
Fitness Biasing for Evolving an Xpilot Combat Agent
Gary Parker and Phil Fritzsche

Computer Science
Connecticut College

New London, CT, USA
parker@conncoll.edu, pfritzsche@gmail.com

Abstract—In this paper we present an application of Fitness
Biasing, a type of Punctuated Anytime Learning, for learning
autonomous agents in the space combat game Xpilot. Fitness
Biasing was originally developed as a means of linking the model
to the actual robot in evolutionary robotics. We use fitness
biasing with a standard genetic algorithm to learn control
programs for a video game agent in real-time. Xpilot-AI, an
Xpilot add-on designed for testing learning systems, is used to
evolve the controller in the background while periodic checks in
normal game play are used to compensate for errors produced by
running the system at a high frame rate. The resultant learned
controllers are comparable to our best hand-coded Xpilot-AI
bots, display complex behavior that resemble human strategies,
and are capable of adapting to a changing enemy in real-time.

Keywords-Xpilot; Xpilot-AI; Anytime Learning; Punctuated
Anytime Learning; Fitness Biasing; Genetic Algorithm; Real-time
Learning; Video Game Learning; On-line Learning

I. INTRODUCTION
The objective of this research is to develop a robust method

for real-time learning in the Xpilot-AI game environment. An
important issue faced by artificially intelligent systems is that
they are limited in effectiveness without a method for being
adaptable. They can often perform well in specific situations,
but do not have the ability to cope when an unanticipated
element is introduced. Though the systems may be intelligent,
their intelligence is only applicable to these specific situations.
This issue makes the use of many such systems impractical in
the real, or even virtual worlds, simply because of the
unpredictable nature of any complex environment. It is
impossible to predict everything that will happen in real life, so
writing a program that can only work in specific situations can
easily be rendered ineffective by a simple change that was not
predicted.

Of particular interest in the gaming world is the ability to
produce human-like agents for opponents. One characteristic of
humans is their ability to learn and adapt to the manner of play
of others in the game. This is a large part of what makes video
games enjoyable. Creating artificially intelligent systems that
are capable of doing this in real-time is an important aspect, as
well as one of the most difficult aspects, in game development
[1].

To conduct research in methods for addressing this issue,
Xpilot-AI, a robust testing environment for autonomous agent
learning, was selected. Video games in general and Xpilot in
specific provide a rigorous testing environment for artificial
intelligence research. Its complex nature has the capability to

test agent control programs in different scenarios made possible
by the variable parameters of the game.

In order to test methods for providing agent learning in real-
time in an environment, it is of benefit to first show that a static
learning system can produce a controller that behaves
intelligently. This has been done in the Xpilot environment
using genetic algorithms (GAs) to evolve parameters for an
expert system [2]. In this system, an expert system-controlled
agent was modified to work with a GA. The algorithm evolved
optimal parameters for the rules of the expert system. Other
methods have also been used to demonstrate learning in Xpilot.
For example, a genetic algorithm was used to evolve the
weights for a neural network-controlled agent [3] and a cyclic
genetic algorithm was used to directly evolve a control
program for an agent [4]. These learning systems, while useful,
learned control behaviors before the agent was active and had
no means of adapting to changes in capabilities or the enemy’s
behavior.

Though these methods used a genetic algorithm to learn an
effective controller, the final products are lacking the ability to
adapt to changes in enemy behavior in real-time. In previous
research, dynamic programming-based reinforcement learning
techniques, such as Q-learning, were used to produce an Xpilot
agent capable of real-time learning, but the controllers learned
were for a very simple environment. The Q-learning method
implemented requires an accurate model to be successful. Since
the Xpilot combat environment is very complicated, this
method was applied only to a single agent in a simple
environment with no opponents [5]. Though it was a successful
implementation of real-time learning, it was determined to not
be as scalable as desired. As the complexity of the environment
increases, such a system’s ability to cope rapidly deteriorates.
One possible solution for this issue is described by Lucas [6].
DynaQ, a form of Q-learning, updates the agent’s model of the
environment as it explores. Doing so could allow an agent to
more adeptly adapt to the large and constantly changing Xpilot
environment. In another attempt to demonstrate real-time
learning in Xpilot, evolutionary strategies were used to learn
agent controllers [7]. Though capable of real-time learning,
their reliance on mutations of a chromosome to evolve led to
slower learning and a lack of effectiveness.

