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Abstract

Gait control programs for hexapod robots are
learned by incremental evolution.  The first
increment is used to learn the activations
required to generate a single leg cycle. At this
level the control program is required to produce
the proper sequence of pulses needed to generate
smooth movement by the servos.  The learning
program needs to take into account the
peculiarities of the servo, its mounting and the
capabilities of the leg.  The second increment of
the learning process is used to learn the best
combination of individual leg cycles to produce a
gait.  This part requires the learning system to
choose the best leg cycles for each leg and to
coordinate their movement.  In this paper, we
describe an application of this method to learn
gaits for an actual hexapod robot.  A cyclic
genetic algorithm is used to learn efficient gait
cycles for each leg.  A genetic algorithm is used
to combine these leg cycles in such a way that
coordinated gaits result. Tests are conducted on
the actual robot to confirm the method’s viability.

1 INTRODUCTION

The generation of gaits is important for the effective use
of hexapod robots.  Proper gaits are needed to ensure that
the robot moves quickly and efficiently.  Gaits need to be
custom designed specifically for the individual robot to
make the best use of its capabilities.  There are two main
parts to gait generation; the cyclic action of the individual
legs and the coordination of all the legs to make effective
use of their cycles.  These can be learned together by
finding the sequence of concurrent movements required
by all the actuators as was done in previous work [3,4,5].
Or, they can be learned separately.  Learning together
greatly increases the complexity so details are often lost
in the abstraction necessary to keep the computations
within reason.  This method can produce reasonable gaits
that can operate on simpler controllers, but since some
detail is lost, they cannot fully exploit the capabilities of
the robot.  Learning the leg cycles separate from their

coordination allows the system to better use each leg as
long as the controllers are complex enough to handle the
increased details.

Individual leg learning can take into account the
capabilities of the actuators and movement constraints of
individual legs.  In our work, we use a robot that has
servos for actuators.  These servos require a pulse to
designate their desired position.  The pulse length for each
position is distinct for each servo and is dependent on its
placement during installation.  A single pulse does not
guarantee proper positioning since it may be asking the
servo to move further then it can in the time between
pulses.  A sequence of pulses with small changes in pulse
length is required to get rate control.  This sequence of
control signals needs to be repeated to get the cycle of
activations required to produce a cycle of movement for
the leg.

Since evolutionary computation (EC) is well suited for
adapting a solution to the peculiarities of a problem, some
form of EC would work well in learning what signals are
needed for the leg cycle.  The difficulty comes in that
most forms of evolutionary computation are not naturally
equipped to handle the cyclic nature of these leg cycles.
One exception is with genetic programming, which can be
used to evolve programs and programs can have loops.
Graham Spencer [6] had some success in generating
programs for hexapod gaits using genetic programming.
His programs worked concurrently on all the actuators to
produce gaits for hexapod robots.  His programs, tested
only on robot simulations, resulted in gaits that
maintained sustained forward movement but could not
obtain the optimal tripod gait.

Randall Beer and John Gallagher [1,2] used genetic
algorithms (GAs) to develop neural network controllers
for a simulated hexapod robot.  In this work, the structure
of the neural networks (NNs) was pre-defined and the GA
learned the weights required to generate gaits.  This work
makes more of a division between the leg cycles and the
coordination of legs.  NN structures are separately defined
for the leg cycles and the coordinators, but the weights are
learned concurrently.  The nature of the leg cycles are
somewhat defined by the structure of the NNs and further



learned by the GA.  The coordination is controlled by
central NNs with defined structures; the weights of these
are learned at the same time as the leg NN weights.

In previous work [3,5], we used Cyclic Genetic
Algorithms (CGAs) to generate the sequence of primitive
instructions that produced a gait. CGAs were developed
to allow for the representation of a cycle of actions in the
chromosome.  They differ from the standard GA in that
the chromosome is in the form of a circle with two tails.
The tails of the CGA chromosome are provided to allow
for pre and post-cycle procedures.  They provide a means
for completing tasks before and after entering the cycle.
For gait sequence generation, the pre-cycle can position
the legs in a ready to walk posture and the post-cycle can
return the robot to a stable at rest posture.  In our
application, we used only the pre-cycle tail. The CGA
genes can be one of several possibilities.  They can be as
simple as normal genes that represent traits of the
individual or they can be as complicated as cyclic sub-
chromosomes that can be trained separately by a CGA.
For our purposes, the genes represent tasks that are to be
completed in a set amount of time.  The trained
chromosome will contain the cycle of servo control pulses
that will be continually repeated by the leg’s controller to
produce a leg cycle.

