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Abstract

For a robot to search an entire area, it must follow a path
that allows the range of its sensors to cover all parts of the
area.  This problem is a subset of path planning called area
coverage.  Most work done in this type of path planning
has concentrated on ways of dividing the area up to avoid
obstacles while covering the area.  This is an important
step in the process, but often takes for granted the move-
ment of the robot within clear areas.  This is not a problem
if the robot has sufficient calibration to ensure the accuracy
of calculated turns or if it has accurate enough navigational
devices to keep track of its location.  However, simple
legged robots usually lack both of these attributes.  It is
difficult to make turns that fit a specified arch and suffi-
cient on board navigational devices are expensive and/or
too large to carry.  In this paper, we use cyclic genetic al-
gorithms to learn the control cycles required to make an
actual hexapod robot perform area coverage.

1.  Introduction

Path planning is the formation of the set of moves that the
robot will take to transport it from a starting
point/configuration to a goal point/configuration.  The
complexity of the computation of this series of moves is
reduced when the environment is known and the robot is
accurate enough so that the exact results of control ma-
nipulations of its actuators can be predicted.  In the optimal
situation, the actuators will have a direct and precise effect
on the position and orientation of the robot.  Such is the
case when one is dealing with wheeled robots that have
calibrated movement control.  Typically these robots can
be commanded to rotate k degrees and move forward x
millimeters.  This level of control not only helps in dead
reckoning because the robot’s location is precisely known,
but it also helps in making plans that require precise ma-
neuvers such as a 180° turn.

Area coverage is a type of path planning that is concerned
with the coverage of an area. This may be done by an in-

sect to search for food or check for enemies.  A robot
could also be searching for enemies or clearing the area of
deadly devices such as mines.  The robot’s sensors (ma-
nipulators) are assumed to have a certain width of effec-
tiveness and the area is described as having defined
boundaries and possibly some obstacles.  The path planned
is supposed to ensure that the area covered by the robot’s
sensors compared to the total area within the defined
boundaries is equal to the desired coverage.  In most cases
the desired coverage is 100%, but due to the decreasing
effectiveness of sensors as the distance increases from the
robot, this exact percentage is seldom attained.  The de-
sired coverage is therefore often described in some other
way such as separation of paths or attainment of fixed
blocks of space distributed throughout the area.

Previous research in the area of coverage path planning
concentrates primarily on covering a specified area while
contending with obstacle avoidance.  Zelinsky et al. [8]
used an extension to a path planning methodology, which
divided the area into cells that were marked with the dis-
tance to the goal, to form a cell to cell path through the
area.  Tests were done on the Yamabico robot, which used
precise movement calculations for dead reckoning and ul-
trasonic sensor sightings of landmarks to re-adjust its po-
sition.  Choset and Pignon [1] divided the area into obsta-
cle free sub-areas (they called cells) and found an exhaus-
tive path through the adjacency graph representing these
cells.  Within each cell the back-and-forth boustrophedic
motions (Figure 1) were used to assure coverage.  Tests in
simulation worked well.  Tests done on a Nomadic 200
mobile robot base using only dead reckoning resulted in
tracks with lines that were not perfectly parallel.  Ollis and
Stentz [4] used vision to control the lines in their boustro-
phedic motions to do automated harvesting.  The Demeter
harvester robot used a GPS system and dead reckoning, in
addition to the vision system, to ensure field coverage.
Hofner and Schmidt [3] used templates appropriate for the
type of robot to determine the best path within areas that
Choset would call cells.  This allowed for other than bou-
strophedic motions if the robot lacked the capability to turn
that sharply.  Robot dead reckoning was supplemented by



an extensive use of landmarks sensed by ultrasonic sensors
to maintain the desired track.  Hert at el. [2] proposed a
method for sea floor coverage by an autonomous under-
water vehicle, which used an on-line planar algorithm and
sensors to explore areas with arbitrary shape.  The track
over the ground was done with back-and-forth boustrophe-
dic motions controlled by a GPS system.

