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Abstract— In this paper we describe a method using genetic 

algorithms to replicate natural allopatric speciation.  There are 
many versions of evolutionary computation (EC) that have some 
characteristics of speciation, but none that match natural 
processes.  In an effort to develop such a form of EC, we created a 
simple model that we used to experiment in developing an EC that 
mimics natural speciation.  Our long term goal for speciation is to 
have a single population eventually become two populations that 
are reproductively isolated even though they reside in the same 
environment.  In previous work we developed an environment 
where we replicated adaptation, survival of the fittest, and 
migration of a population.  In this paper, we report on research 
where we used this environment to explore the possibility of 
speciation.  We use a genetic algorithm that alters the agents in the 
environment as we allow a population of intermixing individuals 
to develop and become established.  We then add a physical 
barrier that separates the individuals in the population and then 
remove the barrier after several generations to see if the initially 
single population becomes two reproductively isolated populations 
despite no longer being physically isolated.   In this way we were 
able to replicate the initial stages of allopatric speciation.    

Keywords— Allopatric, Sympatric, Speciation, Bioinspired, 
Genetic Algorithm, Artificial Life, Agent Modeling, Rule Base, 
Evolutionary Computation 

I. INTRODUCTION 
Speciation is the process of creating a new distinct species 

from an ancestral species. There are a variety of definitions for 
what makes a distinct species. The long term goal for this 
research is to have the individuals of one species unable to 
produce viable offspring with individuals from another species. 
The short term goal is to have individuals of differing species 
choose not to mate and if they do produce offspring, the 
offspring do not mate. This would result in separate gene pools 
for each species. There are two types of speciation, sympatric 
speciation and allopatric speciation. Sympatric speciation is the 
process where completely new species evolve from a common 
ancestral species despite the new species occupying the same 
geographic area [1].  Allopatric speciation is the process where 
a new species evolves from a common ancestral species due to 
some form of geographic isolation. 

The overarching theme of our speciation research is to see 
if it is possible to replicate or simulate both allopatric and 
sympatric speciation using an artificial computer environment 
and a genetic algorithm (GA) [2]. GAs consist of a population 

of individuals that are intended to be the solutions to a problem.  
The traits of these individuals are encoded in chromosomes, 
which are often constructed from a sequence of 0’s and 1’s so 
that they are amenable to genetic operators such as crossover 
and mutation.  New individuals are evolved by finding a fitness 
value for each current individual, which is used for selection. 
Crossover between chromosomes is used to create a new 
chromosome, which is then subjected to random mutations.   
This new chromosome is used to create a new individual that is 
introduced into the population. 

In this paper we present our results for replicating allopatric 
speciation. The motivation for the work is to both test biological 
theories and to find ways to improve genetic algorithms. The 
ability to replicate and model evolution using artificial species 
could directly translate to actual processes occurring naturally 
in the world. This might provide insight into the true 
evolutionary processes. Additionally the work could improve 
the use of genetic algorithms to a point where learning can 
progress to form more complicated solutions to problems using 
improvements through speciation. 

Other research has been done that tends toward speciation. 
Most of this has been focused on the use of niching to improve 
the use of GAs for multimodal function optimization [3]. The 
idea is to compute a similarity measure between chromosomes 
and use this to form niches with subpopulations in the solution 
landscape. This is an effective way to ensure distribution in GA 
chromosome solutions and researchers have expanded the idea 
to create new ways to ensure niches are maintained [4]. 
Although a good solution for multimodal function 
optimization, niching with its distinct subpopulations is not 
what we consider speciation. The individuals within the niches 
are determined by a similarity function as opposed to mating 
preferences as in natural systems. The similarity function is 
artificially creating the subpopulations. In our research we want 
the subpopulations to develop naturally.   

A system that makes use of the concept of niching for the 
evolution of agents is NeuroEvolution of Augmenting 
Topologies or NEAT [5]. NEAT is similar to our research 
because it uses evolutionary processes to learn agent controls, 
the learning is in real time, and there is a concept of speciation. 
NEAT uses a compatibility function to determine if two agents 
are part of the same species or not, similar to how in nature 
things that are more structurally different are usually different 
species. NEAT has access to all the historical data for an agent 
and this information is used to tell which gene corresponds to 
another gene and which agents belong to which species. 



