
The Co-Evolution of Model Parameters and Control Programs
in Evolutionary Robotics

Gary B. Parker
Department of Computer Science

Connecticut College
New London, CT 06320

parker@conncoll.edu

Abstract

Evolutionary robotics is a research area that makes
use of the various forms of evolutionary computation
(EC) to provide a means of designing robot control
systems. The use of EC can reduce development ef-
fort and allow the system to be adaptive to changes.
However, it can be computationally expensive
enough to preclude on-line learning since most forms
of EC require that a population of possible solutions
be tested over several iterations. Current research
deals with to what extent these tests should be done
on a model of the robot. Using the model is faster,
but linking the model to the actual robot is a difficult
task. In this paper, we introduce a new way of inte-
grating the actual robot and its model during evolu-
tionary computation. This method, which involves
the co-evolution of model parameters, is applied to
the problem of learning gaits for hexapod robots.
The form of evolutionary computation used is the cy-
clic genetic algorithm (CGA), which was introduced
in previous work to deal with the issue of evolving
controllers for cyclic behaviors. Tests done in simu-
lation show that the CGA operating on the co-
evolving model of the robot can adapt to changes in
the robot’s capabilities to provide a system of anytime
learning.

1 INTRODUCTION

In order to be autonomous, a robot should have its pri-
mary controller on board. Pre-programming this control-
ler, although it can ensure the desired results, can be labo-
rious during development and does not provide a means
for real-time adjustments necessitated by miscalculation
or degradation of the system. Learning control through
some form of evolutionary computation can save man-
hours of development plus provide the adaptability re-
quired for autonomy, but it can be too computationally
intense to be carried out on board the robot. This is espe-
cially true when the robot is small with an on-board con-
troller that is purposely simple to accommodate weight
and expense restrictions. A system of learning to make
adjustments to the on-board controller needs to be em-
ployed that can be carried out off-line yet allow the robot
to adapt to changes in real time.

Evolutionary robotics is a research area that uses evo-
lutionary computation (EC) to design robot control sys-
tems. Most forms of evolutionary computation require
that a population of possible solutions be tested over sev-
eral iterations. A significant issue of current discussion is
whether or not these tests should be done on simulations
(models of the robot). Three general approaches have
been published. One is to do all of the training in simu-
lation and transfer the results to the actual robot when it is
complete [1,2,6]. This technique requires that significant
attention be paid to the model as its accuracy directly ef-
fects the results. The time and effort can sometimes ex-
ceed the work required to program by hand. A second
method is to do most of the training in simulation and
transfer training to the robot for some remaining genera-
tions [7,9]. This requires a less accurate model (yet one
is still required), but it can take significant time to do the
on-line training on the actual robot. The third method
does all of the training on the robot [4,10]. If the task can
be completed and the fitness can be accurately judged in
minimal time, this can be a viable option. It precludes the
need for any model of the robot. The problem is that the
training takes num-generations * num-individuals * time-
to-complete-task to do the training. An increase in the
time-to-complete-task results in a multiplicative increase
in training time. The difficulty with all of these tech-
niques is that we either have to put time into the model or
into the training on the actual robot. In addition, none of
these methods can be refining the solution while the robot
is in operation unless it is only doing the task being
learned. What is needed is dynamic simulator accuracy;
a way of coupling the simulator to the actual robot
[4,8,11].

Anytime learning was used by Grefenstette [3] to al-
low a learning component to continually compute a best
solution while the robot operated in the environment using
the latest best solution. A natural extension of this for
simple robots is to have the learning component off-line
while the operations component, which is on the robot,
receives periodic downloads of the best solution. Grefen-
stette’s system can adapt quickly to changes in the robot
by having the robot’s sensors continually update the status
of the robot’s capabilities in the learning element’s simula-
tion. A difficulty develops when we have simple robots,

where the learning system must depend on global obser-
vation, instead of internal sensors, to determine the ro-
bot’s capabilities.

