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Abstract—In this paper we present an application of Fitness 
Biasing, a type of Punctuated Anytime Learning, for learning 
autonomous agents in the space combat game Xpilot. Fitness 
Biasing was originally developed as a means of linking the model 
to the actual robot in evolutionary robotics. We use fitness 
biasing with a standard genetic algorithm to learn control 
programs for a video game agent in real-time. Xpilot-AI, an 
Xpilot add-on designed for testing learning systems, is used to 
evolve the controller in the background while periodic checks in 
normal game play are used to compensate for errors produced by 
running the system at a high frame rate. The resultant learned 
controllers are comparable to our best hand-coded Xpilot-AI 
bots, display complex behavior that resemble human strategies, 
and are capable of adapting to a changing enemy in real-time. 
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I.  INTRODUCTION 
The objective of this research is to develop a robust method 

for real-time learning in the Xpilot-AI game environment. An 
important issue faced by artificially intelligent systems is that 
they are limited in effectiveness without a method for being 
adaptable. They can often perform well in specific situations, 
but do not have the ability to cope when an unanticipated 
element is introduced. Though the systems may be intelligent, 
their intelligence is only applicable to these specific situations. 
This issue makes the use of many such systems impractical in 
the real, or even virtual worlds, simply because of the 
unpredictable nature of any complex environment. It is 
impossible to predict everything that will happen in real life, so 
writing a program that can only work in specific situations can 
easily be rendered ineffective by a simple change that was not 
predicted. 

Of particular interest in the gaming world is the ability to 
produce human-like agents for opponents. One characteristic of 
humans is their ability to learn and adapt to the manner of play 
of others in the game. This is a large part of what makes video 
games enjoyable. Creating artificially intelligent systems that 
are capable of doing this in real-time is an important aspect, as 
well as one of the most difficult aspects, in game development 
[1]. 

To conduct research in methods for addressing this issue, 
Xpilot-AI, a robust testing environment for autonomous agent 
learning, was selected. Video games in general and Xpilot in 
specific provide a rigorous testing environment for artificial 
intelligence research. Its complex nature has the capability to 

test agent control programs in different scenarios made possible 
by the variable parameters of the game. 

In order to test methods for providing agent learning in real-
time in an environment, it is of benefit to first show that a static 
learning system can produce a controller that behaves 
intelligently. This has been done in the Xpilot environment 
using genetic algorithms (GAs) to evolve parameters for an 
expert system [2]. In this system, an expert system-controlled 
agent was modified to work with a GA. The algorithm evolved 
optimal parameters for the rules of the expert system. Other 
methods have also been used to demonstrate learning in Xpilot. 
For example, a genetic algorithm was used to evolve the 
weights for a neural network-controlled agent [3] and a cyclic 
genetic algorithm was used to directly evolve a control 
program for an agent [4]. These learning systems, while useful, 
learned control behaviors before the agent was active and had 
no means of adapting to changes in capabilities or the enemy’s 
behavior. 

Though these methods used a genetic algorithm to learn an 
effective controller, the final products are lacking the ability to 
adapt to changes in enemy behavior in real-time. In previous 
research, dynamic programming-based reinforcement learning 
techniques, such as Q-learning, were used to produce an Xpilot 
agent capable of real-time learning, but the controllers learned 
were for a very simple environment. The Q-learning method 
implemented requires an accurate model to be successful. Since 
the Xpilot combat environment is very complicated, this 
method was applied only to a single agent in a simple 
environment with no opponents [5]. Though it was a successful 
implementation of real-time learning, it was determined to not 
be as scalable as desired. As the complexity of the environment 
increases, such a system’s ability to cope rapidly deteriorates. 
One possible solution for this issue is described by Lucas [6]. 
DynaQ, a form of Q-learning, updates the agent’s model of the 
environment as it explores. Doing so could allow an agent to 
more adeptly adapt to the large and constantly changing Xpilot 
environment. In another attempt to demonstrate real-time 
learning in Xpilot, evolutionary strategies were used to learn 
agent controllers [7]. Though capable of real-time learning, 
their reliance on mutations of a chromosome to evolve led to 
slower learning and a lack of effectiveness. 

