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Abstract

Adaptive learning systems that generate con-
trol programs for robots with varying capabili-
ties is of importance in the implementation of
autonomous robots.  Learning done continu-
ously with the best possible control program
running the robot (anytime learning) can
achieve the adaptability desired when imple-
mented using some form of evolutionary com-
putation.  The difficulty with this method is
that autonomous robots often lack the compu-
tational power required to run evolutionary
computation along with their control program.
In addition, anytime learning usually requires
input from internal sensors, which are not often
available in small autonomous robots, to make
adjustments for capability changes.  In this pa-
per, we propose an anytime learning system
that employs off-line learning, using evolution-
ary computation, with the control program be-
ing downloaded to the on-line controller. The
off-line learning does not require internal sen-
sors but uses global observation (external
overhead camera) to make the required ad-
justments to guide the evolutionary computa-
tion.  The results of periodic tests, done on the
actual robot, are used to bias the fitnesses cal-
culated by the evolutionary computation,
which uses a model of the robot.  Experiments
reported in this paper use a simulation of the
actual robot (a more accurate model), while
construction of the actual learning system is in
progress.

1 INTRODUCTION

Autonomous legged robots have distinct control issues
related to the coordination of separate legs and their

varying capabilities.  These issues are often amplified
when the robot is small with an on board controller which
is purposely simple to accommodate weight and expense
restrictions.  Autonomy requires that the robot’s primary
controller be on board.  Pre-programming this controller
can ensure the desired results, but can be laborious during
development and does not provide a means for real-time
adjustments necessitated by miscalculation or degradation
of the system.  Learning control through some form of
evolutionary computation can save man-hours of devel-
opment plus provide the adaptability required for auton-
omy, but it can be too computationally intense to be car-
ried out on board the robot.  A system of learning that can
be carried out off-line and then downloaded to the on
board controller will allow the robot to adapt to changes
in real time.

Anytime learning can make use of evolutionary computa-
tion in a learning module to make adjustments to the ro-
bot’s control module.  In Grefenstette’s work [1992],
evolutionary computation was used to continually adjust
the controller while the robot operated in an environment
where its target to catch had its capabilities periodically
change. A natural extension of this for small autonomous
robots is to have the learning component off-line while the
operations component, which is on the robot, receives
periodic downloads of the best solution.  Grefenstette's
system could adapt quickly to changes by having the ro-
bot's sensors continually update the capabilities of the
target model used in the learning element.  Our system can
adapt to changes in the robot’s capabilities without the use
of internal sensors.  Depending only on global observa-
tion, this learning system will use evolutionary computa-
tion and anytime learning to train the robot.

Most forms of evolutionary computation require that a
population of possible solutions be tested over several
iterations.  This training can be done on a model of the
robot, entirely on the robot, or a combination of the two.
If all of the training is done off line and the results trans-
ferred to the actual robot when it is complete [Beer
1992, Gallagher 1994, Lee 1997] then significant atten-



tion must be paid to the model as its accuracy directly
effects the results.   The time and effort can sometimes
exceed the work required to program by hand.   If most
of the training is done off line and then transferred to the
actual robot for some remaining generations [Lund
1996, Miglino 1995], then a less accurate model is re-
quired, but it can take significant time to do the on line
training on the actual robot.  If the task can be com-
pleted and the fitness can be accurately judged in mini-
mal time, all of the training can be done on line [Hus-
bands 1997, Mondada 1995].   This method precludes
the need for any model of the robot, but the training
takes num-generations * num-individuals * time-to-
complete-task to do the training.  An increase in any of
these results in a multiplicative increase in training time.
All of these techniques require that we either put time
into the model or into the training on the actual robot.
In addition, none refine the solution while the robot is in
operation unless it is only doing the task being learned.
What we propose is to use continual anytime learning
with a way of coupling the simulator to the actual robot.