Additionally, NEAT uses explicit fitness sharing which makes 
similar agents share their fitness pay off. This means that there 
is competition within species, but not as much between two 
different species. In our system we want species to develop 
through natural reproductive isolation -- they choose not to 
mate as opposed to us restricting them from mating. This is 
more in line with the natural processes needed for biological 
speciation.  Our system does not make agents share their fitness 
payoff, although limited resources could tend to have this 
result. It allows competition within a species and between 
species because agents are constantly vying for the food 
resources in the environment regardless of the species type. 

The Speciation Island Mode (SIM) has some similar 
characteristics to our work as well as it tries to evolve new 
subpopulations. The goal of this research was to investigate “a 
novel model for parallel evolutionary algorithms (EAs) based 
on the biological concept of species” [6]. Here species represent 
potential solutions to problems and islands are different 
processors which can have solutions allocated to them. The 
processors can then perform varying processes such as fitness 
calculations in their own sub-population. Population outliers of 
islands are detected. The outliers are removed from the 
population and then placed on another island. The outliers and 
the other population can then evolve independently of each 
other. Allopatric speciation is occurring due to the physical 
separation of the individuals, however outliers are detected and 
actively removed from the population without natural 
migration. So although allopatric speciation for EA’s is used it 
does not truly occur naturally in a biological sense. 
Additionally, there is no notion of true speciation since the 
populations are never recombined to test for reproductive 
isolation. Our work uses the idea of allopatric speciation for 
GAs in a strict biological sense. 

This idea of islands and speciation has also been explored 
on in other instances such as the Evolving Neural Networks 
with Collaborative Species research done by Potter and De Jong 
[7]. In this case, cooperative speciation is applied to get 
solutions to a problem. The research uses the same premise of 
having islands (processors) which each independently evolve 
their own populations. However the islands communicate with 
each other because the islands select representatives to be 
combined with the other representatives into a single structure. 
The structure is then evaluated to see how well the problem was 
solved. Credit to the solution heads back via the representatives 
to their respective islands so the EAs get data on how to evolve 
the next wave of island agents. This system is known as 
Cooperative Coevolutionary Algorithms and is intended to 
solve large problems as opposed to replicate speciation [8]. The 
species start out separate and remain that way, whereas our 
species start as one species and split into two. In addition, their 
species are intended to work together whereas our organisms 
are in competition for food resources. 

In addition to speciation we use a unique method of variable 
population sizes for GA’s. The Genetic Algorithm with 
Varying Population size (GAVaPS) implemented a way to have 
the population size vary by introducing aging in the agents [9]. 
In GAVaPS, an individual will die when its age exceeds its 
lifetime value. The paper discusses different processes for 
which a lifetime value can be decided for an individual, 
meaning that the lifetime value, which remains constant as the 

agent ages, is determined for each individual. Our research is 
similar to the idea of GAVaPS, but has key differences. We 
allow for variable population size by implementing age as well, 
however we do not pre-determine a lifetime value for our 
agents. Instead we use age to impact how much life (energy) an 
agent loses each round. Once the energy drops to zero or less, 
the agent will die. Thus we do not determine a lifetime value 
for the maximum age an agent can get. We use an energy score 
which is impacted by age to decide if an agent should die. 

Other GA’s have been created to allow variable population 
sizes as well, such as APGA, PRoFIGA, and the PSO-GA 
hybrid algorithm (PGHA) [10]. The PGHA has similarities to 
our research because “parents are neither dead after their 
reproduction right away, nor living forever”. Agents can 
survive after reproducing but the longer they live, the higher the 
probability that they die. The PGHA uses an actual probability 
to determine if an agent is alive after n rounds. The algorithm 
selects agents based on fitness and allows for a variable 
population size. In our work, selection is based on location (the 
proximity of two agents) and the selectivity of the two agents.  
In addition, we use variable population size, however we use 
age as a factor that directly impacts an agent’s energy as the 
simulation progresses, as opposed to the PGHA method of 
using a probability to determine life and death. 