For other games, a number of different strategies have been
used to attempt real-time learning. For the DEFCON computer
game, researchers applied decision-tree learning and case-
based reasoning combined with simulated annealing methods
with the intention of creating human-like behavior [8]. Others
applied evolutionary techniques to neural networks by starting

with simple networks then slowly adding nodes and
connections while the game is running to make the agent learn
increasingly complex behavior in real-time [9]. While both of
these do learn in real-time, they also both rely on past
knowledge and pre-defined courses of action. Changes are still
made even after the game is over. Others have used a genetic
algorithm approach, attempting to learn competitive human-
like behavior in the video game Quake [10].

While useful, none of the above systems were able to fully
solve the problem of creating a real-time learning system in the
interactive game environment. Although genetic algorithms
have been used successfully to generate controllers for
interactive game environments, they have not been used in a
real-time learning system since they require each individual of
the population to be tested. In order to be able to adapt to an
opponent’s play in real-time, these tests would have to be done
by playing the opponent. In addition, the genetic algorithm
typically starts with a random population of solutions. This
would make particularly poor play for someone playing the
game. What is needed is to be able to do the learning on a
model of the game with periodic checks to make sure the
model represents the actual play.

In the study of learning in robotics, systems have been
created to solve the issue of real-time learning with genetic
algorithms. One such example is Anytime Learning (AL)
developed by Grefenstette and Ramsey [11]. AL places a
learning module in a robot and uses an observer module to
learn from the robot’s environment. The information gathered
is used to influence the learning processes such that there is a
link between the actual robot and environment to the
simulation. As the learning system is on-board the robot, it has
the potential to learn indefinitely. As long as the robot is
running, it will continue to attempt to improve the controller.

Anytime Learning worked well for robots with the
capability to carry the learning system on the robot. However,
this is not always practical. For example, if the robot’s
environment is highly dangerous, it may be more practical to
use several less expensive and expendable robots as opposed to
one to complete the mission. Rather than having each robot
carry an expensive on-board learning system, it would be more
practical to have one off-board learning system used for all of
the robots. One other issue with anytime learning is that the
observer module had to recognize and categorize changes in
the environment, a task that requires extensive computation.

Punctuated Anytime Learning (PAL), which was originally
developed for evolving robot controllers [12], is a modification
of AL that was developed to address these issues. In this paper,
PAL is used to create a real-time learning system for control of
agents in Xpilot-AI.

II. XPILOT-AI
Xpilot is an open source multiplayer two-dimensional space

combat game consisting of two main components: the server
and the client (Figure 1).

The server controls global settings, such as the number of
frames per second in a game and the map being used. It also
keeps track of the players playing the game, their scores, and
other information. The client is what the users control to play

the game. Specific keystrokes allow the users to control their
ship by thrusting, turning, or shooting.

The game itself contains relatively realistic physics. Going
too fast into a wall will cause the agent to explode, while
running into a wall at a very slow speed while cause the agent
to both bounce off the wall as well as decrease their speed
slightly. As it is set in space, gliding without thrusting causes
the agent to move with constant velocity.

Xpilot-AI is an add-on to the Xpilot game that allows users
to write scripts to control the Xpilot agents. These scripts can
be used to learn intelligent behavior and as a result, Xpilot-AI
has become a powerful testing ground for researchers of
artificial and computational intelligence. Agents controlled by
scripts can play along with other scripts, humans, or server-
controlled robots on any standard Xpilot server.

