
 
 

 

  

Abstract— This paper discusses utilizing genetic algorithms 
to automatically design a suitable sensor morphology and 
controller for a given task in categories of environments. The 
type of sensors, the heading angle and the range of the sensor, 
and the rules the controller, are co-evolved. The described 
method enables the system to decipher information from the 
environment to determine that is relevant to completing a given 
task while configuring a minimal controller and number of 
sensors, thus increasing the overall efficiency of the robot. 

I. INTRODUCTION 
UTOMATIC design  is a fairly recent and exciting option 
in the search for new and efficient physical and 

software designs for autonomous agents. Self designing and 
optimizing agents offers a new design perspective as it 
allows each agent to adjust its design according to its 
inherent advantages/disadvantages and adapt its features to 
achieve a goal. The work presented here is a continuation of 
research pertaining to the evolution of sensor morphology 
on a legged robot. This study deals with evolving the 
controller and the sensor morphology on a legged robot. We 
choose to evolve sensors since they play a key role in 
deciphering the environment in which an agent performs. To 
be successful, an agent must adjust its sensors to pick out 
information relevant to its task and learn to ignore the others 
while also being energy efficient. This is an important 
feature seen in nature: different species have a different set 
of sensory organs that vary in the degree of their sensitivity 
and other parameters. No animal has every sensory organ 
since such an agent would not be efficient. Moreover, 
certain tasks performed by animals need only a subset of the 
animal’s available sensory organs and capabilities. 
Likewise, autonomous agents need only a small subset of 
their available capabilities for specialized tasks. Utilizing a 
subset of the available capabilities for a given task further 
allows the agent to be more energy efficient and decreases 
the complexity of the controller. 

Researchers have applied the idea of evolutionary 
morphology to evolve the positioning of an array of the 
same type of sensors [1] and to evolve the body and sensors 
of the robot simultaneously [2]. However, these works 
evolved sensor morphology using the same type of sensors. 
The drawback to this is that sensors of the same type have 
limited detectable stimuli, thus reducing the capabilities of 
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the robot as a whole. Other research used modular parts to 
build structures [3] and robots for the purpose of 
locomotion; this work on buildable structures shows us that 
the idea of evolving morphologies is a feasible and practical 
solution for design problems.  

The field of co-evolution of morphology and the 
controller has been increasingly researched in recent years. 
Research done on Tinkerbots [4] used the idea of re-usable 
sub-procedures called Lindenmayer systems to design 
scalable complex designs. Similarly, Marbach and Ijspeert 
[5] present an implementation of co-evolution of a PD 
controller and morphology using simulated modules to build 
scalable simulated mobile robots. Yet as pointed out by 
Pollack et al., [6] these agents do not interact with the 
environment due to the lack of sensors that allow it to sense 
the environment. This absence of sensors does not allow 
these agents to evolve beyond a certain complexity due to 
the lack of constant feedback from the environment. 
Balakrishnan and Honavar [7] evolved the position and 
ranges of sensors but in a highly limited and discrete 
simulated block environment. Research conducted by 
Bugajska and Schultz [8] and Mautner and Belew [9] shows 
strategies to co-evolve the robot controller and the sensor 
morphology. Unlike our study, the former study dealt with 
finding general sensor morphology for any environment 
configuration, whereas in the latter the complexity of the 
environment was constant. Our study deals with specific 
environment configurations of varied complexity. LEGO 
Mindstorms robots were used by Lund et al. [10] in co-
evolving the controller and the physical and sensor 
morphology of the robot. But the search space was limited 
(825 possibilities) with only a single type of sensor being 
used with 11 possible positions; there is no such limitation 
in our study. The work of Bugajska and Schultz [8] did not 
utilize different types of sensors or utilize stimuli other than 
obstacles. In addition their robot has an onboard sensor that 
can detect distance to goal. Our robot does not have this; 
instead, the agent must learn to find the goal using cues 
available in the environment. 