In this paper, we introduce a new way of integrating the
actual robot and its model during evolutionary computa-
tion. This involves the co-evolution of a gait control pro-
gram and the model parameters of the model used in gait
evolution. Tests done in simulation show that the cyclic
genetic algorithm (CGA) operating on the co-evolving
model of the robot adapts to changes in the robot's capa-
bilities to provide a system of anytime learning.

Figure 1: ServoBot.

2 ROBOT

2.1 ServoBot

Although the learning system with overhead observation
and communication capabilities was not yet in operation
and had to be simulated, the robot simulation was mod-
eled after a robot that had been tested in previous gait
experiments [5,13,14]. The ServoBot (Figure 1) is an
inexpensive hexapod robot that has two degrees of free-
dom per leg. Twelve servos, two per leg, provide thrust
and vertical movement. A control sequence is transmitted
to a field programmable gate array (FPGA) through lines
that connect to a Sparc workstation. Once the control
sequence is transmitted, the line can be disconnected. The
FPGA can store and execute (repeating the designated
section) the sequence of primitive instructions down-
loaded. Each instruction corresponds directly to an acti-
vation that is activated for 50 ms, then the next instruction
in the sequence is activated.

An input to the ServoBot is a 12 bit number where
each bit represents a servo. A signal of 1 moves the leg

back if it is a horizontal servo and up if it is a vertical
servo. A signal of 0 moves it in the opposite direction.
The activation can be thought of as six pairs of actuations.
Each pair is for a single leg with the first bit of the pair
being that leg's vertical activation and the second being
that leg's horizontal activation. The legs are numbered 0
to 5 with 0, 2, & 4 being on the right from front to back
and 1, 3, & 5 being the left legs from front to back. The
activation 100101101001 results in one phase of the clas-
sic tripod gait, which is considered to be the optimal gait
for speed in this simple rigid robot when all its actuators
are fully functioning. Legs 1, 2, & 5 are providing thrust
while legs 0, 3, & 4 are being lifted. Some sequence of
these activations will result in a pattern of leg movement
that will produce a viable gait.

2.2 Model

The model was a simple data structure that held each leg's
capabilities and current state (Figure 2). Input activations
were used with these capabilities to determine how much
to change the current state of the model during training.

Measurements to fill the fields for each leg’s capabili-
ties were taken before training. Each leg’s vertical posi-
tion was measured relative to this initial zero position,
which was on the ground. Each leg's horizontal position
was measured relative to its at rest full forward position.
Measurements to fill the maximum position fields of the
model were taken by activating each control on the actual
robot while recording the leg's maximum throw. An aver-
age rate per activation was calculated for horizontal and
vertical movement by dividing the maximum throw by the
minimum number of activations required to attain it.

Fields specific for each leg:
 current up -- current vertical position of the leg.
 max up -- position off the ground when completely up.
 current back -- current horizontal position of the leg.
 max back -- posit relative to completely forward when

completely back.
Fields applicable to all legs:
 rate up/down -- rate of vertical movement when servo

activated.
 rate back/forward -- rate of horizontal movement when

servo activated.

Figure 2: ServoBot model data structure.

3 CYCLIC GENETIC ALGORITHMS

Cyclic genetic algorithms (CGAs) were developed [12] to
allow for the representation of a cycle of actions in the
chromosome. The contents of this chromosome can be
directly downloaded into the ServoBot’s controller to

produce a gait. Previous work [12,13,14] discusses the
details of this type of evolutionary computation and its
success in evolving gaits in simulation that were transfer-
able to the actual robot. Further work needed to be done
to make adjustments when necessary to accommodate for
dissimilarities in the simulation and actual robot, but in
general the CGA was very successful at evolving near
optimal gaits for both fully functional and partially dis-
abled robots.

4 CO-EVOLVING MODEL PARAMETERS

Previous work with CGAs, although promising for pro-
ducing gaits in a static environment, would require the
addition of on-board capability sensors to be used dy-
namically. In addition, preparation was time consuming
as each of the robot’s capabilities had to be accurately
measured to be recorded in the model. Some means of
dynamically linking the model to the actual robot could
alleviate both of these problems. The method introduced
here is to do periodic tests of evolved gaits on the actual
robot to co-evolved the accuracy of the robot’s model
with the CGA produced gait. It is an alteration of anytime
learning (Grefenstette [3]).