In this paper, we introduce a new way of relating the ac-
tual robot to its model during evolutionary computation.
This is done by biasing the solution fitnesses computed on
the model by comparing their performance to those pro-
duced when using the actual robot.  The task being
learned is gait generation for hexapod robots.  Previous
work showed that Cyclic Genetic Algorithms (a form of
evolutionary computation) could be used to effectively
perform this task in a static environment.  This paper re-
ports that tests done in simulation show that a CGA based
anytime learning system with fitness biasing can adapt to
changes in the robot’s capabilities to provide continually
viable gaits.

2 ROBOT

2.1 SERVOBOT

The robot used was the ServoBot (developed by David
Braun), which is an inexpensive hexapod robot that has
two degrees of freedom per leg.  Twelve servos, two per
leg, provide thrust and vertical movement. A control se-
quence is transmitted to a field programmable gait array
(FPGA) through lines that connect to a Sparc workstation.
Once the control sequence is transmitted, the line can be
disconnected. The FPGA can store and execute (repeating
the designated section) the sequence of primitive instruc-
tions downloaded.  Each instruction corresponds directly
to an activation that is activated for 100ms, then the next
instruction in the sequence is activated.
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Figure 1:  Results of a Robot Activation

An input to the ServoBot is a 12 bit number where each
bit represents a servo. A signal of 1 moves the leg back if
it is a horizontal servo and up if it is a vertical servo.  A
signal of 0 moves it in the opposite direction.  Figure 1
shows an example of an activation and its result on the
robot.  The activation can be thought of as 6 pairs of ac-
tuations.  Each pair is for a single leg with the first bit of
the pair being that leg’s vertical activation and the second
being that leg’s horizontal activation.   The legs are num-
bered 0 to 5 with 0,2,4 being on the right from front to
back and 1,3,5 being the left legs from front to back.  The
activation 100101101001 results, as shown, in one phase
of the classic tripod gait, which is considered to be the
optimal gait for speed in this simple rigid robot when all
its actuators are fully functioning.  Legs 1,2,5 are provid-
ing thrust while legs 0,3,4 are being lifted.   Some se-
quence of these activations will result in a pattern of leg
movement that will produce a viable gait.

2.2 MODEL

The model was a simple data structure that held each leg’s
capabilities and current state (Figure 2). Input activations
were used with these capabilities to determine how much
to change the current state of the model during training.

Fields specific for each leg:
current up -- current vertical position of the leg.
max up --posit off the ground when completely up.
current back -- current horizontal position of the leg.
max back -- posit relative to completely forward

completely back.

Fields applicable to all legs:
rate up/down -- rate of vertical movement when

servo activated.
rate back/forward -- rate of horizontal movement

when servo activated.

Figure 2: ServoBot Model Data Structure

Measurements to fill the fields for each leg’s capabilities
were taken before training.   Each leg’s vertical position
was measured relative to this initial zero position, which
was on the ground. Each leg's horizontal position was



measured relative to its at rest full forward position.
Measurements to fill the maximum position fields of the
model were taken by activating each control on the actual
robot while recording the leg’s maximum throw.  An aver-
age rate per activation was calculated for horizontal and
vertical movement by dividing the maximum throw by the
minimum number of activations required to attain it.

3 CYCLIC GENETIC ALGORITHMS

Cyclic Genetic Algorithms were developed [Parker 1996]
to allow for the representation of a cycle of actions in the
chromosome.  They differ from the standard GA in that
the chromosome is in the form of a circle with two tails
(Figure 3) and the genes can represent tasks that are to be
completed in a predetermined segment of time. The tails
of the CGA chromosome are provided to allow for pre
and post-cycle procedures if required; a means for com-
pleting tasks before and after entering the cycle. They can
be as simple as primitive tasks (activations) or they can be
as complicated as cyclic sub-chromosomes that can be
trained separately by a CGA. For our purposes, the genes
represent a set of servo activations that are to be sustained
for 100 msec each. The trained chromosome will contain
the cycle of these primitive instructions that will be con-
tinually repeated by our robot’s simple controller to pro-
duce a gait.