There is a relationship between the morphology, the 
controller, and the environment of a given system [11] [12]. 
For a specific task certain stimuli provided by the 
environment are advantageous and others are not. An agent 
that is capable of sensing these stimuli needs to determine 
which stimuli are needed to complete the task at hand and 
prune the unnecessary ones, making itself more efficient in 
terms of power consumption and controller complexity 
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(hence improving reaction time). In previous work, we 
successfully evolved the sensor morphology of a legged 
robot to complete a navigation task which involves going 
from a start point to a target point. The agent avoided 
obstacles and utilized relevant stimuli in the environment to 
navigate to the target point. However, the agent in that work 
always had the same heading and position at the start. This 
allowed the agent to learn an appropriate sequence of 
actions for the environment, making the solution specific to 
a starting position and heading in the specific environment. 
In the research reported in this paper we wanted the robot to 
have a sensor morphology and controller that could not rely 
on its starting position or orientation to succeed. We show 
that by co-evolving sensor morphology and control we can 
design autonomous agents that can complete a given task 
efficiently using stimuli in the environment as cues, while 
having a level of generality in terms of its start position and 
orientation. To investigate this method we use a simulation 
of the robot operating in a real world environment. 

In this paper we use a genetic algorithm (GA) to co-
evolve the sensor morphology and controller for a simulated 
robot modeled after an actual legged robot. This is part of a 
larger study that investigates the use of a GA to evolve the 
morphology and a controller for actual robots. In this part of 
the study, we evolve the sensor morphology and controller 
to equip the robot to complete a given navigation task when 
it starts from a randomized start position and heading, in a 
wide variety of environments. 

II.  ROBOT COLONY AND SERVOBOT 
The robot colony space is a 3m x 3m walled area 

established in the Connecticut College Robotics Laboratory. 
It can be equipped with robots and can be configured with 
any reasonable number of obstacles and light sources. The 
obstacles are 30cm x 30cm x 5cm blocks. The lights are two 
omnidirectional light sources of different frequencies. The 
obstacles are not high enough to block the light beam. Both 
the obstacles and the walls can be detected by the tactile 
sensors placed on the robot.  

The ServoBot [13] is a hexapod robot that has 2 degrees 
of freedom per leg. We have equipped it with a sensor base 
that is attached to the top of the robot and completely covers 
the robot so that the actuators and effectors of the robot do 
not affect the sensors. This base is 30cm x 30cm and acts as 
an easily reconfigurable platform for the sensors. Unlike 
wheeled robots, which can turn at any angle less than or 
equal to its maximum turn angle, the legged robot with 
specific gaits does not have this ability. It has 16 available 
turn gaits, each of which has a predicted (through 
measurement) end orientation and position given a start 
orientation and position. The agent’s locomotion is non-
deterministic, i.e. given a start position and orientation, the 
end position and orientation after a step has a degree of 
randomness involved. This non-determinism in the gait is 
due to the inconsistencies of the robot construction and 

inherent noise associated with a legged robot interacting 
with the real world. 

The sensor base can carry modules of 4 tactile sensors and 
8 light sensors, 4 of which detect Infrared and 4 that detect 
Ultraviolet which is interfaced with a Basic Stamp II. Using 
a Basic Stamp II along with the sensor modules restricts the 
number of sensors used to 12.  The sensors are all binary; 
they either detect a stimulus or do not. Each of the sensors is 
a reusable module that can interface with the controller. The 
GA is responsible for evolving the orientation of the sensors 
and the range of the light sensors. The range at which the 
light sensors detect a stimulus is implemented in software by 
setting a cutoff at which the controller no longer detects a 
stimulus. The GA has 32 equal length choices for the range 
of each light sensor. In simulation the maximum range of 
these sensors is set at 434 cm. This range was chosen since 
it is slightly more than the hypotenuse of the Robot Colony 
which is approximately 424 cm. The spread of the sensors 
was not evolved since no mechanism was in place to adjust 
this aspect of the sensor.  The tactile sensors were placed in 
the corners of the sensor base and the light sensors were 
placed on the edges of the sensor base. 

III. SIMULATION: THE ENVIRONMENT AND AGENT 
The colony space was represented by a 300 X 300 area in 

simulation. The agent’s task was to traverse from Start 
Position (40 +/- 10, 150 +/-10) to the Target Position (270, 
160). The agent itself has no information about the location 
of the target point. To navigate it must learn and use cues 
from the environment to its advantage. 

