
Using Evolutionary Strategies for the Real-Time Learning of Controllers
for Autonomous Agents in Xpilot-AI

Gary B. Parker, Member, IEEE, and Michael H. Probst

Abstract - Real-time learning is the process of an artificial

intelligence agent learning behavior(s) at the same pace as it
operates in the real world. Video games tend to be an excellent
locale for testing real-time learning agents, as the action
happens at real speeds with a good visual feedback mechanism,
coupled with the possibility of comparing human performance
to that of the agent's. In addition, players want to be
competing against a consistently challenging opponent. This
paper is a discussion of a controller for an agent in the space
combat game Xpilot and the evolution of said controller using
two different methods. The controller is a multilayer neural
network, which controls all facets of the agent's behavior that
are not created in the initial set-up. The neural network is
evolved using 1-to-1 evolutionary strategies in one method and
genetic algorithms in the other method. Using three
independent trials per methodology, it was shown that
evolutionary strategies learned faster, while genetic algorithms
learned more consistently, leading to the idea that genetic
algorithms may be superior when there is ample time before
use, but evolutionary strategies are better when pressed for
learning time as in real-time learning.

I. INTRODUCTION
The problem that most artificial intelligence agents face,

specifically scripted ones, is that rules are good when
encountering expected situations, but they can be rather
lacking when it comes to knowing what to do in unforeseen
situations. This applies even to agents that learn behaviors
in test situations before entering the real world, as they must
make numerous attempts before there is an ingrained
response. The reason that this is a problem is because of the
chaotic nature of the world; it is unlikely for the exact same
situation to occur, leading to a requirement for an agent to
be able to learn to blur the lines separating rules.

It is for this reason that real-time learning is a highly
important field in modern research. Real-time learning is
the general idea that, while doing something, an agent is
learning what about its approach works and what does not,
meaning it is highly adaptable to changes in its
environment. For example, learning in real-time would
allow for a robot that can change its gait when it moves to
different terrain. Learning in real-time would allow for an
educational artificial intelligence to determine the
appropriate pace to move a lesson along for the students.
Learning in real-time would allow for interactive stories in
virtual reality, according to Bates [1]. Learning in real-time

The authors are in the Computer Science Department at Connecticut

College, New London, CT 06320 USA (corresponding author: 860-439-
5208; e-mail: parker@conncoll.edu).

basically means an agent is capable of dealing with
situations that were not foreseen when it was given
instructions to carry out, meaning it does not require nearly
as much supervision.

Video games provide an excellent source of testing arenas
for real-time learning agents. Scripted opponents provide
regular opposition that that does not tire, making continuous
learning possible. However, before agents can learn in real
time, they need to be equipped with a learning system.
Previous work on evolving game artificial intelligences
includes Yannakakis and Hallam's work with Pac-Man [2],
the work by Cole et al. on agents in Counter-Strike [3], and
Priesterjahn et al.'s work on Quake [4]. In addition, work on
games created and modified by the researchers in order to
facilitate learning has been done by Miles and Louis [5], and
neural networks have been used for learning by Stanley et
all in the past [6].

Evolving neural networks with genetic algorithms has
been shown to work in the game Xpilot in previous research
[7]. However, maintaining a population of solutions that go
through selection, crossover, and mutation for each
generation is possibly too much overhead. Evolutionary
strategies use mutation and only mutation in order to make
changes from previous states. Given that a feed-forward
neural net will tend to have everything interconnected, it
makes sense to require many small changes as opposed to
one big change which is what crossing over often does. The
structure of a neural net and evolutionary strategies' use of
repeated small changes seem to be perfectly compatible in
theory, so it was decided to test them in practice in Xpilot.
To establish a baseline it became necessary to create a
genetic algorithm version of the controller for purposes of
comparison. In this regard, we considered the research done
by Yao on the various ways evolutionary algorithms and
neural networks can be combined [8], and the research by
Mandischer into evolutionary strategies being used as
weight training for neural networks [9].