Figure 3:  CGA Chromosome

The CGA chromosome can also incorporate parameters
for control in its structure. Coordinators were 12 bit num-
bers that directed the coordination of individual leg
movement. These numbers could be looked at as six pairs
of bits, one pair for each leg.  The first being the back-
down coordinator which, if activated, ensured that the leg
would be down or moving in that direction if it was mov-
ing back.  The second bit was the forward-up coordinator,
which ensured that the leg would be moving forward if it
was moving up. Inhibitors prevented pairs of legs from
moving back at the same time.  The 2,3 inhibitor pre-
vented both legs 2 and 3 from going back at the same
time.  It allowed 2 to move back, but inhibited 3.  The

inhibitors for the set of legs were stored in a single 15 bit
number (one bit per possible pair).

The genes of the chromosome had two parts. The activa-
tions part was a 12 bit number that contained the encoding
required to activate two possible primitives per leg. A bit
setting of 1 meant the servo was moving the leg back, a bit
setting of 0 meant it was moving the leg forward.  When
the servo reached the full throw of the leg it would hold its
full back position.  Similarly, when the servo ran continu-
ously forward the leg would stay at its full forward posi-
tion.  The activation for up and down worked in the same
way.  The repetition part was an 8 bit number that desig-
nated the number of times to repeat the activations part.
This repetition part was what gave the CGA the ability to
vary the length of the sequence of primitives being sent to
the robot in each cycle.

The effectiveness of the CGA has been tested on a fully
functional robot [Parker 1997] and partially disabled ro-
bots [Parker 1998].  In both cases, training was done on a
model of the robot. Performance tests on simulations were
done to determine the fitness of the resulting populations
after training on random starting populations. These same
gaits were also used to test their usability on the actual
robot.  The distance traveled by each robot during physi-
cal tests was recorded.  CGAs were very successful at
evolving what appeared to be optimal gaits for the robots
tested.

4 ANYTIME LEARNING WITH
FITNESSES BIASING

Previous work with CGAs, although promising for pro-
ducing gaits in a static environment, would require the
addition of on board capability sensors to be used dy-
namically.  In addition, preparation was time consuming
as each of the robot’s capabilities had to be accurately
measured to be recorded in the model.  A system of any-
time learning that can use global performance information
to dynamically link the model to the actual robot could
alleviate both of these problems. The method introduced
here is to do periodic tests on the actual robot of the
population of gait solutions evolved using the model.  As
a result of these tests, biases are assigned to each solution,
which are used during further training to effect the solu-
tion’s fitness.

4.1 ANYTIME LEARNING

There are two main issues that are addressed concerning
the development of a system for anytime learning in evo-
lutionary robotics; anytime learning without sensors and
interactively connecting simulations to actuality to pro-
vide efficient evolutionary computation.  A solution for



both of these issues involves the use of anytime learning
with modifications to compensate for the lack of internal
sensors in our robots.   Training with a GA will take place
off-line on a simple model.   Periodic checks on the actual
robot will help to find the disparity between the model and
the robot.

Figure 4 shows the three main parts of a system of any-
time learning in evolutionary robotics.   There is the actual
robot, the model, and the genetic algorithm.  The model is
designed before training to be as accurate as possible (de-
pending on the simplicity desired).

              GA

   Robot performance
      GA trains                    GA   modifies GA

         on Model                    modifies
     Robot
                                           controller
 Model                                Robot

        Figure 4:  Learning in Evolutionary Robotics

The GA is set up for training and initiated with a random
starting population.   The program in the controller of the
actual robot is determined by the other two components of
the system.  The physical capabilities of the actual robot
cannot be altered by the system, only the program in its
controller (which is the purpose of the system).   The pe-
riodic checks on the actual robot can alter the processing
within the GA in an attempt to improve the result of
training. This will involve the biasing of evolved solution
fitnesses by comparing their performance on the model to
their performance on the actual robot.