This provides an interesting opportunity to test autonomous
agents by running them against both other computer-learned
agents as well as human players. Seeing the agent in action in
both environments can not only increase our understanding of
what behavior is being learned but also make sure that it is able
to compete against all types of opponents.

III. FITNESS BIASING
Fitness Biasing is one of two methods of Punctuated

Anytime Learning, which is a type of Anytime Learning.
Anytime Learning as a system, described for evolutionary
robotics by Grefenstette and Ramsey [11], is split up into two
major components: the execution system and the learning
system (Figure 2). The execution system handles everything
essential to running the agent in its environment. It runs the
decision maker, which is responsible for deciding how the
agent should react in a given situation. The knowledge base
acts as a current strategy for the decision maker as it instructs
the agent to execute actions in its environment. Also in the
execution system is a monitor, which is responsible for

Figure 1. Two agents face off in Xpilot

gathering information about the agent’s environment. It
identifies and remembers changes in the environment, then
sends this information to the learning system.

The learning system uses this information to alter the
simulation model to more accurately represent the actual
environment. A decision maker also works in simulation to
facilitate the learning process. It relies on a test knowledge
base, separate from the active one in the execution system.
Based on the information gathered from the simulation, the
learning method works to increase the robustness of the system
and sends information to the active knowledge base whenever
something new and improved is learned. One potential issue
with this system is the monitor. Accurately and dynamically
determining changes in the environment to update the
simulation is a difficult task. Another issue with AL is that it
requires the learning system to be onboard the robot. This is not
always possible when it is desirable to have multiple less
expensive robots perform the task.

PAL, an extension of AL, was developed to address these
issues [12]. It requires the monitor to observe only the
performance of the system and not attempt to observe what
changes caused the differences. Rather than requiring the
monitor to observe the entire environment and remember any
changes, it is instead required only to track the performance of
the agent. This simpler task leaves less room for error. In
addition, the learning system is designed to be off-board the
agent. Disconnecting the two systems makes it easier to
integrate additional agents to a single learning system and as a
result increase the robustness of the system by allowing the
same learning system to continue on even if one agent fails.
There are two types of PAL: Fitness Biasing and co-evolution
of model parameters.

In this research, Fitness Biasing is used to help sync the
simulation with the agent’s environment (Figure 3). The
learning system periodically contacts the agent for testing. At
an appropriate time, every chromosome in the learning
system’s population is tested on the agent. The fitnesses of the
chromosomes tested on the actual agent are recorded and
compared to the fitnesses the chromosomes received in
simulation. For each fitness, a bias is calculated by dividing the
fitness received while testing on the agent by the fitness

received in simulation. These biases are then sent back to the
learning system. From that point on through the next
punctuated generation, when calculating a new score for a
particular control program, it is first multiplied by its assigned
bias to skew it towards what would be more expected on the
actual agent. The biases are also altered during the learning
process. While generating a new population every generation,
each time two chromosomes are selected and recombined their
biases are averaged together, and this averaged bias is assigned
as the bias for their offspring.

IV. FITNESS BIASING APPLIED TO XPILOT-AI
When creating an Xpilot server, it is possible to change the

number of frames per second (FPS). An increased number of
FPS causes the game to run considerably faster. As a result,
more information must be sent between the server and the
clients connected to it. Ideally, when attempting to run a
learning algorithm it is run as fast as possible. However, due to
limitations in the design of Xpilot-AI, running it at a too high
FPS causes the game to behave abnormally, reducing the
learning capabilities. This is a problem for real-time learning.
Typical game play is at 16 FPS. If a GA was run at this speed
against the opponent, it would not complete enough games to
have a noticeable learning effect. A background GA can be
running, but unless it is at increased speeds, the real-time
learning will again be nominal. What is needed is to run a
background GA at high speeds, using Fitness Biasing to
periodically help in the simulated learning process. This is what
was done in this research. In order to determine the best FPS
for the learning system, a standard genetic algorithm was used
to do learning at different speeds.