II. XPILOT-AI
Xpilot-AI [7] is a creation for researchers in artificial

intelligence to have a good testing arena for control learning
systems. The interactive Internet game Xpilot is the training
battleground and the combatants are the various controllers
created by researchers, the packaged AI that is part of the
game itself, and the occasional human pilot who comes on
the server.

Fig. 1. A typical game of Xpilot in progress. The outlined triangles are the ships and the black dots are the shots. The gridded squares
at the top are part of the stage, and the dashed lines above and below the lower of the two ships is part of the HUD (Heads-Up
Display) to identify the player's ship. The colors are inverted from normal Xpilot graphics, as the normal game has a black
background.

Xpilot is a multiplayer two-dimensional space combat
game (Fig. 1). It is open-source, which allowed
modifications to the interface to enable a scripted controller
to log in and play without the need for human assistance
issuing commands at the keyboard after telling it to start. It
also facilitated the researchers' creations of functions for
allowing the agent to control the ship (turn, thrust, and fire)
and read in data from the area around the ship. The main
structure of Xpilot is in two parts: the server and the client.
Xpilot-AI modifies the client, so technically, any agent
made using Xpilot-AI can easily connect to any server it has
Internet access to, assuming the correct commands are used.

The game uses a consistent and relatively realistic, but
modifiable physics setup, which specifically depends on the
map being used. Since when a server is started is when a
map is selected, this means the environment is not subject to
change for a non-discernable reason. However, this does
mean that any learned patterns on one map will not
necessarily transfer well over to a different map.

Xpilot's controls are simple in that there are only three
actions being controlled, at least in the basic format.
However, good behaviors are complex and dogfights in the
game are chaotic in the mathematical sense of the word
(minute initial differences leads to large final differences).
This is therefore an excellent learning environment for

neural network controllers, as neural networks take in a
number of inputs and provide a limited number of outputs.

III. EVOLUTIONARY STRATEGIES
Evolutionary strategies (Rechenberg and further

developed by Schwefel [10]) are good for evolving a
population when the only thing known about a situation is
that it requires using numbers to manipulate whatever the
objective is, and that there is a known fitness function.
Evolutionary strategies involve the use of an initial
population, mutation, and a fitness function. In the general
case, evolutionary strategies take the initial population,
mutate its members to create at least as many children, and
then test the children's fitness using the fitness function.

After that, one of two things happens. In normal
evolutionary strategies with a larger population, the children
with the highest fitness scores completely replace the
original population, meaning there is a vulnerability to
backsliding. In other versions, if there are children with
higher fitness than members of the initial population, the
weaker initial population members are removed and
replaced with the children. If the children are inferior to the
initial population, then the children are ignored. In either
case, this is called an epoch. If new individuals made it into

the population, then it is a generation. For clarity, in the
first type of evolutionary strategies, there is no distinction
between an epoch and a generation, because the parents are
replaced every epoch by the children. After that, the cycle
begins again with the new initial population in the case of a
successful generation, or with the unmodified old initial
population in the other case.

In 1-to-1 evolutionary strategies, the type used in this
project, the initial population is exactly one individual, and
one child is created and tested each epoch, with only a
successful child replacing the parent. This technique, while
efficient in terms of guaranteeing progress barring flukes in
the fitness function, is not necessarily as fast as other types
of evolutionary strategies when the fitness can be quickly
attained. However, given that the goal for real-time learning
is to always have the best version being used, using a
population, which will not always showcase the individual
with the highest fitness, when it can be avoided seemed to
be an unnecessary complication. Due to this, 1-to-1 was
deemed the most appropriate choice.

IV. GENETIC ALGORITHMS
Genetic algorithms (Fraser [11]) work well at finding

solutions in problems where not much is known about the
solution barring that a fitness function exists and that the
fitness function is not something which can be optimized

easily. In many respects, it is similar to evolutionary
strategies in where it can be applied, though it cannot be
applied to every situation where an evolutionary strategies
solution can be and vice versa. Genetic algorithms involve
the use of an initial population, usually with a minimum size
of fifty or greater, then using selection, cross over, and
mutation to get the next generation of the population.
Fitness of each individual in the population is determined by
the fitness function.