Common to all of these works is either precise control of
the robot or some navigational means of making continual
corrections to its movement.  These assets are not always
available.  Legged robots, especially inexpensive ones with
minimal sensors and precision of movement, cannot be po-
sitioned perfectly with exact headings.  What is often taken
for granted in these papers, a capability to perform perfect
back-and-forth boustrophedic motions (Figure 2), is not
easily done by these legged robots.  Whereas calibrated
wheeled robots can be commanded to turn in a circular arc
for n msecs or rotate to k degrees, simple legged robots can
only turn for so many gait cycles with one of a variety of
turns.  The exact time and rate cannot be specified.  In ad-
dition, often what is considered a straight gait results in a
small drift to one side or the other due to performance dif-
ferences from one side to the other of the robot.  The best
straight may actually be what is programmed in as a mini-
mal turn.

An additional factor driving this research is that differing
turn rates can have vastly different efficiencies.  This is
especially true for legged robots, but is also applicable to
most wheeled robots.  The most efficient path to cover the
area given depends greatly on the capabilities of the robot.
If it can efficiently rotate or turn sharply, its best strategy
may be to do a ladder pattern (boustrophedic with square
turns).  If tight turns cost in efficiency, it may be better to
make large sweeps with some coverage overlap or to but-
tonhook the ladder turns, keeping the rungs about the
same.

In this paper, we use an actual hexapod robot to test this
method for learning turn cycles that will produce the tracks
required for area coverage.  The method involves the fol-
lowing steps.  Use a cyclic genetic algorithm (a form of
evolutionary computation designed to learn cycles of be-
havior) to learn a near optimal gait for the hexapod robot.
Alter this gait in such a way that several degrees of turn
are produced.  Run tests on these turn programs to measure
the rate of turn in a single complete step (a gait cycle).
Use these gait cycles as available tasks that a CGA can use
in simulation to find the control sequence required to per-
form area coverage.  And finally, test the control programs
on the actual robot. Previous work, done solely in simula-
tion, showed that this method can be used to learn the cy-
cle of turns and straights to do area coverage within cells.
These tests produced promising results and helped to con-
firm the usefulness of CGAs for learning control cycles to

do area coverage.  Tests presented in this paper show that
CGAs can effectively learn control programs for actual
hexapod robots to do area coverage.

2.  The Robot

The robot used was the ServoBot (Figure 1), which was
developed at Indiana University by David Braun for
legged robot and colony experimentation.   It is a small,
inexpensive hexapod robot that has many of the motion
characteristics of larger complex robots.  The controller
used was a basic stamp, which can hold a normal gait, af-
fecters that can produce a turn from this gait, and a se-
quence of commands that indicate what affecters should be
invoked.  The control program can be downloaded to the
basic stamp through a connecting cable or transmitted via
radio waves from an external computer running the learn-
ing system.  Once the sequence of activations is transmit-
ted, the cable can be disconnected allowing autonomous
movement.

Figure 1: ServoBot

The normal gait is made up of a control sequence, which is
a list of activations that the on-board controller will con-
tinually repeat.  Each activation (a 12 bit number) controls
the instantaneous movement of the 12 servo actuators.  A
bit value of 0 drives the corresponding servo toward its full
throw in one direction, a bit value of 1 drives it toward its
full throw in the other direction. A repeated sequence of
these activations can be evolved by a cyclic genetic algo-
rithm (Section 4) to produce an optimal gait for a specific
SevroBot [6] to move straight ahead.  The execution of this
sequence results in a full cycle of leg movements with the



legs returning to their start positions.  We refer to this cy-
cle as a gait cycle.  The gait cycle for the robot we used
was 58 activations (servo pulses).

Differing degrees of turn were provided in the gait cycles
through the use of affecters.  These affecters could inter-
rupt activations to the thrust actuators for either the left or
right side of the robot.  Since the normal gait consisted of a
sequence of 29 servo pulses to move the leg from the full
front to full back position, anything less than 29 would re-
sult in some dragging of the legs on that side. Affecters
from 0 to 15 were possible.  A one bit indicator specified if
the affecter was right or left.  A 4 bit number indicated its
strength.  The number of pulses on each side could be cal-
culated by multiplying the strength of the affecter by 2
(except that an affecter of 15 yields 29 pulses resulting in
no turn). Sixty gait cycles to produce turns and straights
were created by assigning an affecter, which resulted in a
turn throughout that cycle.