4.1 Anytime Learning

There are two main issues we address concerning the de-
velopment of a system for anytime learning in evolution-
ary robotics; anytime learning without sensors and inter-
actively connecting simulations to actuality to provide
efficient ER training. A solution for both of these issues
involves the use of anytime learning with modifications to
compensate for the lack of internal sensors in our robots.
Training with a GA will take place off-line on a simple
model. Periodic checks on the actual robot will help to
verify the model’s accuracy.

In order to understand the use of anytime learning in
evolutionary robotics let us look at what is taking place
during training. Figure 3 shows the three main parts of
the system. There is the actual robot, the model, and the
genetic algorithm. The model is designed before training
to be as accurate as possible (depending on the simplicity
desired). The GA is set up for training and initiated with
a random starting population. The program in the con-
troller of the actual robot is determined by the other two
components of the system. The learning system cannot
alter the physical capabilities of the actual robot, only the
program in its controller (which is the purpose of the sys-
tem). The periodic checks on the actual robot can alter
the model in an attempt to improve the result of training.

This will involve the co-evolution of the model pa-
rameters and the controller program. After each n gen-
erations the best, worst, and a random solution, found on
the model, can be tested on the actual robot. Using only

outside observation of the results, measurements of the
distance moved will be taken. These measurements will
be used to judge the accuracy of the population of model
parameters. This population can start out either as ran-
domly generated individuals or as a combination of per-
turbations (to varying degrees) of the original model pa-
rameters. The most accurate model parameter will be
used for the controller evolution, the population of model
parameters will continue to evolve until interrupted by
updated actual test information. This solution requires
three actual tests every n generations.

 GA

GA Trains GA Modifies
 on Model Robot Controller

 Model Robot
 Robot Performance

 Modifies Model
using Anytime Learning

Figure 3: Anytime learning in evolutionary robotics.

The form of evolutionary computation used to co-
evolve the model parameters is a basic genetic algorithm.
A population of 64 individuals is randomly generated be-
fore training begins. Each individual is made up of 12
genes, which have a size of 6 bits. A sample chromosome
is shown in Figure 4. Each gene represents a corre-
sponding field in the robot’s model. The first 6 genes
represent the vertical maximum movement for each of the
six legs. The last six represent the maximum horizontal
throw of each of the six legs. These genes evolve to pro-
duce models that correspond in performance to the actual
robot. Although the model’s leg rates are held constant,
the fitness computation is done in such a way that the ad-
justment of the max throw fields can make the required
adjustments to compensate for inaccurate rate measure-
ments.

(011111 110011 101111 001111 111000 111011
101010 110011 100111 101101 011111 101110)

Figure 4: Model chromosome.

The fitness is computed by selecting 3 representative
gaits from the CGA’s gait population. The best (using the

current best robot model), a random, and the worst per-
forming gaits are selected. Each of these 3 is run on the
actual robot, which is simulated by a model that more
accurately represents the robot at this point in our re-
search, and the total distance traveled is recorded. This is
designed to require only an external observation by an
overhead camera of distance traveled to work in the actual
robot. These 3 distances are used to evolve a more accu-
rate model. Each chromosome of the model population is
used to compute its fitness using the following algorithm:

R1 = Test best gait on the robot
R2 = Test random gait on the robot
R3 = Test worst gait on the robot
For each individual in the model population
 M1 = Get fitness using current individual and best gait
 M2 = Get fitness using current ind and random gait

M3 = Get fitness using current ind and worst gait
 Order-Same = True if the fitness order of R1, R2, & R3

is the same as M1, M2, & M3
Signs-Same = True if Rx & Mx have the same sign for

x = 1 to 3
Fit-Comp = Fitness of the robot to model comparison
If neither Order-Same or Sign-Same are True

Return .001
If one only of Order-Same or Sign-Same is True

Return .001 x Fit_Comp
If both are True

Return Fit_Comp

M1 is the model’s fitness when run using the best gait
from the CGA, M2 is the model’s fitness when run using
the random gait, M3 is the worst gait fitness. The R1, R2,
and R3 are the robots fitnesses (or distance) traveled using
the corresponding gaits. The value for Fit-Comp is com-
puted using the following equation:

R1, R2, and R3 are changed to equal 1 if their absolute
value is less than 1.