Selection can be done on a basis of the best individuals
mating with their closest counterparts and producing all the
children or by stochastic selection, where selection is
technically random but having a greater fitness increasing
the likelihood of a specific individual being selected. In
order to promote diversity, stochastic selection tends to be
the preferred method. Crossing over is the idea of swapping
part of one selected individual for the corresponding part of
another selected individual. The goal of this is to propagate
superior parts throughout the population, theoretically
leading to a better population as a whole. Mutation is then
done to the resulting crossed over individuals at a low
probability, as mutation in genetic algorithms tends to
reduce scores. It is still done, however, to help avoid a
stagnant population.

Fig. 2. Slightly modified image of the map, modifications include changing wireframe boxes to solid ones and color swapping from
black to white, white to black, and bright blue to black.

Fig. 3. Graphical representation of the controller. WF stands for Wall-Feeler, SD stands for Shot Danger, HD stands for Heading
versus Track, and EN stands for Enemy Direction.

V. METHOD

A. Combat Situation
The goal in our combat situation in the game Xpilot is

rather simple: eliminate the enemy before the enemy
eliminates the agent. Although the goal is simple – its
achievement is not. This is made more complicated by the
fact that either ship can be annihilated by running into a
wall, as well as its own bullets and the other ship. The main
objective to be learned is a controller for the agent that
allows it to avoid being destroyed before the opponent is
destroyed. While the simplest way to do that is to fire at
and hit the opponent, forcing it to collide with a wall
because it was a choice between death by the wall and death
by bullets also works.

The map created for learning was designed specifically
for this purpose. Built to be as simple as possible while still
providing a useful learning environment, the map uses basic
physics rules and is very unforgiving of hitting other
objects. To be exact, the map was designed to facilitate
unbiased, one-on-one dogfights. As for the map's layout,
the best way to describe it is a small platform in the center,
with a large open space surrounding it, all boxed in. Figure
2 is an approximate screenshot that gives a good idea of the
map's structure

The actual game uses a black background and white
number markers, with wireframe boxes as opposed to solid
ones; the figure is modified to make it easier to deal with
visually and to save black ink. The number markers in the
middle of the map and on the bottom edge are the different
spawn points for the agents. The middle one of the three in
the center and the outer two of the one on the bottom are the
spawn points for the scripted opponent. The other three
spawn points are the learning agent's spawn points. Each of

the agents started anew from a random one of their three
spawn points whenever either of them died.

The opponent for the agent was a relatively simple-
minded, but still effective hand-coded agent by the name of
Morton. It and its code are available on the Xpilot-AI
(www.xpilot-AI.org) website for any who wish to see it.
Morton is a better opponent than the server-controlled ships
that come with the game, capable of competing with the
average human player assuming the human does not abuse
blind spots of the AI.

B. Controller Implementation
The neural network used as a controller had twelve input

nodes, five hidden nodes, and three output nodes (Figure 3),
one for each of the three commands of turn, thrust, and fire.
The input nodes included five separate "wall-feelers," which
detect how many frames it would take at the current velocity
to smash into a wall. Each of these five goes out a different
direction from the current velocity, with one pointing
straight ahead, two going out at a fifteen-degree angle to
either side from the velocity, and the last two being forty-
five degrees away from the current velocity. The next node
gives an estimate of how dangerous the closest shot to the
ship is, which is determined by time to intercept and
whether or not the bullet actually can hit the agent. The two
indicators after that indicate where the enemy is relative to
the ship's heading, one for port and one for starboard. When
the opponent is to port, the starboard indicator is zero, and
vice versa. All of these indicators are scaled from anywhere
between zero and one, to account for varying conditions.
The last four, which are not scaled, are indicators of which
direction the nose is pointed relative to the current velocity,
allowing the agent knowledge of how important the various
wall-feelers are assuming the agent decides to thrust this

WF WF WF HD HD HD HD EN EN SD WF

Thrust Fire Turn

WF

frame. To be specific, each of the four heading indicators
has its own direction, which it checks to see if the nose is
pointed in relative to the velocity. If the nose is pointing to
that side (which does include overlap between different
indicators), then the node returns one. Otherwise, it returns
zero.