II. ENVIRONMENT 
The model we developed was designed to be as simple as 

possible, yet complex enough to create situations where 
speciation would occur. We use a grid environment where 
agents are capable of moving, eating, and interacting with each 
other. This grid can be of variable length and width depending 
on the test and application needs. In the research reported in this 
paper we used a 100 x 100 grid environment -- Figure 1 shows 
what this looks like before adding agents. The grid is made up 
of discrete blocks (spaces), which can be empty or have a seed 
and/or an agent within them. A seed is represented as a square 
while an agent is represented as a circle.  During each time 
cycle, the agents all move one block as specified by their 
controller and food pops up in the grid.   

The food in the environment is made up of seeds with three 
different sizes: large, medium, and small.  The density of each 
seed type can be specified, which dictates the numbers of each 
seed type added to the grid during each time cycle.  The grid is 
divided into 3 sections: the left third, middle third, and right 
third; where differing distribution probabilities for each seed 
type can be specified.  For example, with a large seed 
distribution of 80/10/10 in the grid, a large seed would have an 
80% chance of occurring in the left third of the grid, a 10% 
chance of occurring in the middle third of the grid, and a 10% 
chance of occurring in the right third of the grid. Having the 
grid environment split up into different sections simulates 
different distinct overlapping environments, which could be 
used to replicate different climates or soil types.  New seeds 
will populate the environment after every time cycle in the 
simulation (when all the agents have had a chance to perform 
some action).  The number of new seeds added is determined 
by the designated density for each seed type. Their placement 
is random, but determined by the distribution for each seed 
type.  The food does not move – once seeds are placed, they 
stay in that position until they are eaten.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Fig. 1.  100 x 100 grid environment populated with seeds but with no agents. 
The large seeds are mainly in the left third, medium seeds are mainly in the 
middle third, and small seeds are mainly in the right third.  This probability 
distribution can be changed to fit the testing needs. 

Agents move around within the environment, eat seeds, and 
have the potential to interact with each other. The number of 
agents in the environment will increase and decrease depending 
on the actual environment. The physical characteristics of the 
agents are color and size. The initial population of agents 
receive random colors and sizes. An agent’s color is stored as 
an RGB value, but as new agents are created, their color is 
inherited from the parents’ colors with some chance for 
mutation (adding/subtracting from a parents RGB value). 

 
 

  

 

 

 

 

 

 

 

 

 

Fig. 2.  A 10 x 10 grid with agents (circles) and seeds (squares) of varying sizes 

 
The agents have varying sizes of large, medium, and small. 

The size of the agent determines which seed that agent is most 
capable of eating. If a large agent was surrounded by 2 small 
seeds, a medium seed, and a large seed, then the best option for 

the agent would be to move to and eat the large seed. An 
example of the varying sizes of agents and seeds as well as the 
general distribution of seeds can be seen in Figure 2. 

Each agent has two chromosomes.  One of the chromosomes 
(details discussed in the next section), dictates what activity it 
will do given its surroundings.  One of the possible actions of 
an agent is to mate with another agent in its adjacent vicinity. If 
this successfully occurs, another agent is produced and placed 
into the environment within three blocks from the parents.   The 
second chromosome of each agent specifies what it is looking 
for in a partner in order to reproduce. It dictates the desired 
partner size, maximum color difference between partners, and 
desired age range in the partner (Figure 3, Tables 1, 2, and 3). 

 
Agent 1 - Size: Medium, R color: 100, G color: 100,  
B color: 100, Age: 55 
Chromosome: 1 1 0 0 1 1 0 1 0 0 1 
Size Desires: 1 1 meaning any size 
Max Color Dif: 0 0 1 meaning 189 
Ideal Age Range: 1 0 1 meaning 110 - 124 
Actual Age Range: 0 0 1 meaning up and down 1 index spot, 
95 - 139 

 
Agent 2 - Size: Large, R color: 50, G color: 50, B color: 50, 
Age: 135 
Chromosome: 0 0 1 1 0 0 0 0 1 0 0 
Size Desires: 0 0 meaning medium 
Max Color Dif: 1 1 0 meaning 664 
Ideal Age Range: 0 0 0 meaning 35 - 49 
Actual Age Range: 1 0 0 meaning up and down 4 index spots, 
35 – 109 
 
Fig. 3. Example of two agents that would successfully reproduce with each 
other given their chromosomes and specific information. 
 