For other games, a number of different strategies have been 
used to attempt real-time learning. For the DEFCON computer 
game, researchers applied decision-tree learning and case-
based reasoning combined with simulated annealing methods 
with the intention of creating human-like behavior [8]. Others 
applied evolutionary techniques to neural networks by starting 



with simple networks then slowly adding nodes and 
connections while the game is running to make the agent learn 
increasingly complex behavior in real-time [9]. While both of 
these do learn in real-time, they also both rely on past 
knowledge and pre-defined courses of action. Changes are still 
made even after the game is over. Others have used a genetic 
algorithm approach, attempting to learn competitive human-
like behavior in the video game Quake [10]. 

While useful, none of the above systems were able to fully 
solve the problem of creating a real-time learning system in the 
interactive game environment. Although genetic algorithms 
have been used successfully to generate controllers for 
interactive game environments, they have not been used in a 
real-time learning system since they require each individual of 
the population to be tested. In order to be able to adapt to an 
opponent’s play in real-time, these tests would have to be done 
by playing the opponent. In addition, the genetic algorithm 
typically starts with a random population of solutions. This 
would make particularly poor play for someone playing the 
game. What is needed is to be able to do the learning on a 
model of the game with periodic checks to make sure the 
model represents the actual play. 

In the study of learning in robotics, systems have been 
created to solve the issue of real-time learning with genetic 
algorithms. One such example is Anytime Learning (AL) 
developed by Grefenstette and Ramsey [11]. AL places a 
learning module in a robot and uses an observer module to 
learn from the robot’s environment. The information gathered 
is used to influence the learning processes such that there is a 
link between the actual robot and environment to the 
simulation. As the learning system is on-board the robot, it has 
the potential to learn indefinitely. As long as the robot is 
running, it will continue to attempt to improve the controller. 

Anytime Learning worked well for robots with the 
capability to carry the learning system on the robot. However, 
this is not always practical. For example, if the robot’s 
environment is highly dangerous, it may be more practical to 
use several less expensive and expendable robots as opposed to 
one to complete the mission. Rather than having each robot 
carry an expensive on-board learning system, it would be more 
practical to have one off-board learning system used for all of 
the robots. One other issue with anytime learning is that the 
observer module had to recognize and categorize changes in 
the environment, a task that requires extensive computation. 

Punctuated Anytime Learning (PAL), which was originally 
developed for evolving robot controllers [12], is a modification 
of AL that was developed to address these issues. In this paper, 
PAL is used to create a real-time learning system for control of 
agents in Xpilot-AI.  

II. XPILOT-AI 
Xpilot is an open source multiplayer two-dimensional space 

combat game consisting of two main components: the server 
and the client (Figure 1). 

The server controls global settings, such as the number of 
frames per second in a game and the map being used. It also 
keeps track of the players playing the game, their scores, and 
other information. The client is what the users control to play 

the game. Specific keystrokes allow the users to control their 
ship by thrusting, turning, or shooting. 

The game itself contains relatively realistic physics. Going 
too fast into a wall will cause the agent to explode, while 
running into a wall at a very slow speed while cause the agent 
to both bounce off the wall as well as decrease their speed 
slightly. As it is set in space, gliding without thrusting causes 
the agent to move with constant velocity.  

Xpilot-AI is an add-on to the Xpilot game that allows users 
to write scripts to control the Xpilot agents. These scripts can 
be used to learn intelligent behavior and as a result, Xpilot-AI 
has become a powerful testing ground for researchers of 
artificial and computational intelligence. Agents controlled by 
scripts can play along with other scripts, humans, or server-
controlled robots on any standard Xpilot server. 

This provides an interesting opportunity to test autonomous 
agents by running them against both other computer-learned 
agents as well as human players. Seeing the agent in action in 
both environments can not only increase our understanding of 
what behavior is being learned but also make sure that it is able 
to compete against all types of opponents. 

III. FITNESS BIASING 
Fitness Biasing is one of two methods of Punctuated 

Anytime Learning, which is a type of Anytime Learning. 
Anytime Learning as a system, described for evolutionary 
robotics by Grefenstette and Ramsey [11], is split up into two 
major components: the execution system and the learning 
system (Figure 2). The execution system handles everything 
essential to running the agent in its environment. It runs the 
decision maker, which is responsible for deciding how the 
agent should react in a given situation. The knowledge base 
acts as a current strategy for the decision maker as it instructs 
the agent to execute actions in its environment. Also in the 
execution system is a monitor, which is responsible for 

Figure 1. Two agents face off in Xpilot 



gathering information about the agent’s environment. It 
identifies and remembers changes in the environment, then 
sends this information to the learning system. 