The evolutionary strategies for the weights of the neural
network are done in a different manner than normal.
Normally, the mutation is done with the same amount of
mutation allowed per generation from beginning to end.
This is not the case here. Earlier versions of the project
used a static mutation amount. Ones with a small mutation
amount took too long to figure out how to get out of their
initial bad habits, resulting in little to no improvement in the
two-day learning cycle. The versions with a large mutation
amount had the problem that, after escaping the initial bad
habits, they could not zero in on the right habits, and so
ended up settling for mediocrity. Therefore, it was decided
to try a variable approach. From the original range of
mutation of 0.25 on the total range of weights from -1 to 1,
after the first ten successful generations the range is cut in
half, then reduced to a third of the original after the next five
successful generations, with the pattern continuing from
there. This allows for both the early advantage of a large
mutation amount for rapid evolution, and the later advantage
of precision of a small mutation amount. Prior research has
been done on having a decreasing mutation rate for an
evolutionary algorithm by Bäck and Schütz [12].

The disadvantage that this approach suffers from is a
worsening of the already existing weakness to the "hill
climbing to a local maximum" problem. This occurs when a
learning agent, in the process of maximizing its fitness
function, finds a local maximum that is not the global
maximum. Due to the limited size of the possible
perturbations at this point, it will be unable to leave said
local maximum, even though it is inferior to the global
maximum, because from its point of view, there is nothing
better as an alternative. 1-to-1 evolutionary strategies are
already rather susceptible to this problem due to their
standard of only taking the best fitness. The decreasing
mutation range method exacerbates the problem because,
while a normal evolutionary strategies agent has a small
chance at finding another peak in the fitness function within
its mutation range at later levels of learning, this method
results in an ever-decreasing range to do so.

The genetic algorithm variation of the control learner had
identical methods for a controller, the only differences
allowed were for the evolutionary process and the
population requirement the technique imposes. This was
done in order to make the comparison as simple as possible.
A population of sixty-four individuals was used. Each
individual was given control of the agent for the same time
frame each epoch of the evolutionary strategies learner had,

meaning a single generation of the genetic algorithm took
the same amount of time as sixty-four epochs of the
evolutionary strategies. The actual evolutionary process
used stochastic selection with a five percent chance of
mutation per weight, with the cross-over being done by
switching entire groups of weights. Each actual mutation
was done identically to the mutation of the evolutionary
strategies, without the reduction of mutation range, so there
was no set change value beyond being inside a certain
range. A genetic algorithm already has enough
modifications going on that changing the mutation value
was felt to be unnecessary.

The best fitness function for learning was, as usual with
evolutionary computation, difficult to determine. The end
result, however, was rather successful. Each new mutation
had a total initial life span of one thousand five hundred
frames in order to prove itself better than the last. Given
that the servers for the learning tests were running at fifty
frames per second, which is between three and four times
faster than the normal human speed for the game, this meant
that each agent option had a maximum of thirty seconds.

Every time the agent killed its opponent, it gained a
hundred points. Every time the agent died, with no
preference given to how, it both lost a point and lost an
additional twenty-five frames out of its remaining life span.
This allowed for the control solutions that died more often
to be eliminated faster, making it more likely that a robot
with survival skills would be created. The agents all started
with fifty points, in order to ensure all scores were positive
so as to make stochastic selection for the genetic algorithm
easier to manage.

VI. RESULTS
Three tests for each type of controller ran for

approximately eighty hours real-time. The evolutionary
strategies controllers all had a minimum of over nine and a
half thousand epochs while the genetic algorithms all had
about one hundred fifty generations. For the evolutionary
strategies, the fitness at each generation (epoch with an
increase in fitness) and the resulting fitnesses for each test
are plotted in Figure 4. In order to compare the ES results
with the GA, ES epochs were converted to their GA
generation equivalents. Information on the GA was stored at
each 50 generations. Figure 5 shows the average of the
three runs conducted for the two methods with the GA
results shown for the best individual at the recorded
generations and the average of the population at the
recorded generations.