The purpose of this equation is to compute how
closely the robot and model match while disregarding the
differences in rates. In other words, if the robot’s rate is 3
cm of movement per 50 ms and the max throw is 45, the
corresponding model can have a rate fixed at 2 cm per 50
ms and adjust its max throw to equal 30. In each case, 15
activations will move the leg full throw. Three gaits to
compare were chosen to increase accuracy over two yet
not require too many tests on the actual robot.

After a fitness is computed for each individual, selec-
tion is done stochastically, giving all individuals a chance
for reproduction, but favoring the most fit. Once a couple
is selected, they produce a single offspring through cross-
over and mutation. This is done 64 times to produce an
entirely new population.

Parents

(000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000)

(111111 111111 111111 111111 111111 111111
111111 111111 111111 111111 111111 111111)

Offspring

(000000 000000 000000 000000 111111 111111
111111 111111 111111 111111 111111 111111)

Figure 5: Between gene crossover.

Crossover is accomplished in two ways. One is
through single point crossover between genes. An exam-
ple is shown in Figure 5. This allows for the mixing of the
chromosome's genes while allowing established gene
schema to stay intact. The second method of crossover,
crosses bits within each gene. This method is shown in
Figure 6. It helps alter individual genes to gain fitness
plus allows crossover that is not dependent on gene or-
dering. Crossover is always used in forming each new
individual; either type of crossover can be used (equal
probability).

Parents

(000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000)

(111111 111111 111111 111111 111111 111111
111111 111111 111111 111111 111111 111111)

Offspring

(001111 000001 000111 001111 000000 011111
000001 000111 000011 001111 111111 000111)

Figure 6: Within gene crossover.

Mutation also has 2 variations. One that causes an
entire gene to be replaced by a new gene. The other
changes only an individual bit within a gene. Each had a
1/200 chance of changing each gene of the chromosome.

The co-evolution of model parameters is designed to
be used in either of two ways. One is to have both the
CGA and the model parameter evolution to be operating
concurrently on separate processors. The second is to

3

33

1

11

1

2

22

1

11

1

R

RM

R

RM

R

RM

R

RM −−−
+

−−−

schedule alternating evolution of both GAs on the same
processor. They should both yield similar results although
the former would be faster. In our experiments we used
the later as we were working with a single processor.

The system started out by producing a population of
gaits using the CGA applied to the initial model. This
model was considered to be a rough estimation of the ro-
bot. After 500 generations of CGA only training, co-
evolution of model parameters began. A random start
population of models was produced and checked against
the robot as described previously. They were allowed to
evolve for three generations. If, after this time, one was
superior to the initial model, it replaced it as the current
model. The CGA was then allowed to run for 10 genera-
tions using the current model to produce a new population
of gaits. The model and gait are constantly changing to
keep up with dynamic changes in the robot’s capabilities.
This method of alternating evolution was used to allow
experimentation without worrying about parallel process-
ing. When the actual learning environment is constructed,
the processes can be running concurrently.

Changes to the actual robot controller took place at
every 50 generations. If the current model’s performance
on the robot was superior to that of the one selected as the
robot’s controller (this value is stored in the learning sys-
tem), they would be switched. If it was inferior, the robot
would be re-tested with its selected controller to determine
which was the best. In this way, robot performance con-
stantly improves or stays the same, unless there is a deg-
radation of capabilities. This could, in the worst case, add
an one more actual robot test every 50 generations. In the
average case, this should add very few extra tests since the
only time an extra test will be required is when there is a
reduction in the robot’s capabilities.