This agent was controlled by an expert system and the
genetic algorithm learned optimal values for the parameters
shown in Figure 4. To calculate the fitness, each agent was
allowed to engage for two minutes in simulation. Its opponent
was a robust hand-coded expert agent named Sel. During these

Figure 2. Anytime Learning System (replicated from Grefenstette and
Ramsey [10])

Figure 3. Fitness Biasing

two minutes, the agent would receive one point of fitness for
every frame it was alive, plus 1000 points of fitness for every
time it killed its opponent, and lose 20 seconds off its total time
available for each death it experienced.

This genetic algorithm agent ran on servers set to varying
frames per second, starting at 16 FPS and up through 128 FPS.
Five trials were run at each speed with the fitnesses at each 5
generations averaged. The results of these trials [Figure 5] were
used to confirm that the performance of agent learning
drastically decreases as the FPS of a server increases. An agent
running at 16 FPS performed the best, followed by 32 FPS and

so on. Agents running at 128 FPS showed slow but steady
improvement over the course of 115 generations.

As the increase in FPS from server to server effectively
increases the amount of game play the agent gets during a
certain period of time, we scaled the data to get the above
graph to normalize every agent to the 16 FPS agent. Since each
was run for two minutes despite the FPS, we divided the
fitnesses of the agent run at 32 FPS by two, the fitnesses of the
64 FPS agent by 4, and so on. This division occurred because
the fitness evaluations for the varying FPS all lasted for two
minutes. An agent running at 32 FPS, for example, was
effectively allowed be tested twice as long given that twice the
number of frames passed in the same amount of time.

To confirm these results, we took the best agent for each of
these genetic algorithms at the 50th and 100th generations and
tested them in games at 16 FPS to attain their fitnesses over
five trials [Figure 6]. Their fitnesses were consistent with the
results of the genetic algorithm trials shown in Figure 5.

In another test to ensure that the results were consistent, we
ran an agent at 128 FPS with one-eighth the time for each
fitness calculation [Figure 7]. The fitness matches that of the

• span – the angle between the line from the agent’s nose to a
target location and the edge of the nearest wall. Used to determine
if the agent is blocked from a bullet by a wall.

• offset_inc – indicates the increments used to determine the
optimal direction to turn to avoid crashing into a wall

• same_spread – the difference allowed between the distances
returned by two wall feelers which would result in considering
them equal.

• wall_span1 – the angle off the ship’s track used to feel for
the closest wall.

• wall_span2 – the angle off the ship’s track used to feel for
the second closest wall.

• vd_bullet_dist – determines the bullet alert value required to
consider the bullet very dangerous.

• d_bullet_dist – determines the bullet alert value required to
consider the bullet dangerous.

• vd_dodge_bullet_angle – the angle the ship will turn away
from a bullet considered very dangerous in order to dodge it.

• d_dodge_bullet_angle – the angle the ship will turn away
from a bullet considered dangerous in order to dodge it.

• close_wall_speed – the speed of the ship in relation to the
distance to the closest wall. Used to determine if the ship should
take action to avoid the wall.

• medium_wall_speed – similar to close_wall_speed, but for
walls that are farther from the agent.

• c_angle_before_thrust – the angle of the ship’s heading away
from the closest wall before the ship will thrust.

• m_angle_before_thrust – similar to c_angle_before_thrust,
but used in a rule with lower priority

• wall_avoid_angle – how small the angle has to be between
the ship’s heading and its desired track to avoid a wall before it
will thrust.

• screen_thrust_speed – if the ship’s speed is lower than this
and it is turning to attack an enemy on the screen, it will thrust.

• radar_no_thrust_speed – if the ship’s speed is lower than this
and it is turning to attack an enemy on radar, it will thrust.

• ship_error_to_shoot – the maximum angular difference
between the desired aim direction and the ship’s heading before it
will shoot at an enemy on the screen.

