can be as simple as a
primitive command (machine instruction or robot actuation)

or as complicated as a subprogram. The gene can also be a
cycle in itself as long as there is some provision for when to

Figure 8: GA and CGA Chromosomes

stop that cycle and head to the next (which will be the next
gene). Additional control genes can be added that globally
effect the task genes by coordinating or inhibiting certain
behaviors. The use of these will become more apparent as
we discuss the specific application.

CGAs can have both fixed and variable length
chromosomes. In either case, the system must be able to
allot the proper number of tasks to each phase and be
flexible enough to allow the CGA to form a complete cycle
in the iterative section. When variable length are used, the
genetic operators (usually crossover) provide the means for
variation in the chromosome length. Some means of control
is usually required because drastic changes in the
chromosome length can severely impede convergence.
When fixed length are used, the tasks at each gene can be
repeated; the number of repetitions is encoded in the gene.
In this way, fixed length chromosomes can take on the
desirable characteristics of variable yet maintain the
increased control of training fixed.

An example of the use of repetitions to form a variable
length cycle in shown in Figure 9. Although the iterative
section only has five possible distinct tasks, the number of
times each is repeated can vary the total number of tasks in

Figure 9: Fixed Length Cycle

the iteration. In this case, the first task is repeated 5 times,
the second 3 times, etc. The result is a cycle of 18 tasks
even though the iterations part of the chromosome is fixed at
five genes. The figure also demonstrates that, although
genes are defined, they may not be used. The two start
section genes and one stop section gene have their task
repeat numbers set to 0 making no tasks done before or after
the cycle.

The genetic operators used by CGAs are generally
variations on the classic GA operators and being
chromosome specific will be described in detail in the next
section.

4. CGAs Applied to Gait Generation
The CGA is particularly well suited for gait generation. For
this application we used chromosomes with only a start and
iterative section. The start section was executed once. This
allowed the robot to move from its start stance, which is
only used while at rest (no motion). The start section set up
the robot to move into a continuous cycle where sustained
fluid motion could exist. The iterative section was repeated
until a total of 100 activations was reached. The trailing
stop section was not required as the Nitinol will relax to the
at-rest position when activation inputs stop.

4.1. CGA Chromosomes
Although initial experiments with the six-legged robot used
both fixed and variable length chromosomes (Figure 10); the
fixed were found to be the best and were the only kind used
in the eight-legged robot experiments.

 Variable Length A Activation
 C Coordinators

 (A1 A2 -1 A3 A4 A5 A6 A7 A8 A9) I Inhibitors
 R Repetitions

 Fixed Length, Global Inhibitors & Coordinators

 (C I ((A R)) ((A R)1 (A R)2 (A R)3 (A R)4 (A R)5 (A R)6

 (A R)7 (A R)8 (A R)9 (A R)10 (A R)11 (A R)12))

Figure 10: CGA Chromosomes

The variable length chromosomes were the most primitive
with each gene being an activation. The chromosome
structure as shown in Figure 10 uses Ax to represent

separate activations, the -1 separates the start and iterative
sections.

The fixed length chromosomes (Figures 10 & 11) were a
list consisting of the individual’s global coordinators and
inhibitors, a one gene start section, and a 12 gene iterative
section. The start and iterative genes were each made up of
two integers: the activations integer (12 bit number for six-
legged and 16 bit number for eight-legged) and the
repetitions integer (8 bit number).

The start section was made up of one gene and the
iterative section had twelve. The start section could be fixed

at one because, with the repetitions, the robot had sufficient
time to get into the proper position to enter a cycle. Twelve
in the iterative section was originally used because it was
thought to be enough move changes to handle every
possibility (two per leg for the six-legged). It was found that
more than eight were rarely used during six-legged training,
so twelve was also used for the eight-legged robot.

Figure 11: Fixed Length Chromosome, Arachnid Robot

4.2. Coordinators and Inhibitors
Coordinators and inhibitors were a part of the robot’s
coordination, which could evolve to increase leg control and
proper movement. They were initiated as random numbers
and were learned by the algorithm.

Coordinators for the six-legged robots were 12 bit
numbers that directed the coordination of individual leg
movement. This number could be looked at as six pairs of
bits, one pair for each leg. The first being the back-down
coordinator which, if activated, ensured that the leg would
be down or moving in that direction if it was moving back.
The second bit was the forward-up coordinator, which
ensured that the leg would be moving forward if it was up.