4.2 FITNESS BIASING

The GA used in our learning system was the CGA since
dynamic gait production was the goal.  The means of us-
ing tests on the actual robot to modify the GA was called
“fitness biasing,”  which effected selection in the CGA.

Probability for selection was determined by computing
each individual's fitness on the robot model.  Fitness was
computed one activation at a time by summing the fit-
nesses of individual activations as each was applied to the
current state of the model.   The fitness would then be
reduced if the robot was out of balance or had asymmetri-
cal movement (one side producing more thrust than the
other). This was repeated from one activation to the next
for each activation in the start section and continued in the
iterative section until a total of 100 activations (during

training) was reached.  This fitness was computed for each
individual in the population.

After each n generations all solutions of the CGA popula-
tion would be tested on the actual robot.  These measure-
ments were used to bias the fitnesses found on the model
to make them equal to the actual robot fitnesses.  These
biases were used as the CGA continued training.  In this
way, solutions that were good on the actual robot but poor
on the model had boosted fitnesses during training, which
resulted in their production of more offspring.  This solu-
tion required population-size actual tests every n genera-
tions.  In our experiments, the population-size was 64
individuals and n was set to 50 so there was a little more
than one actual test per CGA generation.

A bias for each solution of the population's 64 was com-
puted using the following algorithm:

Model-Fitness = Compute-Model-Fitness(Solution)
if absolute-value(Model-Fitness) < 1
  Bias = 1
else
  Actual-Fitness = Test-on-Robot(Solution)
  Bias = Actual-Fitness / Model-Fitness

This bias was stored with its corresponding solution.  It
was used in subsequent generations of the CGA to alter
the fitness of the solution computed on the model of the
robot.  This was done by multiplying the fitness computed
on the model by the bias:

Corrected-Fitness = Model-Fitness * Bias

These Corrected-Fitnesses were used for selection during
the training being done by the CGA.

4.3 GENETIC OPERATORS

Pairs of individuals were stochastically selected for repro-
duction using the Corrected-Fitnesses.  These two indi-
viduals produced a single individual for the next genera-
tion; combining their attributes by crossover with possible
random variations caused by mutation.  This new individ-
ual’s bias was computed by averaging the biases of its
parents.

Crossover was accomplished by randomly picking corre-
sponding spots in the two selected parents. In the pre-
cycle tail, a single point in both chromosomes was picked.
In the cyclic section, since it could be considered a circle,
crossover was performed at two points.  The effect was to
swap sections within the circle.  An alternate type of
crossover was a gene-by-gene crossover that performed
crossover in each of the corresponding genes of the two
chromosomes.  Crosses could happen between the indi-
vidual members of the list or within the bits of the specific
numbers in the list.



There were two types of mutation used and selected ran-
domly after each recombination; one in which each gene
had a random chance of being replaced by a new com-
pletely random gene.  The other was one were each part of
the gene had a random chance of having one of its bits
flipped.

Gene-by-Gene Evaluation, a genetic operator peculiar to
CGAs was used to clean up the chromosome by randomly
picking one or two individuals from the population on
each set of trails and examining each gene one at a time.
Genes were evaluated move-by-move by comparing the
previous move fitness to the present.  Genes that per-
formed poorly in their current position were eliminated.
Genes that were good in the execution of their early repe-
titions and subsequently dropped in the later repetitions
were modified by reducing their repetitions.  Genes that
had zero repetitions were moved out so that only active
genes were at the start of the cyclic section.

5 TESTS

Two tests were used to verify that fitness biasing was an
effective means of improving robot performance during
training. Each test involved training on the model, with
tests on a simulation (more accurate model) of the robot.
The calculated distance traveled by the simulated robot
after 10 sec of activation of the current gait was recorded.
Each test was done using 5 random start populations.  The
results reported are the average performance of these five
for each test.