Tests showed that CGAs could produce tripod gaits on
robot simulations that were transferable to an actual
autonomous hexapod robot [4].  This was accomplished
by creating a model with specific information taken from
an individual robot.  The CGA used this model to develop
an optimal gait that was specific to the robot's capabilities.
This gait was subsequently downloaded into the actual
robot where its performance was confirmed to correspond
to the performance of the model.  The primitive
instructions used in these experiments were not designed
to take advantage of the full capabilities of the servo
motor actuators.  Each servo had 2 possible states; either
full forward or full back for horizontal servos or full up or
full down for vertical servos.  Each servo was given a
control pulse that would drive it to the extreme.  This was
necessary to accommodate the limited capabilities of the
single BASIC Stamp II controller.

In this paper, we use incremental evolution to learn
control for 7 controllers.  One controller is used to
coordinate the other 6, which are each used to control a
leg.  These 6 additional controllers allow the system to
take advantage of the capabilities of the servos.  Each leg
controller controls that leg’s vertical and horizontal servo.
Cycles of pulses are learned using a CGA that produces
individual leg cycles optimizing for time on the ground
and forward movement.  These individual leg cycles are
then combined, using a standard genetic algorithm to
produce gaits for the robot.  Tests in simulation and on the
actual robot confirm the viability of this method for
producing gaits.

2 THE ROBOT

The robot used was the ServoBot, which is a hexapod
robot that has two degrees of freedom per leg.  Twelve
servos, two per leg, provide thrust and vertical movement.
They can be set to specific angular positions by providing
a control pulse.  This pulse should be repeated every 25
ms for the servo to maintain a constant position.  The
length of the pulse determines the position.  Pulses from
20 to 2400 microseconds cover the full range of
movement for each leg, although each servo is unique in
its pulse to position ratios.  Some may have a full down
position at 20, on others it may be 80.  There is the same
variance in the full up position.  In addition, the right and
left side servos are mounted differently to ensure
consistent mechanical capabilities, so in some cases the
full down position is at a pulse length of 20 and in some
cases it’s at 2400.

The servo cannot move the leg fast enough to reach the
desired position within one pulse if the differences in
pulses are too much.  This results in the fastest leg
movement as the servo attempts to get to its desired
position as soon as possible.  Varying speeds of
movement can be attained by incrementally changing the
pulse lengths.  For example, moving a leg using
consecutive pulse lengths of 40, 45, 50, etc. will move the
leg at a slower speed than 40, 50, 60, etc., unless, of
course, the increments are already more than the servo's
capability.  Consecutive pulses of 40, 240, 440, etc. would
probably result in the same speed as the consecutive
pulses of 40, 340, 640, etc.

Control was provided by BASIC Stamp IIs, one per leg
and one working as the overall controller.  Each leg’s
stamp could take in a sequence of pulses that indicated the
position of its two servos.  The central stamp controller
told each leg stamp when to start its sequence and if
needed, when to cut short one cycle to start another in
order to maintain leg coordination.

3 THE FIRST INCREMENT:
EVOLVING LEG CYCLES

In order to produce leg cycles, each stamp needs a
sequence of pulses to continually position its servos.  This
sequence must by variable in length to accommodate the
differing capabilities of each leg and its servos.  Fixed
length chromosomes offer distinct advantages when using
CGAs since like areas of each chromosome are more
likely to correspond to similar tasks.  In order to
formulate the problem in such a way as to be able to use a
fixed length chromosome, some observations of a leg
cycle had to be made.  Pulses within 20 microseconds of
each other result in positions that are only slightly
distinguishable from each other (usually within 1 mm).
This level of position accuracy is sufficient for our
problem, so we can represent all pulses from 0 to 2400 by
the numbers 0 to 120 considering each to be in increments



of 20 microsecond pulses.  This allows us to use a seven
bit number to represent each pulse.  It takes 14 bits to
represent pulses for both servos.