5 TESTS

Three different tests were used to verify that co-evolving
model parameters for anytime learning was an effective
way to improve robot performance during EC. Each test
involved training on the model, with tests on a simulation
(model of specified parameters) of the robot. The distance
traveled by the simulated robot after 10 s of activation of
the current gait was recorded in cm. Each test was done
using 5 random start populations. The results reported are
the average performance of these five for each test.

The first test used a generic initial model. This model
had all the settings the same; a general guess at the robot’s
performance. This test was to verify that the initial meas-
urements discussed in section 3 would no longer be re-
quired with the addition of anytime learning. The second
test used a robot with rates that were 2 and 3 times faster
than those used in the model. This was to verify that the
system could automatically adjust to differences in the

model’s and robot’s rates of leg movement. The third test
was a series of changes to the robot's capabilities that took
place while the system was running. Observance of the
robot’s (simulated) performance showed how well the
learning system reacted to these changes.

6 RESULTS

The first test used a starting generic model of all 32s
(100000). The CGA was allowed to run for 500 genera-
tions and, at that time, the co-evolution of model parame-
ters began. The robot’s simulated distance traveled in 10
seconds was 59.7 cm at this time. After 200 generations,
the system had sufficiently adjusted the model’s settings
to gain what looked like an optimal gait at 69.6 cm trav-
eled.

The second experiment was equally successful. Ex-
periments were done with robots having rates of two and
three times that which was used in the model. The 2x ex-
periment resulted in an improvement from 126.0 to 153.6
after 200 generations. The 3x experiment resulted in an
improvement from 189.0 to 229.8 after 200 generations.
In both cases the gait produced looked optimal and the
system adjusted appropriately for the differing rates.

Figure 7: Adaptability of co-evolving model parameters.

Figure 7 shows a graph of the adaptability test. The
robot is initially trained with a slightly inaccurate model.
This results in a robot fitness of 75.3 as can be seen at
generation 0. At this point the co-evolution begins. By
500 CGA generations the fitness has improved to 76.3
(dynamically correcting to the initial inaccuracies). After
each subsequent 500 generations, there is a change in the
robot's capabilities. The horizontal movement maximum
throw of either leg 1 or 2 is changed. The graph shows the
change by indication the fraction of original capability for
the specified leg. At 500 generations leg 2’s max hori-

30

35

40

45

50

55

60

65

70

75

80

0 500
L2@0.75

 1000
L1@0.5

 1500
L1@0.75

 2000
L2@0.25

 2500
L2@1.0

 3000
L1@1.0

 3500
L2@0.25

 4000
L2@0.125

 4500
L2@0

Generations / Leg Capabilities

F
it

n
es

s

Baseline
Anytime

zontal throw is reduced to .75 of its original. At 1000
generations leg 1’s max horizontal throw is reduced to .5
of its original, leg 2 stays at .75. This continues through-
out the test. The dotted line shows what the results would
be without a dynamically evolving model.

Some interesting observations can be made from this
graph. The anytime learning always improves the simu-
lated robot’s performance over time. The largest im-
provements are in the mid capability ranges (around .5).
In the upper ranges, the static model is still close, and in
the lower ranges, there just isn’ t a lot that can be done to
improve performance. It can also be observed that the
system with anytime learning almost always outperforms
the system without. The one notable exception is at 500
generations where it was below the baseline for 100 gen-
erations after leg 2 went to 75%. The final observation is
that although the anytime system sometimes drops signifi-
cantly after a degradation in robot capabilities, it quickly
recovers to improve performance.

7 CONCLUSIONS

Tests done in simulation show that the CGA operating on
the co-evolving model parameters of the robot can adapt
to changes in the robot's capabilities to provide a system
of anytime learning. This system of modified anytime
learning, which requires only external observation of the
robot’s performance, can be an effective means of cou-
pling the performance of the model to the robot during
evolutionary computation. Tests in simulation do not al-
ways prove a learning system’s viability on the actual ro-
bot, but we are confident, due to extensive previous re-
search using this model and robot, that this learning
method will be successful on the ServoBot.