The first test used robots with rates that were 2 and 3
times faster than those used in the model.  This was to
verify that the system could automatically adjust to differ-
ences in the model’s and robot’s rates of leg movement.
The second test was a series of varying changes to the
robot's leg 1 and 2 capabilities to see if the system could
continually compensate as capabilities came and went.
Observance of the robot’s (simulated) performance
showed how well the learning system reacted in these four
tests.

6 RESULTS

Experiments were done with robots having rates of two
and three times that which was used in the model. The 2x
experiment resulted in an improvement from 126.0 to
153.8 after 200 generations.  The 3x experiment resulted
in an improvement from 189.0 to 230.3 after 200 genera-
tions.  In both cases the gait produced looked optimal and
the system adjusted appropriately for the differing rates.

Figure 5 shows a graph of the adaptability test.  The dot-
ted line shows what the results would be without anytime

learning.  The solid line shows the average performance of
the five stating populations.  The error bars show the stan-
dard error at each sampling point.  The robot was initially
trained with a slightly inaccurate model.  This results in a
robot fitness of 75.4 as can be seen at generation 0.  At
this point the anytime learning with fitness biasing begins.
By 500 CGA generations the average fitness has improved
to 76.4 (dynamically correcting for the initial inaccura-
cies).  After each subsequent 500 generations, there is a
change in the robot's capabilities.  The horizontal move-
ment maximum throw of either leg 1 or 2 is changed.

Figure 5:  Adaptability of Anytime Learning Using Fitness
Biasing.  Average fitness of the five starting populations is
shown.  Standard errors are shown as error bars.

The graph shows the change by indicating the fraction of
original capability for the specified leg.  At 500 genera-
tions leg 2’s max horizontal throw is reduced to .75 of its
original.  At 1000 generations leg 1’s max horizontal
throw is reduced to .5 of its original, leg 2 stays at .75.
This continues throughout the test.   Figure 6 shows the
fitness changes for all five starting populations.

Some interesting observations can be made from these
graphs.  The anytime learning always improves the simu-
lated robot’s performance over time.  The largest im-
provements are in the mid to lower capability ranges (.25
to  .5). In the upper ranges, the static model is still close to
being accurate, so there is minimal improvement possible.
In the lowest ranges, there is much more room for im-
provement, but the cycles produced start to resemble the
baseline gait cycle.

The general solution to correcting horizontal movement
limitations is for the learning system to decrease the dura-
tion of the strides.  This results in somewhat less fitness
since the initiation of the stride produces less thrust than
when the stride is in full motion.  At some point, stride
length reduction starts to produce diminishing returns and
it becomes advantageous to just drag a leg for a few acti-
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vations. The CGA typically starts to increase the stride
again.  Although it loses total thrust by dragging a leg, it
gains by decreasing the initiation time during the stride.
The end result is that gaits produced with very low leg
capabilities are more similar than mid leg capability gaits
to the fully capable gaits.  This results in less deviation
from the baseline when leg capabilities are very low.

Figure 6:  Adaptability of Anytime Learning Using Fitness
Biasing.  All five starting populations are shown.

It can also be observed that the system with anytime
learning almost always outperformed the system without.
The notable exceptions were when reduced capability
changes initially occur.  The anytime learning system,
since it had optimized for the previous capabilities, often
caused a drop below the baseline until it could readjust,
which seldom took more than 50 generations.

7 CONCLUSIONS

Tests done in simulation show that anytime learning with
fitness biasing can greatly improve a CGA’s ability to
dynamically adapt to changes in the robot's capabilities.
This system of modified anytime learning, which requires
only external observation of the robot’s performance, can
be an effective means of coupling the learning system to
the robot during evolutionary computation.  Tests in
simulation do not always prove a learning system’s vi-
ability on the actual robot, but we are confident, due to
extensive previous research using this model and robot,
that this learning method will be successful on the Servo-
Bot.

Future research will be to introduce a population resetting
scheme such as the one described in Grefenstette’s [1992]
work to help improve performance when there are large
levels of capability degradation.  Also planned, after con-
struction of a learning environment with an overhead
camera for observation, is to do tests on the ServoBot.
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