The controller was programmed to make the turns speci-
fied in an input sequence by application of the affecters to
produce the corresponding gait cycle.  The input sequence
included the turn direction, turn strength (affecter), and the
number of times to repeat that gait cycle.  Up to nine
changes in gait cycles could be used with up to 63 repeti-
tions of that gait cycle. The effective result was to produce
cycles of gait cycles that could be used to define a desired
path over the ground.

3.  Coverage Area

During area coverage the robot is trying to maximize the
area covered in minimal time. For our area coverage
problem we wanted the robot to fully search, starting from
a specific point, an area of specific width (180 cm).  Since
the robot was judged by the area covered in a set amount
of time, plus we wanted to find the most efficient cycles of
behavior required to do it, the area to be searched had no
bound on one side. The area width was purposely small to
accommodate ease in actual testing and to force more turns
during training.

The simulated search was for mines that would be fully
contained in the area.  In order to detect a mine, the robot
had to have the entire width of its body (excluding the
legs), at its mid point, within the same 60x60 cm square as
the mine.  For test purposes, 60x60 blocks with mines
were placed to completely fill the area.  The robot’s task
was to find as many mines as possible while ensuring that
no mines had been missed. The robot’s movement was not
restrained in any way by the environment. There was no
physical constraint requiring it to stay within the mine
area.

Figure 2 shows the simulated search area, which was
180×∞ cm.  The mine blocks are shown as squares within
the area.  The actual test area was a 180×210 cm area of
the floor where the 60×60 mine blocks were marked by
tape.  Tests in this area were done by observing the squares
covered as the robot completed the first 50 gait generations
of its search path.  For the simulation, the robot’s track was
recorded in a list of calculated positions over the ground.
Mine detection was calculated from these positions.

Figure 2:  Search area for coverage with a back-and-forth
boustropedic pattern of motion.

4.  Cyclic Genetic Algorithms

Cyclic genetic algorithms differ from the standard GA in
that the chromosome can be thought of as a circle and the
genes can represent subtasks that are to be completed in a
predetermined segment of time. For the area coverage
problem the genes represented a set of gait cycles that
were to be sustained for one cycle each. The trained chro-
mosome contained the cycle of these gait cycles that was
continually repeated by our robot’s controller to produce a
path that was to efficiently cover the designated area.

The controller program has a provision for nine changing
gait cycles in the search cycle.  Each gait cycle takes 5 bits
to identify and the repetitions of each gait cycle can be
from 0 to 63.  The CGA chromosome used directly resem-
bled the required input to the controller.  Each chromo-
some was made up of nine genes and each gene of the
chromosome was made up of 2 parts (a 5 bit number to
identify the gait cycle and a 6 bit number to specify the
repetitions).

Selection probability was determined by the individual’s
fitness (Figure 3).  This fitness was calculated by counting
the number of mines detected (mine blocks covered by ro-



bot’s path) after it had completed a specified number of
gait cycles.  Counting, which was not done until the search
path was completed, began by rows from the bottom of the
area.  As soon as a mine block was missed no more rows
were counted, although the mines from the partial row
were counted.  For the fitnesses calculated during training,
mines visited more than once were not counted, although
they did count for row completions.  This was to discour-
age paths that were wasting time re-searching covered
area.  Once a fitness was calculated for each individual in
the population, pairs were stochastically selected for re-
production.

Figure 3:  Fitness Calculation.  This track would result in a
fitness of 4.  The first row of mines, plus the second row’s
right mine are covered.  The second row’s middle mine is
not considered covered because the robot’s body at the
midsection was not entirely within the block.  The third
row middle mine would be detected by the robot, but will
not count since there were mines in the second row that
were not covered.  Also note that the robot is free to depart
the area with no direct fitness penalty.