 

 
Fig. 1. Environment Description (Central Mountain Configuration) 

 
The Niche Environments (Figure 1) used eight 30 x 30 

obstacles and two omnidirectional light sources (IR and 
UV). In previous experiments a sound source was simulated 
but due to high noise levels caused by reflection of sound, it 
was discarded in favor of the more controllable light stimuli. 
The robot could detect light over the obstacles and the tactile 
sensors detected walls and obstacles. The obstacles were 
configured in 7 different configurations (Figure 5). For each 
generation the obstacles were moved randomly by a factor 
equal to or less than +/- 10cm in the X and the Y direction to 



 
 

 

allow the results to have a level of generality. The obstacle 
density was 8%.  The target was a fixed point marked by 
one of the light sources. 

The simulated robot closely models the ServoBot. Its 
locomotion characteristics were obtained by measuring the 
performance of the actual robot. It is simulated to have a 
30cm x 30cm reconfigurable platform for the sensors. Its 
locomotion is non-deterministic in that the measured turn 
values are used but randomized slightly. 

The sensor base can be configured with 4 tactile sensors, 
4 infrared sensors and 4 ultraviolet sensors. The light 
sensors have adjustable range (32 length choices), whereas 
the tactile lengths are fixed. The placement, maximum range 
and spread of the sensors on the sensor base are shown as 
triangles in Figure 2. (The IR sensor and the UV Sensor 
range and spread overlap). The light sensors are placed 
facing outward, with the tactile sensors placed in the corners 
of the sensor base. The GA determined which sensors would 
be activated and their range (for light) and orientation. The 
evolved characteristics allowed the sensory information to 
be complex enough for the robot to be successful in the 
environment while making the simplifications necessary to 
allow ease of transfer to the real robot. 

 

 
Fig. 2. Sensor Configuration (Range, Spread and Placement of Sensors on 
Sensor Base 
 

The controller of the simulated robot is a reactive system 
that used 13 rules of the form: If (Sensor detects a stimulus) 
then (Trigger gait number X), in which each sensor is 
associated with a specific rule and a single gait. The 
consequents of these 13 rules are selected by the GA from 
the 16 available gaits [13]. These turn gaits used were from 
data stored after measuring the 16 gaits on the actual robot.  
The GA also selects the default gait, which is the gait used 
when no sensors are triggered (rule 13).   

IV. CO-EVOLUTION OF SENSOR MORPHOLOGY AND 
CONTROL 

The parameters evolved in this paper are the heading 
angle of the sensors, which sensors to keep running during 
the length of the run, the range of the light sensors, and the 
rules of the robot controller. The sensor heading can be 
rotated 360 degrees; all of the sensors can be turned on or 
off. The GA can select the controller for each sensor from 
16 turn gaits, while each light sensor has 32 choices of 
range. The position of the sensors on the base are fixed as 
shown in Figure 2 and do not change. 

The chromosome used was 212 bits long. It was divided 
into 1 set of 12 bits, 12 sets of 9 bits, 12 sets of 5 bits and 13 
sets of 4 bits. The first 12 bits represented which sensors to 
put on or off, the next 108 bits represent the angles at which 
each of the 12 sensors are to be placed onboard the robot 
base, 40 bits represent the range of the light sensors and the 
last 52 bits represent gaits for each of the 13 rules. During 
evolution each set of bits underwent a single point crossover 
using stochastic (roulette wheel) selection of the parents. A 
mutation rate of 1% was set for the rule selection. For the 
other parameters, if the goal was reached by any individual 
in the generation the mutation rate was set at 1%; otherwise 
it was set at 6%.  

The fitness function (Figure 3) is dependant on the 
success of the agent. If the agent is successful in finding the 
target, the fitness is based on the number of sensors it has 
off and the amount of time it took the agent to get to the 
target. The fitness of an unsuccessful agent is dependent on 
how far away the robot is from the goal. In the first case, to 
achieve the maximum fitness the robot has to have all its 
sensors off and reach the goal without any time being used, 
which is an impossible scenario in the simulation. A 
successful agent has the theoretical maximum fitness of 
15600 while an unsuccessful agent has a maximum fitness 
of only 8480. 