The learning system uses this information to alter the 
simulation model to more accurately represent the actual 
environment. A decision maker also works in simulation to 
facilitate the learning process. It relies on a test knowledge 
base, separate from the active one in the execution system. 
Based on the information gathered from the simulation, the 
learning method works to increase the robustness of the system 
and sends information to the active knowledge base whenever 
something new and improved is learned. One potential issue 
with this system is the monitor. Accurately and dynamically 
determining changes in the environment to update the 
simulation is a difficult task. Another issue with AL is that it 
requires the learning system to be onboard the robot. This is not 
always possible when it is desirable to have multiple less 
expensive robots perform the task.  

PAL, an extension of AL, was developed to address these 
issues [12]. It requires the monitor to observe only the 
performance of the system and not attempt to observe what 
changes caused the differences. Rather than requiring the 
monitor to observe the entire environment and remember any 
changes, it is instead required only to track the performance of 
the agent. This simpler task leaves less room for error. In 
addition, the learning system is designed to be off-board the 
agent. Disconnecting the two systems makes it easier to 
integrate additional agents to a single learning system and as a 
result increase the robustness of the system by allowing the 
same learning system to continue on even if one agent fails. 
There are two types of PAL: Fitness Biasing and co-evolution 
of model parameters. 

In this research, Fitness Biasing is used to help sync the 
simulation with the agent’s environment (Figure 3). The 
learning system periodically contacts the agent for testing. At 
an appropriate time, every chromosome in the learning 
system’s population is tested on the agent. The fitnesses of the 
chromosomes tested on the actual agent are recorded and 
compared to the fitnesses the chromosomes received in 
simulation. For each fitness, a bias is calculated by dividing the 
fitness received while testing on the agent by the fitness 

received in simulation. These biases are then sent back to the 
learning system. From that point on through the next 
punctuated generation, when calculating a new score for a 
particular control program, it is first multiplied by its assigned 
bias to skew it towards what would be more expected on the 
actual agent. The biases are also altered during the learning 
process. While generating a new population every generation, 
each time two chromosomes are selected and recombined their 
biases are averaged together, and this averaged bias is assigned 
as the bias for their offspring. 

IV. FITNESS BIASING APPLIED TO XPILOT-AI 
When creating an Xpilot server, it is possible to change the 

number of frames per second (FPS). An increased number of 
FPS causes the game to run considerably faster. As a result, 
more information must be sent between the server and the 
clients connected to it. Ideally, when attempting to run a 
learning algorithm it is run as fast as possible. However, due to 
limitations in the design of Xpilot-AI, running it at a too high 
FPS causes the game to behave abnormally, reducing the 
learning capabilities. This is a problem for real-time learning. 
Typical game play is at 16 FPS. If a GA was run at this speed 
against the opponent, it would not complete enough games to 
have a noticeable learning effect. A background GA can be 
running, but unless it is at increased speeds, the real-time 
learning will again be nominal. What is needed is to run a 
background GA at high speeds, using Fitness Biasing to 
periodically help in the simulated learning process. This is what 
was done in this research. In order to determine the best FPS 
for the learning system, a standard genetic algorithm was used 
to do learning at different speeds. 

This agent was controlled by an expert system and the 
genetic algorithm learned optimal values for the parameters 
shown in Figure 4. To calculate the fitness, each agent was 
allowed to engage for two minutes in simulation. Its opponent 
was a robust hand-coded expert agent named Sel. During these 

Figure 2.   Anytime Learning System (replicated from Grefenstette and 
Ramsey [10]) 

Figure 3.   Fitness Biasing 



two minutes, the agent would receive one point of fitness for 
every frame it was alive, plus 1000 points of fitness for every 
time it killed its opponent, and lose 20 seconds off its total time 
available for each death it experienced. 

This genetic algorithm agent ran on servers set to varying 
frames per second, starting at 16 FPS and up through 128 FPS. 
Five trials were run at each speed with the fitnesses at each 5 
generations averaged. The results of these trials [Figure 5] were 
used to confirm that the performance of agent learning 
drastically decreases as the FPS of a server increases. An agent 
running at 16 FPS performed the best, followed by 32 FPS and 

so on. Agents running at 128 FPS showed slow but steady 
improvement over the course of 115 generations. 