Coordinators for the eight-legged robots were changed to
32 bit numbers (Figure 11). The possible coordinators were
none, back-down, forward-down, up-forward, and up-back.
Back-down ensured that the leg was going down if it was
going back. Forward-down ensured that the leg was going
down if it was going forward. Up-forward ensured that the
leg was going forward if it was going up. Up-back ensured
that the leg was going back if it was going up. Four bits for
each leg were used: one determined if there would be a
coordinator or not when the back actuator was activated or

deactivated (leg going back or forward), a second
determined if the back-down or forward-down coordinator
would be used; the third bit determined if there would be a
coordinator or not when the up actuator was activated (leg
going up), the forth determined which up coordinator would
be used. These new coordinators not only matched
biological systems better, but also had the possibility of
being more useful for other maneuvers such as backing up.

The inhibitors affected pairs of legs. They prevented
pairs of legs from moving back at the same time. The 2,3
inhibitor prevented both legs 2 and 3 from going back at the
same time. It allowed 2 to move back, but inhibited 3. The
inhibitors for the six-legged robot were stored in a single 15
bit number (one bit per possible pair). This 15 bit number
could be thought of as 5 groups. The first group made up of
5 bits indicated which legs would be inhibited from moving
in the same direction as leg 0. Five bits were required to
cover the remaining legs 1 through 5. The second group
was made up of 4 bits showing what legs would be inhibited
from moving in the same direction as leg 1. Since leg 0 had
already been matched with all legs in the first group it does
not appear in the second. This continues until all possible
leg matchings have been addressed.

Although the paired inhibitors worked sufficiently well
for the six-legged robots, they were too cumbersome to work
well with the eight-legged robot. In addition, they were
being initiated by a comparison of the activations of the pair
of legs. A more accurate match with legged arthropods and
more useful for a robot is to have the inhibitor activate
depending on the position (on ground or not) of its adjacent
legs. The inhibitors for the eight-legged robot used a much
simpler system where the leg was inhibited from lifting
unless its neighbors were on the ground (Figure 11). Each
leg needed only one bit to determine its action. If the bit for
the leg to be lifted was 1, all adjacent legs had to be on the
ground for it to lift; if 0, than it would lift without checking
its neighbors. These inhibitors could be represented by an
eight bit number.

4.3. Chromosome Conversion
The fixed length chromosomes needed to be converted to
the simplest form (variable length shown in Figure 10)
before they could be used by the robot or its model. When
using the leg pair inhibitors (used on the six-legged), first
the inhibitors then the coordinators were applied to the
activation in each gene. The result was a new listing with
each gene being the new activation and its number of
repetitions. Then the repetitions were applied and the -1
was added to separate the start and iterative sections. When
the eight bit inhibitors were used (eight-legged), the
inhibition could not be initiated until movement was being
calculated since they used information concerning current
legs on the ground. This meant that only the coordinators
were added during preprocessing.

4.4. Genetic Operators
The probability for selection was based on fitness, which
was computed by averaging the fitness of the individual
genes after chromosome conversion. The gene fitness
equaled the forward motion produced by the gene’s signal.
This was done on the model by:

1) taking the current state of legs
2) applying the vertical movement
3) calculating the balance and probable legs on the
ground from the model’s current vertical position of
each leg
4) applying the horizontal movement to alter the leg’s
state, but only counting legs on the ground in
computation of the movement (fitness)
5) taking off some deduction for lack of balance and/or
asymmetry of movement
6) repeat using next gene and the new legs’ state.

This was sequentially done from the start to the end of the
string and then repeated as many times as required in the
iterative section. Using this fitness, the best individual was
preserved; the rest of the new population was formed by
stochastic selection of mates with the probability of
selection proportional to the fitness.

(A1 A2 -1 A3 A4 A5 A6 A7 A8 A9)
-----^ --------------------^ ^-----

(B1 B2 -1 B3 B4 B5 B6 B7 B8 B9)
^----- ^--------------------^

(A1 B2 -1 A3 A4 A5 B6 B7 B8 A9)

Figure 12: Fixed Length Chromosome Crossover

Crossover (Figure 12) was done by randomly picking
corresponding spots. In the start section a single point
equivalent in both chromosomes was picked. In the iterative
section, since it could be considered a circle, crossover was
performed at two points; again equivalent positions in both
chromosomes. The effect was to swap sections within the
circle. Crossover with variable length chromosomes differed
in that the selected points were not corresponding. This
allowed the crossover to vary the length of the
chromosomes.