We ran 256 individuals for 512 generations for each 
environment. This was repeated 5 times with random 
starting populations to check for consistency of the results.  
Each individual had 3 chances to achieve its goal. Each time 
the individual was placed at a random heading and 
positioned within +/- 10 of (40,150). The individual with the 
highest fitness was added to the next generation without 
change. 

The agent was given 300 time intervals to complete the 
task. A time interval is the time it takes a robot to complete 
one step. A step starts with the legs in a ready to step 
position (right front and back legs and left middle leg 
forward; remaining legs back) and returns to this position 
after a full step cycle.  This time is the same for all 16 step 
cycles.  The time intervals continue to elapse even if the 
robot collides with an obstacle and is stuck.  A collision 
does not stop a test run. The agent can get out of a collision 
since the agent can work its way free of the obstacle due to 
its non-deterministic gait. The run is stopped if the target 
position is reached or when the agent runs out of time (300 
time intervals). 

 
If (Agent_Reached_Goal) 
 Fitness =   

50 * Number_Sensors_Turned_Off +  
50 * (Total_Time – Time_to_Achieve_Goal) + 
Goal_Bonus 

Else 
 Fitness = 20 * Resultant_Distance_from_Goal 
 
                         Fig. 3. The Fitness Function      

 



 
 

 

V.   RESULTS AND DISCUSSION 
The results of the 5 runs on each environment are 

summarized in Figure 4. These graphs show the average and 
best individual of the population, over 5 runs, for each 
generation. The consistency of the results over the 5 runs is 
represented by the error bars (grey) in the graphs which are 
the standard deviation over the runs. 

In all of the niche environments, except for Random Two, 
the GA evolved effective solutions and improved the fitness 
of the agents. Each of the environments had a different 
growth rate and became stable after a different number of 
generations. This shows that success and control learning is 
highly dependent on the environment in which the agent 
operates. In Random Two, the agents failed to find the 
Target point over 512 generations. The fitness of the 
average individual in this case is approximately 27.29%, 

while the average fitness of the elites is 43.6%. In the other 
environments the final obtained fitness of the average and 
the elites obtained is markedly higher than that of Random 
Two. 

Figure 5 is a sample from each of the environment types. 
Observations of the simulated robots in action revealed 
some of the learned strategies. The evolved strategies were a 
combination of wall-following and a more direct approach 
to finding the source of the UV light, hence the target point. 
Wherever there was a clear path to the Target Point the GA 
evolved agents that took the direct approach. This can be 
seen in Double Ridge and Random Three.  In both cases, the 
main sensor is the UV light sensor which is mounted 
heading forward. Random Three also evolved a tactile 
sensor on its left flank to take into consideration any change 
in position of obstacles to its left over the generations.  

 
 
 

 

 

 

 
 

Fig. 4. Elite and Average Fitness growth averaged over 5 Runs 
 
 



 
 

 

                  
Central Mountain: Single Left Ridge: Single Right Ridge: 

2 Tactile sensors at 22 and 333 
1 UV sensor at 101;  Length 378 cm 

4 Gaits and Rules Used 

2 Tactile sensors at 381 and 128 UV 
sensor at 252; Length 406cm 

4 Gaits and Rules Used 

2 Tactile sensors at 287 and 319 
2 UV sensors at 117 and 32; Length 378cm, 

204cm 
5 Gaits and Rules Used 

 

                
Double Ridge: Random One: Random Two (UNSUCCESSFUL): 

1 Light Sensor Used at 22l; Length 140cm 
2 Gaits and Rules Used 

 

1 Tactile Sensor at 78 
1 UV sensor at 21 

3 Gaits and Rules Used 
 

3 Tactile sensors at 18, 457, 157 
1IR sensor at 487; Length 392cm 

3 UV sensors at 353, 334, 282; Length 182cm,  
294cm, 14cm 

8 Gaits and Rules Used 
 

 
Random Three: 

1 Tactile Sensor at 187 
1 UV sensor at 9; Length 308 cm 

3 Gaits and Rules Used 

Fig. 5. Paths Taken and Sensors Used by the Robot 

 
The agents in Central Mountain, Single Left Ridge and 

Single Right Ridge used a combination of wall following 
and UV source location. In all three cases the agent used the 
UV sensor to direct it initially in an appropriate heading. In 
Central Mountain and Single Left Ridge, the agent then used 
a wall following strategy to find the Target Point. In Single 
Right Ridge, the agent used the tactile sensor only to get out 
of the narrow gap between the wall and the obstacle. It also 
evolved a tactile sensor pointing inwards so that if it’s right 
turn out of the gap was too close to the obstacle it could 
detect it and turn away. This is important since the solid 

obstacles were moved for each generation. The agent then 
used its UV sensor to find the Target Source.  