• radar_error_to_shoot – the maximum angular difference
between the desired aim direction and the ship’s heading before it
will shoot at an enemy on radar.

• wall_turn_angleR – the angle between the ship’s track and
heading that the ship turns to avoid colliding with a wall when
responding to a right feeler indicating a wall that is too close.

• wall_turn_angleL – the angle between the ship’s track and
heading that the ship turns to avoid colliding with a wall when
responding to a left feeler indicating a wall that is too close.

• wall_turn_angleB – the angle between the ship’s track and
heading that the ship turns to avoid colliding with a wall when
responding to an equal distance from both walls.

• shoot_dir_rand – the angular range that the ship will use to
randomly affect its direction to aim.

Figure 4. A list of the parameters from the control program that the
genetic algorithm learned for the Xpilot combat agent

Figure 5. Data from the genetic algorithm-controlled agent running at
different FPS

Figure 6. Fitnesses of the best agents from the 50th and 100th generations
of the GAs

fitness plot we received by dividing as described for Figure 5.

Since 128 FPS was determined to be the lowest FPS that
caused issues for learning while still showing consistent aspects
of continued learning, it was selected for testing the application
of Fitness Biasing to Xpilot-AI. In the past, tests have been run
primarily at 64 FPS as that was the fastest Xpilot could be run
at without losing too much in the way of performance. Here, an
attempt is made to learn even while running at faster speeds.

To run PAL, the previously created GA-agent was modified
into two forms: one to act as the simulation and one to act as
the agent. The simulation would run just as the normal GA did
with two key additions: while calculating fitnesses, it would
bias them as previously described. In addition, every 15
generations, it would connect to the agent and calculate new
biases. While doing this, the GA would halt itself and
discontinue learning until the new biases were received.

The actual agent would run separately but simultaneously,
though it would not learn although it had the ability to calculate
fitness. It had a communication system that ran indefinitely,
waiting for the learning system to signal it with a new
population to test. Upon receiving a new population, it would
run each chromosome of the population on the agent, record
their fitnesses, calculate their biases, and then send the new
information back to the simulation. At this point it would
continue to play using the best of the chromosomes for its
controller.

Upon receiving results from the agent, the simulation would
overwrite its own collection of biases with the new information
and continue learning until another 15 generations had passed.
This process is repeated until stopped by the researcher, or
some predetermined stopping point has been reached (i.e. stop
after a certain number of generations).

V. RESULTS
Five tests runs using five randomly generated populations

were run for 115 generations each. Based on this data, it is
clear that the fitness biasing produced favorable results. The
system tested the current population on the agent to generate
new biases every 15 generations. Every 5 generations, the
average fitness of the population was recorded. Figure 8 shows

the average fitness over time as the population is evolving.
Based on this data, it can be observed that there was great
improvement in the fitness of the agent throughout the learning
period. In the beginning, the fitness averaged at approximately
350 and rose to an average of approximately 3840 by the end
of testing.

Of additional importance is a comparison of controller
quality related to the amount of time spent playing on the
agent. In the genetic algorithm controlled agents, the entire
game is played live against competitors in order to learn in real
time. After five generations, its fitness averaged at about 2100.
In the fitness-biased agent, though it had learned over the
course of 35 generations in our testing, only two of these
generations were spent on the agent playing against Sel. After
these two generations, the fitness biasing system’s average
fitness is already higher than that of the fifth generation genetic
algorithm-controlled agent and is approximately equal to the
tenth generation. This is an important factor for real-time
learning because it is learning faster per games played against
its opponent.

The above empirical data can also be confirmed by
observation. At the start of the learning process, the agent
regularly made clear mistakes in combat. For example, some
control programs would not turn sharply enough to avoid a
bullet or a wall, not thrust to avoid a bullet, or aim incorrectly
at its opponent when firing. However, towards the end, these
mistakes were corrected in the majority of the learned control
programs. The agent would adeptly dodge enemy bullets while
responding quicker and firing back with greater accuracy. This
increase in optimal behavior can be attributed to the learning
that took place as a result of the Fitness Biasing system. By the
end of training, all five trials produced individuals with
intelligent behavior that were able to consistently beat Sel both
in fitness and by the scoring system Xpilot uses to measure
player kills and deaths.