In every test for the genetic algorithms, most progress per
generation, measured at the population average, was slow
and steady, indicating a lack of fluke runs. The cases of a
jumped fitness were checked to determine if a single
individual in the population in question was just lucky or

Fitness vs Generation (Evolutionary Strategies)

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13

Generation

Fi
tn

es
s Series1

Series2
Series3

Fig. 4. Graph of fitness versus number of successful generations for the Evolutionary Strategies controller. The fitness function gives
a hundred points for every kill, and loses both a point and fifty frames of lifespan for every death. Note that, even though the count of
generations implies that series 2 finished far before series 1, this is an illusion. In fact, they all had the same amount of learning time,
with series 3 actually reaching its final point first, followed by series 2 and then series 1. The other thing to notice is that, even when
the graph may appear flat, it is not. A point’s existence indicates an improvement over the previous point, though in the “flat”
portions, this is an increase in survivability as opposed to number of kills.

unlucky, and for the most part, they ended as being slightly
lucky, but not enough to throw off the learning. However,
even towards the end of testing, there was steady evidence
of progress towards a higher fitness for the population
averages of the genetic algorithms, indicating they had not
yet peaked.

The evolutionary strategies tests went quite well, all
progressing quickly to a score where they were killing their
opponent more than they were dying to anything during
their half-minute runs. Though it is not visible on the graph,
in each case, the majority of the generations were done in
the first few hundred epochs, with fine-tuning occurring
over a much greater period of time. Even the fine-tuning,
however, tended to end before the genetic algorithms had
finished their sixtieth generation. An example of this fine-
tuning would be the final four points of series 1. The fourth
to last point of series 1 happened on the thirty-second epoch,
with a score of 448, indicating four kills of the opponent
while only dying twice. The third to last point happened on
the three thousand nine hundred twenty-sixth epoch, with a
score of 546, indicating five kills with four deaths. The next
point happened slightly over two hundred epochs later, with

a score of 548, indicating an improvement of two fewer
deaths, leaving the agent with five kills to two deaths. The
final point of series 1, however, took an additional eighteen
hundred epochs to come about. The improvement was to a
score of 549, meaning that the agent killed its opponent five
times while dying exactly once.

Due to the fitness function so heavily rewarding killing
the opponent, it comes as no surprise that most behaviors
were focused on hitting the enemy. What is interesting
about this is the fact that, even the individuals that started
off simply trying to stay alive changed to a more aggressive
stance. Further thought on the subject lead to the realization
that, in the scenario where testing was occurring, when one
of the combatants died, the situation was reset. This meant
that the best defense was a good offense for the agents. The
fitness function fulfilled its job admirably in this case, as all
three of the evolutionary strategies agents proceeded to end
the testing with five kills to anywhere between one to four
deaths from all sources.

The genetic algorithms agents had more varied controller
results, with some individuals seeming to decide on a
pacifistic stance at the start, meaning they refused to fire,

which led to them not having acceptable scores to pass on to
the next generation, leading to populations that, while
somewhat diverse, all had a habit of shooting first and
aiming later. Some of the time this actually worked, by
filling the space with enough shots the opponent was
incapable of dodging all of them, but it was a costly few
generations before aiming first became a dominant behavior
among the population.

0

100

200

300

400

500

600

0 50 100 150

GA Generations

Fi
tn

es
s

ES
GA best
GA average

Fig. 5. Graph showing the average fitness for the ES and GA through the
equivalent of 15 generations of GA evolution. The ES resulted in the best
eventual performance. The learning curves for the population average and
best individual are shown. The standard deviation at the end of training for
the three sets of data are: ES: 2, GA best: 52, and GA average: 14.