As the increase in FPS from server to server effectively 
increases the amount of game play the agent gets during a 
certain period of time, we scaled the data to get the above 
graph to normalize every agent to the 16 FPS agent. Since each 
was run for two minutes despite the FPS, we divided the 
fitnesses of the agent run at 32 FPS by two, the fitnesses of the 
64 FPS agent by 4, and so on. This division occurred because 
the fitness evaluations for the varying FPS all lasted for two 
minutes. An agent running at 32 FPS, for example, was 
effectively allowed be tested twice as long given that twice the 
number of frames passed in the same amount of time. 

To confirm these results, we took the best agent for each of 
these genetic algorithms at the 50th and 100th generations and 
tested them in games at 16 FPS to attain their fitnesses over 
five trials [Figure 6]. Their fitnesses were consistent with the 
results of the genetic algorithm trials shown in Figure 5. 

In another test to ensure that the results were consistent, we 
ran an agent at 128 FPS with one-eighth the time for each 
fitness calculation [Figure 7]. The fitness matches that of the 

• span – the angle between the line from the agent’s nose to a 
target location and the edge of the nearest wall. Used to determine 
if the agent is blocked from a bullet by a wall.  

• offset_inc – indicates the increments used to determine the 
optimal direction to turn to avoid crashing into a wall 

• same_spread – the difference allowed between the distances 
returned by two wall feelers which would result in considering 
them equal. 

• wall_span1 – the angle off the ship’s track used to feel for 
the closest wall.  

• wall_span2 – the angle off the ship’s track used to feel for 
the second closest wall. 

• vd_bullet_dist – determines the bullet alert value required to 
consider the bullet very dangerous. 

• d_bullet_dist – determines the bullet alert value required to 
consider the bullet dangerous. 

• vd_dodge_bullet_angle – the angle the ship will turn away 
from a bullet considered very dangerous in order to dodge it.   

• d_dodge_bullet_angle – the angle the ship will turn away 
from a bullet considered dangerous in order to dodge it.    

• close_wall_speed – the speed of the ship in relation to the 
distance to the closest wall. Used to determine if the ship should 
take action to avoid the wall.  

• medium_wall_speed – similar to close_wall_speed, but for 
walls that are farther from the agent.  

• c_angle_before_thrust – the angle of the ship’s heading away 
from the closest wall before the ship will thrust.  

• m_angle_before_thrust – similar to c_angle_before_thrust, 
but used in a rule with lower priority 

• wall_avoid_angle – how small the angle has to be between 
the ship’s heading and its desired track to avoid a wall before it 
will thrust.  

• screen_thrust_speed – if the ship’s speed is lower than this 
and it is turning to attack an enemy on the screen, it will thrust.   

• radar_no_thrust_speed – if the ship’s speed is lower than this 
and it is turning to attack an enemy on radar, it will thrust.  

• ship_error_to_shoot – the maximum angular difference 
between the desired aim direction and the ship’s heading before it 
will shoot at an enemy on the screen.  

• radar_error_to_shoot – the maximum angular difference 
between the desired aim direction and the ship’s heading before it 
will shoot at an enemy on radar.  

• wall_turn_angleR – the angle between the ship’s track and 
heading that the ship turns to avoid colliding with a wall when 
responding to a right feeler indicating a wall that is too close.  

• wall_turn_angleL – the angle between the ship’s track and 
heading that the ship turns to avoid colliding with a wall when 
responding to a left feeler indicating a wall that is too close.  

• wall_turn_angleB – the angle between the ship’s track and 
heading that the ship turns to avoid colliding with a wall when 
responding to an equal distance from both walls.   

• shoot_dir_rand – the angular range that the ship will use to 
randomly affect its direction to aim.  

Figure 4. A list of the parameters from the control program that the 
genetic algorithm learned for the Xpilot combat agent 

Figure 5.   Data from the genetic algorithm-controlled agent running at 
different FPS 

Figure 6.   Fitnesses of the best agents from the 50th and 100th generations 
of the GAs 



fitness plot we received by dividing as described for Figure 5. 