Smooth movement is required by the horizontal servo,
especially while on the ground.  A sequence of pulses
such as 100, 120, 140, 160 would move the leg smoothly
from the position corresponding to 100 to the position
corresponding to 160.  The sequence 100, 110, 150, 160
would result in the same final position, but the movement
would not be as smooth.  The chromosome representation
needed to be such that smooth movement would be
possible for horizontal movement, but was not needed for
vertical movement since vertical movement does not
affect the smoothness of the robot’s movement.

( (R1 HP1 VP1) (R2 HP2 VP2) (R3 HP3 VP3)
  (R4 HP4 VP4) (R5 HP5 VP5) ... (R8 HP8 VP8) )

Figure 1:  Leg cycle chromosome.  Each gene of the
chromosome was made up of three parts: repetitions,
horizontal pulse, and vertical pulse.

In order to accommodate these considerations, the
chromosome representation shown in Figure 1 was used.
The chromosome was made up of 8 genes.  Each gene
consisted of 3 parts.  The first was called the repetitions,
the second was the horizontal pulse, and the third was the
vertical pulse.  The horizontal pulse and vertical pulse

numbers were each multiplied by 20 microseconds to
calculate the actual pulse width sent to the servo.  The
effect of the repetitions was different on the two types of
pulse.  For the horizontal pulse the repetitions number
was used to calculate the increments required to move
from the servo’s last pulse length to the new pulse length.
The following formula was used:

           pulse increment = (horizontal pulse  -   previous
horizontal pulse) / repetitions

This pulse increment was then added for repetitions
number of consecutive pulses until the end servo pulse
was at horizontal pulse.  For example, if the previous
horizontal pulse was 40 and the gene was (5, 60, 100)
then the following pulses would be sent to the horizontal
servo over the next 5 inputs : 44, 48, 52, 56, 60.
Repetitions effected the vertical pulses only by telling the
controller how many times to repeat this vertical pulse.
The extra computation was not required since smoothness
was only a factor for horizontal movement.

The contents of the chromosome representation were used
directly by the BASIC Stamp II and upon execution it
would do the calculations required to direct its two servos.
An example of the resultant sequence of pulses that would
be produced is shown for a shortened chromosome in
Figure 2.

    Genes       Horizontal Pulses    Vertical Pulses

(4  25  127)   100 127

  75 127

  50 127

  25 127

            (2 55 43)     40  43

  55  43

 (5 125 38)   69  38

  83    38

  97  38

 111    38

 125    38

Figure 2:   Sequence of pulses resulting from example genes.   The 125 from the last gene is used to calculate
the increments (-25) from 125 to 25.  The first of this is added to calculate the first pulse.  As can be
observed, the pulse of 125 is again reached and the cycle continues with smooth horizontal movements.



3.1 LEG MODEL

Each leg was represented by a simple data structure that
held the information required to produce a leg cycle.
Each servo’s maximum throw positions were stored as  x,
y, coordinates.  The horizontal servo’s full forward
position was defined as x = 0, the full back position was x
= the measured number of millimeters distance from the
full forward.  The vertical servo had a y = 0 if it rested on
the ground when all the legs were full down and the max
up was y = the millimeters off the ground when the leg
was fully lifted.  Along with these positions the pulse
required to attain each was recorded.  The model data
structure also included a lookup table for each servo.
This table listed the corresponding leg position of 13
different pulse lengths (1,200, 400,…2400).  These
figures were attained by applying consistent pulses to
each servo and measuring the leg’s response.  The final
data kept in the model was the current position and pulse
of each servo.

3.2 TRAINING

Evolution of a leg cycle started by taking accurate
measurements of the leg’s capabilities.  This information

was fed into the model data structure used for training.  A
population of 64 chromosomes (each representing a leg
cycle) was randomly generated and trained for 500
generations on the model of the robot.  Fitness was
calculated using three factors: forward movement, down
count, and smoothness.  Forward movement was
calculated by determining the movement generated while
the leg was on the ground.  To attain the maximum
forward movement, the leg should be on the ground
throughout the length of its effective throw.  The effective
throw is usually less than the full throw.  As the leg
reaches its extremes of movement, the distance moved per
pulse reduces significantly, so in the optimal solution the
leg is repositioned before it reaches its full extreme.
Another facet of the leg fitness is the down count.  This
factor gives more fitness to leg cycles where the leg is on
the ground for a high proportion of the time.  A third
contributor to fitness is smoothness.  This is calculated for
movement on the ground.  Leg cycles where the
horizontal movement over the ground is consistent score
higher smoothness. These three fitness indicators were
added together to get the total fitness.  The fitness for
each chromosome was used to stochastically select
individuals to produce each new population.