 

There are four possibilities for desired partner size: medium, 
small, large, and any. The first two bits of the chromosome 
represent what an agent is looking for in partner size (Table 1). 

Following the size preference bits, the next three bits dictate 
the maximum desired color difference in a partner agent (Table 
2). To find the difference in color we find the difference 
between the various RGB values of both agents, take the 
absolute value, and then add them up. This means that the 
smallest color difference between agents can be 0 and largest 
can be 765 (3 * 255). The range of color difference between 
two agents goes from 0 to 765. The range is broken up into 
chunks with the following ranges: 0-94, 95-189, 190-284, 285-
379, 380-474, 475-569, 570-664, and 665-765.  

TABLE I.  THE BIT COMBINATION FOR THE DESIRED MATE SIZE OF A 
PARTNER AGENT. 

 
 
 
 



TABLE II.  THE BIT COMBINATION FOR THE MAXIMUM COLOR 
DIFFERENCE BETWEEN THE TWO AGENTS. 

 

 

 

 

 

 

 

TABLE III.  THE BIT COMBINATION FOR THE IDEAL AGE RANGE OF THE OF 
A PARTNER AGENT 

 

 
 
 
 
 
 
 
 
 
 

 
Agents grow older every time cycle in the simulation. The 

age of reproductive fertility was defined to be between the ages 
of 35 and 154. For age desirability of a mate, this was broken 
up into eight categories: 35-49, 50-64, 65-79, 80-94, 95-109, 
110-124, 125-139, 140-154. The next three bits of the mating 
selectivity chromosome dictate which of these categories are 
considered the ideal age of the partner (Table 3).  The next three 
bits of the chromosome represent an added range (plus and 
minus index value) from the ideal age category for mating.   

All of these three mating characteristics can best be seen in 
an example in Figure 3.  We can see in the figure that the two 
agents would reproduce. Agent 1 desires an agent of any size 
and Agent 2 desires an agent of medium size. In both cases the 
agents are compatible. The color difference between the two 
agents is 150 and both agents allow for a maximum color 
difference that is more than 150, so the color traits show the 
agents are compatible. Finally the desired age range for Agent 
1 is 95 - 139 and Agent 2 has an age of 135. The desired age 
range for Agent 2 is 35 - 109 and Agent 1 has an age of 55. The 
age of both agents fall into their partners desired range. Thus 
the age traits show that they are compatible. From this, the 
agents choose to mate and attempt to create a child. 

III. AGENT CONTROLLER 
The actions of each agent are controlled by a rule based 

system, which is made up of a set of different rules (antecedent 
/ consequent) that control the actions of the agent. If the 
antecedent of the rule is true, then the rule fires and the action 
in the consequent is taken. If more than one rule has the 
potential to fire, some means of conflict resolution is needed. In 
our research, we use priority ordering (this is learned by the 
GA) so the highest priority rule with a true statement fires. If 
there is a tie in priority, a random tied rule is chosen to fire. The 

rule based system was used to determine what specific action 
the agent would take at each time cycle in the environment. 

The agents are capable of performing various actions: move 
to a free space, move to a free space and attempt to reproduce, 
move to a large seed space and do not eat it, move to a medium 
seed space and do not eat it, move to a small seed space and do 
not eat it, move to a large seed space and eat it, move to a 
medium seed space and eat it, move to a small seed space and 
eat it. At each time cycle the immediate surroundings of an 
agent (one square up, down, left, and right) are analyzed in 
conjunction with the antecedent of the rules to see which rules 
are set to fire. This will be used to determine, depending on the 
rule priorities, the action from the rule base the agent performs. 

TABLE IV.  PERCENT CHANCE AGENTS SUCCESSFULLY PRODUCE AN 
OFFSPRING   

 

TABLE V.  ENERGY FROM SEEDS  

 
 
An agent starts with 250 energy.  All actions have a cost, 

and will decrease an agent’s energy. When agents attempt to 
reproduce, it will cost both agents a standard 80 amount of 
energy. Reproduction between agents of varying sizes will not 
always be successful. The probability that agents of differing 
sizes successfully produce an offspring can be seen in Table 4.  
Any action other than reproduction reduces the agent’s energy 
by the square root of agent’s age, so older agents use more 
energy to survive each time cycle.  If an agent eats a seed it will 
get a certain amount of energy depending on the agent’s size 
and the size of the seed being eaten as depicted in Table 5.   For 
example, if we had a large agent that had 200 energy and 100 
age, and it moved to and ate a large seed, the resultant energy 
would be: 200 + 30 −  √100 = 220. 