Since 128 FPS was determined to be the lowest FPS that 
caused issues for learning while still showing consistent aspects 
of continued learning, it was selected for testing the application 
of Fitness Biasing to Xpilot-AI. In the past, tests have been run 
primarily at 64 FPS as that was the fastest Xpilot could be run 
at without losing too much in the way of performance. Here, an 
attempt is made to learn even while running at faster speeds. 

To run PAL, the previously created GA-agent was modified 
into two forms: one to act as the simulation and one to act as 
the agent. The simulation would run just as the normal GA did 
with two key additions: while calculating fitnesses, it would 
bias them as previously described. In addition, every 15 
generations, it would connect to the agent and calculate new 
biases. While doing this, the GA would halt itself and 
discontinue learning until the new biases were received. 

The actual agent would run separately but simultaneously, 
though it would not learn although it had the ability to calculate 
fitness. It had a communication system that ran indefinitely, 
waiting for the learning system to signal it with a new 
population to test. Upon receiving a new population, it would 
run each chromosome of the population on the agent, record 
their fitnesses, calculate their biases, and then send the new 
information back to the simulation. At this point it would 
continue to play using the best of the chromosomes for its 
controller. 

Upon receiving results from the agent, the simulation would 
overwrite its own collection of biases with the new information 
and continue learning until another 15 generations had passed. 
This process is repeated until stopped by the researcher, or 
some predetermined stopping point has been reached (i.e. stop 
after a certain number of generations).  

V. RESULTS 
Five tests runs using five randomly generated populations 

were run for 115 generations each. Based on this data, it is 
clear that the fitness biasing produced favorable results. The 
system tested the current population on the agent to generate 
new biases every 15 generations. Every 5 generations, the 
average fitness of the population was recorded. Figure 8 shows 

the average fitness over time as the population is evolving. 
Based on this data, it can be observed that there was great 
improvement in the fitness of the agent throughout the learning 
period. In the beginning, the fitness averaged at approximately 
350 and rose to an average of approximately 3840 by the end 
of testing. 

Of additional importance is a comparison of controller 
quality related to the amount of time spent playing on the 
agent. In the genetic algorithm controlled agents, the entire 
game is played live against competitors in order to learn in real 
time. After five generations, its fitness averaged at about 2100. 
In the fitness-biased agent, though it had learned over the 
course of 35 generations in our testing, only two of these 
generations were spent on the agent playing against Sel. After 
these two generations, the fitness biasing system’s average 
fitness is already higher than that of the fifth generation genetic 
algorithm-controlled agent and is approximately equal to the 
tenth generation. This is an important factor for real-time 
learning because it is learning faster per games played against 
its opponent. 

The above empirical data can also be confirmed by 
observation. At the start of the learning process, the agent 
regularly made clear mistakes in combat. For example, some 
control programs would not turn sharply enough to avoid a 
bullet or a wall, not thrust to avoid a bullet, or aim incorrectly 
at its opponent when firing. However, towards the end, these 
mistakes were corrected in the majority of the learned control 
programs. The agent would adeptly dodge enemy bullets while 
responding quicker and firing back with greater accuracy. This 
increase in optimal behavior can be attributed to the learning 
that took place as a result of the Fitness Biasing system. By the 
end of training, all five trials produced individuals with 
intelligent behavior that were able to consistently beat Sel both 
in fitness and by the scoring system Xpilot uses to measure 
player kills and deaths.  

VI. CONCLUSIONS AND FUTURE WORK 
Fitness Biasing when applied to Xpilot-AI agents can be 

used to evolve exceptional controllers that are highly 
competitive when facing opponents. The agents show the 
ability to learn effective combat behavior that appears complex 

Figure 7.   Fitnesses over time of 16 FPS agent and a 128 FPS agent with 
1/8 the time for fitness calculations 

Figure 8.    Fitness biased agent compared to a standard GA run at both 16 
FPS and at 128 FPS 



to an observer. At this point, this research has only been tested 
on the agent’s ability to defeat computer-controlled agents. In 
future work, we will continue to build on the complexity of the 
system and test it against human opponents to measure its 
effectiveness against adaptive players as well as its capability 
to learn and change based on its enemy’s varying behaviors. In 
addition, we will test the system with co-evolution of model 
parameters, an alternative method of Punctuated Anytime 
Learning. 
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