The details of the genetic operators used for reproduction
are covered in previous work [7]. Two point crossover was
performed by randomly picking corresponding spots in the
two selected parents. An alternate type of crossover was a
gene-by-gene crossover that performs crossover within
each of the corresponding genes of the two chromosomes.
One of two types of mutation were possible; each gene had
a random chance of being replaced by a new random gene
or each part of the gene had a random chance of having
one of its bits flipped. Gene-by-gene evaluation, a genetic
operator peculiar to CGAs was used to clean up the chro-
mosome by randomly picking one or two individuals from
the population on each set of trails and examining each
gene one at a time. Genes that performed poorly in their

current position were eliminated and genes that were good
in the execution of their early repetitions and subsequently
dropped in the later repetitions were modified by reducing
their repetitions. Momentarily Elevated Mutation was ini-
tiated whenever it was determined that the CGA had con-
verged prematurely. With the assumption that many of the
population’s individuals were the same, each individual in
the population went through mutation at a rate more than
usual. The idea was to introduce several small changes
while retaining important sub-solutions within the popula-
tion.  Although high mutation can be very disruptive to
each individual, with enough identical individuals the good
building blocks should survive and provide a chance of
generating a superior individual due to the introduced
perturbations.

5.  Training

Training was done to find the best search path for our spe-
cific robot.  The robot's base gait cycle was learned using a
CGA that was optimizing for speed.  15 left and 15 right
gait cycles were programmed using the affecters described
in section 2.3. Each gait cycle was tested for rate of turn by
running the robot for 4 cycles while taking three measure-
ments (Figure 4).

Figure 4:  Gait Cycle Turn Measurements.  The left dia-
gram shows F and T.  F is the distance moved forward
(relative to the start position heading).  T is the distance
moved in the turn direction (perpendicular to the start po-
sition heading).  The right diagram shows ∆H, which is the
change in heading from before to after turn execution.

The test area (Figure 2) was simulated by an xy grid where
point (0,0) was the lower left corner.  The lower right cor-
ner of the area was the point (180,0).  The lower boundary
was at y = 0, the left boundary was at x = 0, the right
boundary was at x = 180, and there was no upper bound-
ary.  Mines were considered to be in 60×60 square blocks.
The first row had centers at (30,30), (90,30), and (150,30).
The second row started at (90,30), etc.  The robot’s start
position was placed at (45,30).  This location assured ac-
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quisition of the first mine and put it in a good starting
place to acquire the first row of mines.  Motion was deter-
mined by applying each gait cycle from the chromosome
one at a time.  Using the current xy position and heading of
the robot, a new position was calculated by applying the
forward (F) and left/right (T) movements stored for that
gait cycle as described in the previous section.  The new
heading was an addition of the current heading and the gait
cycle heading change (∆H).  The path was not restricted
from going outside of the area and the calculations re-
mained the same if it did.  This allowed, if appropriate, for
the robot to do its turns out of the area so that it could at-
tempt straight tracks within the area.

An initial population of 64 individuals, made up of chro-
mosomes described in section 4.1, were randomly gener-
ated.  Each individual, representing a cycle of gait cycles
that would form a path, was tested to determine its fitness
after 100 to 200 of these gait cycles were executed. The
CGA was run for 5000 generations with the best solution
(individual chromosome) saved whenever there was an in-
crease in fitness (more mines covered in the allotted time).

6.  Results

Five initially random populations were each trained using
the CGA.  Tests were done on the individuals saved during
training to record the progress of the best individual in
solving the area coverage problem.  The average of the
best fitnesses for each recorded generation from the five
populations was then calculated.  The final solution from
each population was tested on the robot to check the corre-
spondence of the simulation to the actual robot.  In addi-
tion, all intermediate solutions of the best population were
tested on the actual robot.  The tests on the robot, limited
by time and space, were done for 50 gait cycles.

The progression of learning as the CGA evolved solutions
in simulation for the five populations had an initial growth
was relatively fast [7].  The average blocks covered went
from 3 to 23 within 500 generations. In this area, the CGA
was evolving the basic back-and-forth boustrophedic pat-
tern. The fitness growth plateaued, however, because the
resultant solution for some of the populations was close
but still needed some small change. Small adjustments at
this point were required to get that perfect amount of turn
or alignment, but these small adjustments could also result
in changes that caused major drops in fitness.  Conse-
quently, the learning was slow until just the right set of
mutations was recombined to get a good solution.  Of the
five starting populations, all but one made this final ad-
justment within 5000 generations.