An example of a chromosome with its resultant priorities 
can be seen in Table 6.  This table depicts a single agents’ 
chromosome broken into its separate parts and what each part 
of the chromosome dictates. The chromosome is broken into 
eight four bit sections. Whichever section has the highest 
decimal value relative to the agent’s surrounding is the action 
performed.  

 



  

TABLE VI.  AN EXAMPLE ACTION CHROMOSOME THAT DETERMINES PRIORITIES FOR THE RULE BASED SYSTEM CONTROLLER.                                                           
THE COMPLETE CHROMOSOME IS: 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 0 

    
According to this example the agent would most want to 

move to a large seed space and not eat the food. However if one 
of the adjacent spaces does not contain a large seed this action 
cannot be performed; the next highest priority rule will be 
checked to see if the antecedent is satisfied.  In this case, the 
agent would try the rule that would move it to a free space. This 
process of finding the highest rule to fire is continued until a 
rule is fired. In the case of a tie, one of the tied rules is randomly 
picked to fire.  Pseudocode for the algorithm can be seen in 
Figure 4. 

 
For each agent in the environment: 
   Get the adjacent points (at most 4) 
   For each adjacent point: 

 Determine the appropriate rule/rules for that point 
 Add point/rule pairs to a RulesToFire list 

   Determine the rule priority for the agent from its chromosome 
   Fire highest possible rule and move agent to that space 

If there is a tie in rule priority: 
    Pick random rule to fire 
If multiple possible positions for firing rule: 
    Pick random space to move to 

      If rule selected is mate: 
          Determine if both agents are willing to mate 
          If agents mate: 
              Create new agent  
              Place it at random space within 3 spaces of parents 
   Reduce energy of agent 
        If attempted to mate  

Reduce energy of both partners by 80 
        Else reduce energy by the square root of agent age 
   Add energy to agent if food consumed 
   Add one to the age of the agent 
   Update agent information in environment 

 
Fig. 4. .Pseudocode for the algorithm that determines the movement / actions 
of the agents in the environment. The information about each of the agents is 
stored in a master list. 

 

IV. GENETIC ALGORITHM LEARNING 
The rule based system controls each agent while a GA is used 
to learn rule priorities and selectivity for reproduction for each 
agent.  It allows the agents to pass their characteristics to their 

offspring. The GA operates on two chromosomes (mating 
preferences and rule priorities), each made up of 0’s and 1’s.  
Selection in our system is determined by physical proximity 
(adjacent spaces) of the two individuals and they need to both 
agree to mate depending on the other’s size, color, and age. The 
idea of selection weighted by agent fitness does not fully apply 
here. Instead, any agent can attempt to reproduce, however the 
fitter agents should have a greater chance to reproduce because 
they will have more energy for reproduction and survive longer.  
Crossover is single point with 100% chance of crossover and 
mutation is bitwise independent with a very low probability of 
mutation (1/300 per bit).   

The GA used in our research is similar to a steady-state GA, 
except that we do not use standard chromosome replacement 
with our GA – old individuals die when out of energy and new 
individuals are added to the population with no regard to the 
overall size of the population.  

V. RESULTS 
Initial tests were done to check the model [11].  These tests 

showed that populations could evolve to optimize for the 
available food sources, adapt to changing environments, migrate 
to changing locations of food sources, and adjust when both 
locations and types of foods changed. 

Tests were then created in an attempt to replicate allopatric 
speciation. A population of medium agents who inhabited the 
middle third of the grid was established. The environment was 
set up such that only medium seeds existed in the grid in a 
10/80/10 distribution. The initial random population of 
individuals was created, and as expected all the big and small 
agents died out while a population of medium agents established 
themselves in the middle third of the grid. Once the population 
was fully established, a physical barrier (wall) was put up in the 
middle of the grid, and thus in the middle of the population. At 
the same time the wall was put up, medium seeds were no longer 
being produced and large and small seeds began to be produced 
predominantly in the left and right third of the grid respectively. 
As expected from previous tests, half of the medium population 
migrated to the large seed section and evolved to a population of 
large agents. The other half of the medium population migrated 
to the small seed section and evolved to be a population of small 
agents. The two separate populations were allowed to evolve 
independently while the wall remained in existence. After 
thousands of time cycles the wall was removed. 