Figure 3:  Single leg training for each leg.

Crossover was accomplished by randomly picking
corresponding spots in the two selected parents. In the
pre-cycle tail, a single point in both chromosomes was
picked.  In the cyclic section, since it could be considered
a circle, crossover was performed at two points.  The
effect was to swap sections within the circle.  An alternate

type of crossover was a gene-by-gene crossover that
performs crossover in each of the corresponding genes of
the two chromosomes.  Crosses could happen between the
individual members of the list or within the bits of the
specific numbers in the list.  There were two types of
mutation used and selected randomly after each
recombination.  In one, each gene had a random chance of
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being replaced by a new completely random gene.  In the
other, each part of the gene had a random chance of
having one of its bits flipped.

Gene-by-Gene Evaluation, a genetic operator peculiar to
CGAs, was used to clean up the chromosome by
randomly picking one or two individuals from the
population on each set of trails and examining each gene
one at a time.  Genes were evaluated move-by-move by
comparing the previous move fitness to the present.
Genes that performed poorly in their current position were
eliminated.  Genes that were good in the execution of
their early repetitions and subsequently dropped in the
later repetitions were modified by reducing their
repetitions.  Genes that had zero repetitions were moved
out so that only active genes were at the start of the cyclic
section.

3.3 RESULTS

Training was done for 500 generations with the fittest
individual chromosome saved at 0, 10, 25, 60, 100, 200,
300, 400, and 500 generations.  The results of this
training, done for each leg, is shown in Figure 3.  Both the
optimal length (number of pulses in the cycle) and content
of the cycle had to be learned.  Each solid line represents

a leg.  The dashed line is the average.  Three of the 6 legs
learned quickly.  One of the legs was stuck for some time,
with a suboptimal length, which precluded it from further
growth until it evolved to a different length.  At this time
it also improved rapidly.  The optimal lengths found for
the six legs varied from 29 to 36 pulses per cycle.

Training was repeated, in preparation for the gait training
discussed in the next section, but this time an additional
fitness calculator was used.  Desired length reduced the
fitness if the chromosome’s length was different than a
predesignated desired length.  A second test was
performed using 5 randomly generated populations, but
this time the desired length factor was included.  The
length used was 36 pulses, which was the maximum
optimal length found in the previous test.  The results of
this test are shown in Figure 4.  With pressure to conform
to a specified near optimal length, all six legs grew
quickly in their fitness.

The resultant leg cycles were downloaded and observed
on the actual robot where they appeared to produce
efficient, useable leg cycles.  No mechanism was
constructed to test individual legs, so actual quantitative
tests were not possible until the individual leg cycles were
used together to form a gait.

Figure 4:  Single leg training with a desired length specified.
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4 THE SECOND INCREMENT:
EVOLVING GAITS FROM THE LEG
CYCLES

A hexapod gait can be looked at as the coordination of 6
legs with each leg performing its own cycle.  The proper
combination of the six correct leg cycles will produce the
desired gait.  In addition to finding the best gait for the
ServoBot using optimal leg cycles, this task also shows
how to combine several cycles to form a single cyclic
behavior.

4.1 EVOLVING FIXED LENGTH LEG CYCLES

Section 3 discussed the evolution of gait cycles that were
optimal when they were at a desired length of 36.  This
length was chosen since it was the longest of the 6 no-
length-restriction optimal leg cycles found previously.  A
set of leg cycles using a range of desired lengths would be
needed to produce a gait.  The gait learning algorithm
would be able to choose leg cycles from anywhere in this
range for each leg to come up with the proper
coordination of legs.  The no-length optimal should be in
the center of this range but there was more likelihood that
longer length leg cycles would be of use in further
experimentation so the longest gait cycle length found in
the no-length tests was chosen to be the middle desire
length.

Each leg trained for 500 generations to learn optimal leg
cycle with a desired length of 36.  This population was
then used to learn gait cycles with desired lengths from 21
to 52.  Starting with the 36 length population, the desired
length was changed to 35 and training continued for 200
generations.  This continued down to a desired length of
21.  Similarly, training up to 52 was done starting from
the 36 length population.  These learned leg cycles were
stored in 6 files, which were called up when gait training
began.