Two tests were done on the actual robot.  Using five in-
termediate solutions where increases in fitness took place

(at 0, 9, 35, 151, & 217 generations) during the training of
the population with the best resultant solution, a compari-
son was made between the model and the actual robot (fit-
nesses averaged over five trails).  Figure 5 shows this
comparison, which was done using 50 gait cycles on both
the model and the actual robot.     The robot,  being
slightly off from the model, did better than the model pre-
dicted during the low fitness runs.  The robot had a little
stronger left drift than initially calculated.  This, in combi-
nation with the non-deterministic nature of actual robots,
resulted in a 0-generation path that ran straight out of the
area (as the model’s path did), but sometimes covered the
right mine of the second row on its way.  The 9-generation
solution also gained by the inaccuracy in the robot, but not
to the same extent.  For the 35-generation solution, it made
no difference.  From then on, the inaccuracy caused de-
creasing performance in the actual robot over the model,
although the error still remained within 10%.

Figure 5:  Comparison of the model to the actual robot’s
fitness (averaged over 5 trials) for five levels of training in
the evolution of the population with the best resultant cov-
erage solution.

The best solutions from all five populations were also
tested on the actual robot.  Figure 6 shows the results of
these tests.  In most cases the actual robot's performance
was not as good as predicted due to the slight inaccuracy in
its turn capabilities.  In one case (P4), where the training
on the model fell short of the optimal after 5000 genera-
tions,  the inaccuracy helped.    The generated path had
tighter right turns, which caused it to waste time in gait
cycles that had minimal distance coverage, plus resulted in
some shift during simulation.  Its fitness after 50 genera-
tions was 7 using the model.  Since the actual robot had
more left drift than was unaccounted for, a tighter pro-
grammed right turn resulted in a correct right turn, which
improved efficiency plus reduced the drift.  The P3 and P5
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solutions worked well in early tests. Their paths were such
that the model could gain a fitness of 9 in 50 gait cycles,
but the left mine of the second row was just barely cov-
ered.  In later tests, the robot started to just barely miss this
block, resulting in fitnesses as low as 5.  It was assumed
that the robot’s performance changed slightly due to nor-
mal wear.  The solutions from populations P1 and P2
worked well and were consistent (within +/- 1 block) on
the actual robot.

Figure 6:  Comparison of  the model to the actual robot’s
fitness (averaged over 5 trials) for the final solution of
each population.

7.  Conclusions

All five populations resulted in a search pattern that was
similar to the back-and-forth boustrophedic pattern.  Sev-
eral factors made it unlikely that the pattern would be a
perfect back-and-forth boustrophedic pattern.  This pattern
requires that a cycle of straight/left turn/straight/right turn
be continually repeated.  Any deviation from the initial ro-
bot heading and x position after subsequent cycles will
continually cause the pattern to drift out of the area.  Hav-
ing a non-standard array of possible turns makes it difficult
to get the right combination to get back to this initial
heading and x position.  While doing so, it is also impor-
tant that the y distance from the start position of one cycle
to the next be two blocks in width.  Another difficulty is
that there are no straight gait cycles; all have some left or
right drift.  This forces the learning system to either re-
place the straight leg with a constant minimally arching
turn and correcting the angles during the turnarounds or by
continual compensations of alternating left and right turns.
The lack of symmetry in turning capabilities also causes a
problem.  Having symmetric turn capabilities would allow
the robot to repeat the same pattern as it makes its left and

right turns.  This would be especially effective if a set of
its turns could generate a 180° turnaround.  Our legged ro-
bot had neither symmetric turns nor a set of turns all in one
direction that would equal 180°.

Given all these negative factors, there was much work to
be done by the CGA to generate the back-and-forth bou-
strophedic pattern.  All five populations had unique solu-
tions and four of the five covered 30 or more blocks in 200
gait cycles.  The remaining solution was still a back-and-
forth boustrophedic pattern, but having sharper turns than
necessary, tended to lack efficiency resulting in only 22
blocks being covered.  We did not succeed in manually
programming a full solution for comparison purposes.  The
number of possible variances made the process very time
consuming.  The P2 solution, however, with a fitness of
34, looked as if it was almost optimal for 200 gait cycles.
Four of the five tests resulted in near optimal solutions.
The CGA worked well in producing programs that con-
trolled our actual hexapod robot performing area coverage.
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