Using the established populations from this simulation run 
as a starting point, two tests were performed. The first test 

Rule Base Free 
Space 

Repro 
duce 

Large 
Seed 

No Eat 

Med 
Seed 

No Eat 

Small 
Seed 

No Eat 

Large 
Seed 
Eat 

Med 
Seed 
Eat 

Small 
Seed  
Eat 

Chromosome 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 0 

Decimal Value 13 7 14 10 0 10 7 8 



involved evenly distributing large and small seeds throughout 
the grid. This was done to make the two separate populations 
interact with each other to see if they would reproduce. When 
the seeds were evenly distributed, one of the populations would 
eventually die off.  The two populations expanded to follow the 
food sources, and started to compete for food and space.   One 
population would eventually outcompete the other population 
and starve it of any food, leading to that population’s extinction. 
This level of competition was an unexpected result in our 
environment. 

In order to solve the competition issue, a second test was 
performed beginning from the same starting point with two 
established populations.  For this test the large and small seeds 
remained concentrated mainly in their respective thirds of the 
grid. Yet to allow mixing to occur the middle third of the grid 
was utilized as a meeting ground. The distribution of the seeds 
were changed such that a quarter of all large and a quarter of all 
small seeds being produced would be placed in the middle third 
of the grid. This allowed agents from both populations to 
migrate to the middle third and interact with each other.  

The agents from this test were tagged to see if they would 
reproduce with each other. If an agent of the large seed 
population successfully reproduced with an agent of the small 
seed population then the offspring was called a first degree 
hybrid. If the first degree hybrid mated with any other agent in 
the population then that offspring would be called a second 
degree hybrid. We reasoned that first degree hybrids could exist 
with distinct species (such as a horse and donkey making a 
mule).  However, for a successful test, the first degree hybrid 
should not reproduce, which would mean no second degree 
hybrids (although our first degree hybrids would not technically 
be sterile as the mule, the effect would be the same).  

We ran multiple tests starting from the same point and there 
were examples where first and second degree hybrids would 
appear. In some cases the hybrids would die out, but there were 
others where the hybrids would persist and reproduce with 
agents from the main populations. Our goal was to show that 
speciation could reasonably develop, not that it was guaranteed 
to develop. 

Although it did not happen on all of the runs, we had 
simulation runs where there developed two separated 
populations that were potential species.  We recorded the first 
20,000 time cycles of the agents meeting in the middle third 
common area. In one of the tests, we found that only five first 
degree and no second degree hybrids came into existence over 
the 20,000 time cycles. This was a promising sign that our 
environment could accurately replicate allopatric speciation. It 
was also interesting to note that the two species appeared to have 
adopted their own general color. The large species were mainly 
some form of green while the small species were mainly some 
form of dark purple or violet. This seemed to indicate that the 
species were diverging in other areas of phenotype as well. 

A look at the chromosomes revealed that size was the main 
factor in selection.  Our tests had agents select other agents based 
on size, color, and age. Since size was the main issue involved 
in survival, the agents tended to ignore color and age.  The 
agents evolved to mate with an agent of any color and 
reproductive age. The result was that the limiting factor evolved 
for reproduction was mainly the size of the agents. 

VI. CONCLUSION 
We conclude that the short term goal of replicating the 

initial stages of allopatric speciation has been achieved. We 
know this because only first degree hybrids existed at some 
point during our final test and no second degree hybrids. It is 
worth noting that it took 13,000 iterations to get the test to the 
point where we removed the wall and only five first degree 
hybrids existed in the next 20,000 generations. Although having 
any hybrids is not ideal, we feel the results are positive.  Even 
though first degree hybrids existed, they did not reproduce, 
meaning they would not affect the gene pool of either of the two 
main species populations. 

In future work, we’d like to expand the agent characteristics 
that were used for selectivity.  Alterations that forced the agents 
to choose a mate based on color and age, as opposed to mainly 
size, could be the next step in a more complete replication of 
speciation. 
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