(0000 0000 ((A R)0) ((0000 0001) (0000 0011) (A R)3))

(1111 1111 ((B T)0) ((1111 0111) (1101 0100) (B T)3))

(0011 0001 ((A T)0) ((0001 0011) (0001 0100) (A R)3))

Figure 13: Gene-by-Gene Crossover

An alternate type of crossover was a gene-by-gene
crossover (Figure 13), which would perform crossover in
each of the corresponding genes of the two chromosomes.
In the case where these genes were represented as lists,

crosses could happen between the individual members of the
list or within the bits of the specific numbers in the list.

Two types of mutation were used: 1) Gene replace --
each gene had a random chance of being replaced by a new
completely random gene. 2) Gene mutate -- each part of the
gene had a random chance of having one of its bits altered.
The mutation rate was controlled by temperature. The
higher the temperature, the greater the chance of mutation.
The temperature decreased as the generations of training
increased. It was also effected by the diversity in the
population. As each individual’s fitness was calculated, a
count was made to see how many adjacent individuals had
the same fitness. This was used to increase the temperature
when several fitnesses were similar.

4.5. Special Operators
Gene-by-Gene Evaluation was a clean up operator that
randomly picked one or two individuals from the population
on each set of trails and examined each gene one at a time.
Genes were evaluated on the whole and move-by-move by
comparing the previous move fitness to the present. Genes
that were worse than a preset minimum were eliminated.
Genes that were good in the execution of their early
repetitions and subsequently dropped below a threshold in
the later repetitions were modified by reducing their
repetitions. Genes that had zero repetitions were moved out
so that only active genes were at the start of the iterative
section. Following these eliminations, if the number of
genes or the total number of gene repetitions fell below
some threshold, additional random genes were added until
the thresholds were met.

Inhibitor/Coordinator DFS randomly picked one or two
individuals from the population on each set of trails and
performed a bit by bit limited depth modified depth first
search of the individuals inhibitors or coordinators. A bit
would be randomly picked and switched, the new individual
would be tested and the better of the two selected for
another step. This was repeated for 16 iterations.

5. Tests
Training was done for 2000 generations using population
sizes of 64 individuals. These populations were initiated
with randomly generated individuals. The individual’s
fitnesses were compared by testing their performance on
models after training. Fitnesses were a calculation of the
robot model’s average forward movement per move after
100 moves. Each move equated to an activation applied for
100 msec. The fittest of the population's individuals was
saved at 0, 10, 100, 200, 500, 1000, and 2000 generations of
CGA training.

6. Results
Comparison of the CGA performance on the six-legged
simulation robot using different chromosome structures at
2000 generations revealed that the fixed length

chromosomes with inhibitors, coordinators, and the gene-by-
gene operator were most effective in producing rapid
convergence to an optimal gait (Parker and Rawlins, 1996).
A fitness of 9.5 (optimal for this model) was attained
(Figure 14). This was the result of a tripod gait, which was
learned after only 500 generations.

0

2

4

6

8

10

0 500 1000 1500 2000

Generations

F
it

n
es

s

Figure 14: Six-Legged Gait Learning

The growth rate of the hexapod robot’s fitness, as it
learned, was very high in the initial stages. The CGA
converged quickly to find a near optimal gait and it
continued to refine the population’s gaits until an optimal
one (with a fitness of 9.5) was attained by generation 2000.
Fitness improved as the system learned a gait that
maintained stability while producing thrust with the legs on
the ground. For a six-legged robot, static stability can best
be maintained by keeping at least every other leg on the
ground. A constant thrust can be attained, with this stability,
by keeping exactly every other leg on the ground, producing
thrust with these legs while repositioning the legs not on the
ground, and then alternating the thrust and reposition legs;
the tripod gait.

Convergence was slower for the eight-legged robot than it
was for the six-legged. The CGA training on the eight-
legged robot simulation resulted in average fitnesses of 9
(9.5 still optimal) by generation 2000. Figure 15 shows the
progression of learning for this algorithm. The CGA initially
learned quickly, then settled into a gradual climb to near
optimal gaits by generation 2000.

0

2

4

6

8

10

0 500 1000 1500 2000

Generations

F
it

n
es

s

Figure 15: Eight-Legged Gait Learning

The difficulty with gait learning for the eight-legged robot
is that there are several ways to maintain static stability
while producing maximum thrust. Some of these alternative
possibilities for an optimal gait have little in common when
compared as they are represented in CGA chromosomes.
This usually means more diversity in the population, yet a
slower convergence. In addition, undefined gaits can be
produced that meet both the stability and thrust requirements
to be optimal.