The other noticeable thing about the genetic algorithms
was that while, occasionally, the best members of the
populations could approach or even top the fitness of
evolutionary strategies agents from the same time, this
ability was not passed completely on to their population.
While the genetic algorithms agents most definitely were
progressing, it was not at the same prodigious rate the
evolutionary strategies agents did at the start. However, by
the end of testing, the best individuals in the populations
were competitive against Morton and the average of the
population was still progressing.

VII. CONCLUSIONS
Our use of evolutionary strategies and genetic algorithms

to learn the weights for a multilayer neural network
controller in a real-time environment was successful. The
evolutionary strategies agents made quick improvements;
within a few hours were capable of beating their unchanging
opponents. However, they reached a score plateau rather
quickly, with few changes occurring once they had hit that

ceiling. The genetic algorithms agents did not learn as
quickly, however their rate of progress was more constant
and still progressing, so we speculate that they could have
ended up equaling if not exceeding the evolutionary
strategies agents in due time. In either case, the resultant
controller was competitive with the hand coded agent. Due
to the quick learning aspect of evolutionary strategies, we
find that they are a viable option for real-time learning in the
Xpilot video game.

In future research, the ES learning system will be used to
adapt to new playing strategies. An agent trained on Morton
will be put in the arena with a new agent to see if it can
adapt its play to remain competitive in real-time.

REFERENCES
[1] Bates, J. The nature of character in interactive worlds and the oz

project. Technical Report CMU-CS-92-200, School of Computer
Science, Carnegie Mellon University, October 1992.

[2] Yannakakis, G. and Hallam, J. "Evolving Opponents for Interesting
Interactive Computer Games,'' Proceedings of the 8th International
Conference on the Simulation of Adaptive Behavior (SAB'04); From
Animals to Animats 8, 2004, pp 499-508.

[3] Cole, N., Louis, S., and Miles, C. “Using a Genetic Algorithm to
Tune First-Person Shooter Bots,” Proceedings of the International
Congress on Evolutionary Computation 2004 (CEC’04), Portland,
Oregon, 2004, pp 139–145.

[4] Priesterjahn, S., Kramer, O., Weimer, A., and Goebels, A. (2006).
“Evolution of Human-Competitive Agents in Modern Computer
Games.” Proceedings of the 2006 IEEE Congress on Evolutionary
Computation (ECE 2006), Vancouver, BC, Canada, July 2006.

[5] Miles, C. and Louis, S. (2006). “Towards the Co-Evolution of
Influence Map Tree Based Strategy Games Players.” Proceedings of
the 2006 IEEE Symposium on Computational Intelligence and Games
(CIG 2006).

[6] Stanley, K., Bryant, B., and Miikkulainen, R. (2005). “Evolving
Neural Network Agents in the NERO Video Game.” Proceedings of
the IEEE 2005 Symposium on Computational Intelligence and Games
(CIG 2005).

[7] Parker, G., Parker, M., and Johnson, S. (2005). “Evolving
Autonomous Agent Control in the Xpilot Environment,” Proceedings
of the 2005 IEEE Congress on Evolutionary Computation (CEC
2005), Edinburgh, UK., September 2005.

[8] Yao, X., "Evolving artificial neural networks,'' Proceedings of the
IEEE, 87(9):1423-1447, September 1999.

[9] Mandischer, M., "A Comparison of Evolutionary Strategies and
Backpropagation for Neural Network Training," Neurocomputing
42(1-4): 87-117, January 2002.

[10] Back, T. and Hoffmeister, F. and Schwefel, H. (1991) A survey of
evolution strategies. Proceedings of the Fourth International
Conference on Genetic Algorithms.

[11] Fraser, Alex S. (1957). "Simulation of Genetic Systems by Automatic
Digital Computers. I. Introduction". Australian Journal of Biological
Sciences 10: 484–491.

[12] Bäck, T. and Schütz, M., "Intelligent Mutation Rate Control in
Canonical Genetic Algorithms," Foundation of Intelligent Systems
9th International Symposium, Zakopane, Poland, June 1996.