In the case of Random Two the agent could not 
consistently find the Target Point. This is apparent since the 
average fitness of the population does not increase nor does 
the fitness of the elites over a given run. The reason for this 
failure is the difficulty of this particular environment. The 
Random Two environment has a configuration of solid 
obstacles that does not often allow the agent to pass between 
its gaps. Where there are sufficient gaps, the randomness 
associated with the placement of the obstacles results in 



 
 

 

random location of the gaps. The inconsistency of this 
situation varied the fitness of the individuals sufficiently that 
there was little or no improvement in acquiring the target 
over time. This lack of improvement under such an 
inconsistent situation can be associated with the purely 
reactive nature of the controller which does not allow for 
planning of any kind.  

It was surprising to find that none of the evolved agents 
used the IR light as a possible way point to finding its way 
to the UV light and hence the Target. The penalty of having 
a sensor on was only 2% of the total fitness, yet none of the 
successful agents utilized this stimulus. The IR source’s 
placement was intended to be advantageous. The agent 
could have used the UV light to navigate around obstacles 
then get to the target in each environment, especially Single 
Left Ridge and Single Right Ridge. A closer look at the 
environment yields an answer to the agent’s lack of IR 
sensor usage. The obstacles are low enough that light can be 
detected over them. A look at Single Right Ridge shows that 
the robot can circle in place until its right light sensor detects 
the target. At this point it will be facing north. It can track 
north until it detects a wall, moves east and eventually south 
east to turn away from the wall and will detect the target UV 
source with its front and slightly right facing sensors. 

VI. CONCLUSION AND FUTURE WORK 
The method used in this research to co-evolve the sensor 

morphology and controller for a hexapod robot was 
successful in simulation. Sensor morphologies and 
controllers were evolved that were specialized to handle 
types of environments whereas randomizing the robot’s start 
position and orientation showed that the result is a 
generalized solution for a given environment. In all but one 
of the test environments the evolved robots improved 
throughout the evolution and produced reasonable sensor 
configurations with and associated rules.  

This co-evolution strategy designed robots and their 
controllers that were successful in achieving the target and 
pruning the unnecessary sensors so that it was done 
efficiently. This can be clearly seen in Figure 4 since almost 
all of the successful agents in the latter half of the evolution 
were among 80% to 90% fit. 

One of the more interesting parts of the results was that 
the infra red stimulus was not used at all to successfully 
navigate to the target point. It was intended that this 
information would be useful. However the GA developed 
solutions that did not require the extra sensor type. This 
design information could save significant time and money 
since these sensors would not have to be purchased or built 
for the robot. In this way this co-evolution strategy is 
beneficial before actual building as it allows pruning of 
unnecessary modules that would not improve the 
performance and make the robot more expensive than 
necessary.  

The agents evolved were highly specialized in that they 
were not successful in the other environments. Their sensor 
configuration and control were extremely varied and unique 
for the different environments. This can be attributed to the 
reactive nature of the controller and a fitness function that 
rewarded efficiency in sensor usage. The GA evolved 
successful and in some cases familiar control strategies, like 
wall-following.  

In future work, we will implement the results of this 
experiment on the actual ServoBot to allow us to see how 
accurately the simulation transfers to the real world. We will 
also conduct an experiment where the obstacles are tall 
enough to obscure the UV Light thus possibly making the IR 
light necessary for a reasonable solution.  

In addition, we will consider a more complex controller 
architecture to co-evolve. The controller used consists of 
simple if…then rules, which allow us to measure the 
complexity of the controller with ease, but also severely 
limit the capabilities of the robot. We would like to make the 
controller more complex and test the results in a more 
challenging environment. 
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