Future research will be to introduce a population reset-
ting scheme such as the one described in Grefenstette’s
[3] work to help improve performance when there are
large levels of capability degradation. Also planned, after
construction of a learning environment with and overhead
camera for observation, is to do actual tests on the Servo-
Bot.

Acknowledgments

This research, performed at Indiana University's Adaptive
Systems Laboratory, was supported in part by NSF
Graduate Research Traineeship Grant GER93-54898.

References

1. Beer, R. D. and Gallagher, J. C. (1992). "Evolving
Dynamical Neural Networks for Adaptive Behavior."
Adaptive Behavior, 1 (pp. 91-122). Cambridge: MIT
Press.
2. Gallagher, J. C. and Beer, R. D. (1994). "Applica-
tion of Evolved Locomotion Controllers to a Hexapod

Robot." Technical Report CES-94-7, Department of
Computer Engineering and Science, Case Western Re-
serve University.
3. Grefenstette, J. J. and Ramsey, C. L. (1992). "An
Approach to Anytime Learning." Proceedings of the Ninth
International Conference on Machine Learning.
4. Husbands, P., Harvey, I., Cliff, D., and Miller G.
(1997). "Artificial Evolution: A New Path for Artificial
Intelligence?" Brain and Cognition v. 34, (pp. 130-159).
5. Johnson, S., Parker, G., Cyliax I., and Braun, D.
(1997). "Using Cyclic Genetic Algorithms to Reconfigure
Hardware Controllers for Robots." Indiana University
Computer Science Department Technical Report No. 494.
6. Lee, W.-P., Hallam, J., and Lund, H. (1997). "Ap-
plying Genetic Programming to Evolve Behavior Primi-
tives and Arbitrators for Mobile Robots." Proceedings of
IEEE 4th International Conference on Evolutionary
Computation.
7. Lund, H., and Miglino, O. (1996). "From Simulated
to Real Robots." Proceedings of IEEE 3rd International
Conference on Evolutionary Computation.
8. Mataric, M. and Cliff, D. (1996). "Challenges in
Evolving Controllers for Physical Robots." Evolutional
Robotics, special issue of Robotics and Autonomous Sys-
tems, Vol. 19, No. 1, October 1996, (pp 67-83).
9. Miglino, O., Lund, H., and Nolfi S. (1995). "Evolv-
ing Mobile Robots in Simulated and Real Environments."
Technical Report, Institute of Psychology, C.N.R., Rome.
10. Mondada, F. and Floreano, D. (1995). "Evolution
of Neural Control Structures: Some Experiments on Mo-
bile Robots." Robotics and Autonomous Systems, 16, (pp.
183-195).
11. Nolfi, S., Florano, D., Miglino, O., Mondada, F.
(1994). "How to Evolve Autonomous Robots: Different
Approaches in Evolutionary Robotics." Proceedings of
the International Workshop on the Synthesis and Simula-
tion of Living Systems, (pp. 190-197).
12. Parker, G. and Rawlins, G. (1996). "Cyclic Genetic
Algorithms for the Locomotion of Hexapod Robots."
Proceedings of the World Automation Congress
(WAC’96), Volume 3, Robotic and Manufacturing Sys-
tems. (pp. 617-622).
13. Parker, G., Braun, D., and Cyliax I. (1997). "Evolv-
ing Hexapod Gaits Using a Cyclic Genetic Algorithm."
Proceedings of the IASTED International Conference on
Artificial Intelligence and Soft Computing (ASC’97). (pp.
141-144).
14. Parker, G. and Cyliax I. (1998). "Locomotion
Control Cycles Adapted for Disabilities in Hexapod Ro-
bots." Proceedings of the World Automation Congress
(WAC ’98), Volume 7, Robotic and Manufacturing Sys-
tems. (pp. 359-364).