VI. CONCLUSIONS AND FUTURE WORK
Fitness Biasing when applied to Xpilot-AI agents can be

used to evolve exceptional controllers that are highly
competitive when facing opponents. The agents show the
ability to learn effective combat behavior that appears complex

Figure 7. Fitnesses over time of 16 FPS agent and a 128 FPS agent with
1/8 the time for fitness calculations

Figure 8. Fitness biased agent compared to a standard GA run at both 16
FPS and at 128 FPS

to an observer. At this point, this research has only been tested
on the agent’s ability to defeat computer-controlled agents. In
future work, we will continue to build on the complexity of the
system and test it against human opponents to measure its
effectiveness against adaptive players as well as its capability
to learn and change based on its enemy’s varying behaviors. In
addition, we will test the system with co-evolution of model
parameters, an alternative method of Punctuated Anytime
Learning.

REFERENCES
[1] G. Yannakakis and J. Hallam, “Evolving opponents for interesting

interactive computer games,” Proceedings of the 8th International
Conference on the Simulation of Adaptive Behavior (SAB 2004), pp.
499 – 508, 2004.

[2] G. Parker and M. Parker, “Evolving parameters for Xpilot combat
agents,” Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Games (CIG 2007), Honolulu, HI, April 2007.

[3] G. Parker and M. Parker, “The evolution of multi-layer neural networks
for the control of Xpilot agents,” Proceedings of the 2007 IEEE
Symposium on Computational Intelligence in Games (CIG 2007),
Honolulu, HI, April 2007.

[4] G. Parker and M. Parker, “Using a queue genetic algorithm to evolve
Xpilot control strategies on a distributed system,” Proceedings of the
2006 IEEE Congress on Evolutionary Computation (CEC 2006),
Vancouver, BC, Canada, July 2006.

[5] M. Allen, K. Dirmaier, and G.Parker, “Real-time AI in Xpilot using
reinforcement learning,” Proceedings of the 2010 World Automation
Congress International Symposium on Intelligent Automation and
Control (ISIAC 2010), Kobe, Japan, September 2010.

[6] S. M. Lucas, “Estimating Learning Rates in Evolution and TDL: Results
on a Simple Grid-World Problem,” Proceedings of the 2010 IEEE
Congress on Computational Intelligence in Games (CIG 2010),
Copenhagen, Denmark, August 2010.

[7] G. Parker and M. Probst, “Using evolutionary strategies for the real-time
learning of controllers for autonomous agents in Xpilot-AI,”
Proceedings of the 2010 IEEE Congress on Evolutionary Computation
(CEC 2010), Barcelona, Spain, July 2010.

[8] R. Baumgarten, S. Colton, and M. Morris, “Combining AI methods for
learning bots in a real-time strategy game,” International Journal of
Computer Games Technology, vol. 2009.

[9] K. Stanley, B. Bryant, I. Karpov, and R. Miikkulainen, “Real-time
evolution of neural networks in the NERO video game,” AAAI-06, pp.
1671-1674, Boston, MA, 2006.

[10] S. Priesterjahn, O. Kramer, A. Weimer, and A. Goebels, “Evolution of
human-competitive agents in modern computer games,” Proceedings of
the 2006 IEEE Congress on Evolutionary Computation (CEC 2006),
Vancouver, BC, Canada, July 2006.

[11] J. Grefenstette and C. Ramsey, “An approach to anytime learning,”
Proceedings of the Ninth International Conference on Machine
Learning, pp. 189-195, 1992.

[12] G. Parker, “Punctuated Anytime Learning for Hexapod Gait
Generation,” Proceedings of the 2002 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2002), EPFL,
Switzerland, October 2002.