Gait training was done using a standard GA.  The
chromosome  (Figure 5) was made up of 7 parts.  The gait
cycle length (GCL) represented the number of pulses in
each gait cycle.  Information for each leg included its leg
cycle length (LCL) and start time (START).  Each of
these values is described in the next section.

(GCL
  (LCL START)
  (LCL START)
  (LCL START)
  (LCL START)
  (LCL START)
  (LCL START))

Figure 5:  Chromosome used for gait training.

4.2 ROBOT MODEL

The single stamp that acted as the central controller was
to coordinate the individual leg cycles.  It needed to know
the length (in pulses) of the gait cycle and which leg
cycles to use for each leg.  In addition, it needed the start
time for each gait cycle.  This was where the coordination
took place.  Upon execution the controller program would
count through the total number of pulses 0, 1, 2, 3….
When the start time for each leg was researched, its leg
cycle began.  The central controller ensured that all the
stamps executed their pulses together.  When the gait
cycle length was reached, the count started again at 0.
When each leg’s start number was reached they begin
their cycle again.  To simulate the effect of this on the
robot, each of the leg cycles was run separately for the
number of designated pulses used for training (500 in this
case).  They were then considered to be running
simultaneously in a simulator that would determine at
each pulse what the result of the 6 leg pulses would be.

4.3 TRAINING

A population of 64 randomly generated chromosomes
was produced to start training, which was done for 500
generations.  Each individual's fitness was calculated by
determining the effect of the 6 leg-cycles running
simultaneously as specified by the gait cycle
chromosome.  In addition to calculating the fitness
produced by the legs, additional factors such as balance
and drag were introduced.  Balance was a determination
of the robot’s stability.  Drag was used to penalize the
fitness of the gait when the legs were on the ground but
not producing thrust.  Using these fitnesses, individuals
were stochastically selected to be the parents of the next
generation.  Crossover and mutation were done both at the
gene level and at the bit level as described in section 3.2.

4.4 RESULTS

The best individual at 0, 10, 25, 60, 100, 200, 300, 400, &
500 generations was stored.  The results on the robot
model are shown in Figure 6.  Graphs of the fitness
growth of the 5 distinct starting populations along with
their average (dashed line) is shown.  There are three
things to note from this graph. The start fitness at
generation 0, in most cases, is fairly high.  This is because
all the legs are already moving in a near optimal cycle;
they just need to be coordinated.  The GA quickly learns
adequate coordination by 100 generations.  After that, the
GA works to improve this solution to find the optimal leg
cycle lengths and start spots for each leg.  In all 5 cases,
near optimal tripod gaits are produced.



Figure 6:  The results on a model of GA training to coordinate the legs.

Figure 7:  Comparison of the model to actual robot performance for a single population over the 500
generations of training.

Tests on the actual robot confirmed the viability of the
produced gaits. Figure 7 shows the results of actual tests
on the robot using the 0, 10, 25, 60, 100, 200, 300, 400,
and 500 generations of one of the populations. As can be
observed, the system consistently overestimates the
fitness in the higher ranges.  The model is purposely

simple to reduce computation time and does not take into
account lost speed due to slippage and actuators moving
slower due to resistance.  Both of these factors have more
of a negative effect at high speeds.   In addition, the
model does not compensate sufficiently for the weight of
the robot. Observations of actual tests on the robot show
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that the legs need to be lifted higher to avoid some drag
during leg repositioning.  The gait is fast enough,
however, that there is minimal time with only three legs
on the ground.  The result is a steady forward movement

with little time wasted.  Figure 8 shows a comparison of
the end products of the five trials.  In all cases the gait
produced was a fast tripod.

Figure 8:  Comparison of the model/actual fitness for all five populations after training is complete.

5 CONCLUSIONS

Incremental evolution is an effective means of evolving
gaits for hexapod robots.  In the first increment CGAs can
be used to generate the cycles of pulses required to
produce a leg cycle for a two servo leg.  Tests in
simulation showed that they improve performance
significantly over training and observation of the results
on an actual robot confirmed the viability of the produced
cycles.  In the second increment, these leg cycles can be
combined in such a way that their concurrent execution
can produce a gait.  Using a GA to coordinate the 6 leg
cycles, with fitness predicated on maximum forward
movement, the leg cycles can be combined to form a
near-optimal gait cycle.  Tests in the simulation and the
actual robot confirm the viability of this method.
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