As a result, these tests produced in an interesting
variation of plausible gaits. Figure 16 shows 3 of these
gaits. All showed near optimality in the robot simulation,
but the far right one (what we call the quadripod gait) is
most like the gaits employed by biological systems. In
addition to these recognizable gaits, several tests resulted in
nonstandard gaits that looked like random lifting and pulling
of the legs, but resulted in near optimal forward speed.
Tests on actual robots will reveal if these are viable gaits.

01
23
45
67

01
23
45
67

01
23
45
67

01
23
45
67

01
23
45
67

01
23
45
67

Figure 16: Eight-legged Gaits

7. Conclusions
The Cyclic Genetic Algorithm can, with virtually no
knowledge of how to walk, produce gaits in models of six
and eight-legged robots. With only minimal a priori
knowledge; which went into the definition of the
coordinators, inhibitors and the gene-by-gene evaluator; it is
capable of producing the optimal tripod gait for six-legged
robots and the optimal quadripod gait for eight-legged
robots. In addition, the CGA produced output is in the
primitive form required for direct input to the simplest of
control interfaces.

The success we had with using CGAs to solve these
specific applications gives us confidence that, through
proper generalization, we can solve more complex repetitive
tasks.

8. Future Research
Future research will apply CGA learning to generate gaits
using a simulation of a spider like robot with tests conducted
on the actual robot. Additional tests will be used to
determine if the CGA is adaptive enough to alter the eight-
legged robot gaits in response to leg disabilities. With eight
legs, the CGA should be able to maintain almost optimal
speed even after severe leg capability degradations.

Research is also planned in the incorporation of the
anytime learning concept into actual six and eight legged
robots by having the CGA constantly running in the
background; recalculating the best gait as the robot’s
capabilities change.

Acknowledgments
This research was done at Indiana University's Adaptive
Systems Laboratory directed by Jonathan Mills and was
supported in part by NSF Graduate Research Traineeship
Grant GER93-54898.

Bibliography
Beer, R. D., and Gallagher, J. C. (1992). “Evolving

Dynamical Neural Networks for Adaptive Behavior.”
Adaptive Behavior, 1 (pp. 91-122). Cambridge: MIT
Press.

Brooks, R. A. (1989). “A Robot That Walks: Emergent
Behaviors from a Carefully Evolved Network.” Neural
Computation (pp. 254-262).

Donner, M. D. (1986). Real-Time Control of Walking.
Boston; Basel; Stuttgart: Birkhauser.

Gallagher, J. C. and Beer, R. D. (1994). “Application of
Evolved Locomotion Controllers to a Hexapod Robot.”
Technical Report CES-94-7, Department of Computer
Engineering and Science, Case Western Reserve
University.

Grefenstette, J. J. and Ramsey, C. L. (1992). “An Approach
to Anytime Learning.” Proceedings of the Ninth
International Conference on Machine Learning, (pp. 189-
195), D. Sleeman and P. Edwards (eds.), San Mateo, Ca:
Morgan Kaufmann.

Holland, J. H. (1975). Adaption in Natural and Artificial
Systems. Ann Arbor, Mi: The University of Michigan
Press.

Mills, J. (1994). “Stiquito II and Tensipede: Two Easy-to-
Build Nitinol-Propelled Robots.” Technical Report #414,
Computer Science Department, Indiana University.

Parker, G., Braun, D., and Cyliax, I. (1997). “Learning
Gaits for the Stiquito.” Proceedings of the 8th
International Conference on Advanced Robotics
(ICAR'97). (pp. 285-290).

Parker, G. and Rawlins, G. (1996). “Cyclic Genetic
Algorithms for the Locomotion of Hexapod Robots.”
Proceedings of the World Automation Congress
(WAC’96), Volume 3, Robotic and Manufacturing
Systems. (pp. 617-622).

Spencer, G. (1994). “Automatic Generation of Programs for
Crawling and Walking.” Advances in Genetic
Programming. (pp. 335-353) K. Kinnear, Jr. (ed.),
Cambridge, Ma: MIT Press.

Ting, L. H., Blickhan, R., & Full, R. J. (1994). “Dynamic
and Static Stability in Hexapod Runners.” Journal of
Experimental Biology, 197. (pp. 251-269).

