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ABSTRACT 
Cyclic genetic algorithms can be used to generate single loop 
control programs for robots. While successful in generating con-
trollers for individual leg movement, gait generation, and area 
search path finding, cyclic genetic algorithms have had limited 
use when dealing with control problems that require different 
behaviors in response to sensor inputs. For such behaviors, there 
is a need for modifications that will allow the generation of multi-
loop control programs, which can properly react to sensor input. 
In this work, we present modifications to the standard cyclic ge-
netic algorithm that enables it to learn multi-loop control pro-
grams with branching that allows the control to jump from one 
loop to another. Preliminary tests show the success of our modifi-
cation.  

Categories and Subject Descriptors 
I.2.9 [Artificial Intelligence]: Robotics – autonomous vehicles.  

General Terms 
Algorithms, experimentation. 

Keywords 
Evolutionary robotics, learning, control, code generation 

1. INTRODUCTION 
The cyclic genetic algorithm (CGA) was developed to learn sin-
gle-loop control programs for robot locomotion [1] and has been 
successfully applied at three levels of control.  However, its use 
for learning control programs that process sensor input has been 
limited. In order to process sensor input, the control program must 
have branching. Although the instructions in a single loop control 
program can be conditionals, without other possible loops, the 
result of sensor input can only be to execute one sequence of a 
section of instructions. This limitation does not allow the robot to 
switch into another cyclic behavior in response to sensor input. 
What is needed is a means for cyclic genetic algorithms to gener-
ate multi-loop control programs with conditionals that allow the 
control to jump from one loop to another. In this work, we pro-
vide a solution as we address the task of learning obstacle avoid-
ance while moving toward a light. 

The robot (Figure 1) was constructed out of LEGO pieces. It was 
a combination / modification of the Roverbot with Single Bumper 
and Light Sensors [2] and the Bugbot [3]. The robot was equipped 
with light and bump sensors. Its RCX, i.e. the programmable, 
microcontroller-based brick in the LEGO Mindstorms Set, was 
programmed in NotQuiteC (NQC) [3]. To make a simulation for 
evolving the controller, the NQC instructions were converted into 
machine code. A chromosome was developed such that it would 
have a sufficient number of loops possible and a sufficient num-
ber of machine code instructions in each loop for the CGA to be 
able to solve the problem.  A lab area set aside for the experiment 
was modeled to be as accurate as reasonable in simulation, special 
attention being paid to the light distribution over the experiment 
area. The locations of the obstacles placed within the experiment 
area were fixed throughout five separate tests performed in simu-
lation.  

 
Figure 1. Robot with two light sensors and a bump sensor. 

2. MULTI-LOOP CGA  
A population of 64 chromosomes was used, each chromosome 
(Figure 2) consisting of 7 genes, each gene consisting of a 2 bit 
number followed by six 9 bit numbers. The gene represented a 
“for” loop with the two bit number specifying how many times 
the loop should be executed; the possible values being 01 (once), 
10 (twice), 11 (three times) and 00 (infinite). The six 9 bit num-
bers represented machine code instructions within the loop.   
(("11"  "000000101"  "000011000"  "000000010"  "100000110"  "000000101"  "000000110") 
 ("10"  "000000001"  "000000101"  "000000011"  "000000111"  "000011001"  "000011111") 
 ("00"  "000111101"  "000011111"  "000011010"  "000011001"  "101000001"  "000011010") 
 ("11" "000000110"   "000011111"  "000011000"  "101101101"  "000000101"  "000000011") 
 ("10" "000011101"  "000111011"  "000011000"  "101011011"  "000000110"  "001000010") 
 ("00" "000111001"  "000011010"  "000000111"  "000000010"  "010000011"  "000011000") 
 ("01" "000011001"  "001010100"  "000000110"  "000000011"  "000011010"  "000000111")) 

Figure 2: Sample chromosome written in Scheme. 

Execution of the chromosome was done in simulation.  The first 
gene was analyzed, i.e. the algorithm determined how many times 
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the gene should be executed (once, twice, three times or infinitely 
many times) and read its six 9 bit numbers to an input queue. 
Then, the algorithm searched in the input queue for the first oc-
currence of one of these four types of instructions: a Wait instruc-
tion, a touch sensor instruction, a light sensor instruction, or a 
jump to another gene instruction. These are the types of instruc-
tions that would result in the robot moving. In the following dis-
cussion, this instruction will be referred to as the main instruction. 
After the main instruction had been identified, the input queue 
was split into two queues: the queue consisting of all instructions 
given prior to the main instruction which was called the “partial 
queue” and the queue consisting of all instructions given after the 
main instruction which was called the “new queue”. The instruc-
tions in the partial queue and the main instruction were executed 
in the order they had been added to the input queue and after-
wards the process continued with the new queue as the input 
queue. 

The algorithm executed a chromosome in the following manner. It 
started searching for a main instruction in the first gene (repeating 
the search if the first number of the gene, which indicates how 
many times to repeat the “for” loop, was something other than 
01). If it didn’t find it, the algorithm went to the second gene, etc, 
until it found a main instruction. It then executed all of the in-
structions in the partial queue. As the algorithm finished execut-
ing each gene, it went on to the next gene in the chromosome, 
unless a jump instruction in the gene sent the point of execution to 
another gene. This process was continued until the whole chromo-
some had been executed, at which time the program would halt. 

The initial population was randomly generated. Each test was run 
for 350 generations. The computation of the fitness of a chromo-
some was based on the position of the robot at the end of the exe-
cution of the chromosome.  The best individual was passed on to 
the next generation; the remaining 63 individuals were generated 
using roulette wheel selection, crossover, and two types of muta-

tion. The best chromosome from each generation was saved to a 
file for subsequent evaluation. In addition, the trajectory of its 
movement was recorded so that it could be displayed. 

3. RESULTS AND DISCUSSION 
Five tests were run using different starting populations.  In all 5 
tests, the robot reached its goal, i.e. it successfully navigated 
through a set of obstacles in its search for the light source and 
after reaching the light source it stayed in its proximity. Figure 3 
displays the evolution of the 5 fitnesses of the 5 tests performed 
on the static obstacle configuration.  

The success of these tests leads us to believe that we have devel-
oped a plausible method for evolving multi-loop control programs 
using a cyclic genetic algorithm.  The CGA had at its disposal of 
a set of primitive instructions, including conditionals, that could 
be interpreted and downloaded to the robot for execution. There 
was very little a priori knowledge needed for the code generation. 
The only limitations were to the instructions made available for 
evolution and to the maximums set for the number of loops in the 
program and the number of instructions in each loop.  In further 
work, we are testing or implementation on additional obstacle 
configurations and confirming the results on the actual robot. 
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Figure 3: Fitness evolution for 5 tests performed on a static obstacle configuration. 

The x axis shows the number of generations and the y axis shows the best fitness at each generation. 
The average of the best fitnesses is in bold. 


