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Abstract - Real-time learning is the process of an artificial 

intelligence agent learning behavior(s) at the same pace as it 
operates in the real world.  Video games tend to be an excellent 
locale for testing real-time learning agents, as the action 
happens at real speeds with a good visual feedback mechanism, 
coupled with the possibility of comparing human performance 
to that of the agent's.  In addition, players want to be 
competing against a consistently challenging opponent. This 
paper is a discussion of a controller for an agent in the space 
combat game Xpilot and the evolution of said controller using 
two different methods.  The controller is a multilayer neural 
network, which controls all facets of the agent's behavior that 
are not created in the initial set-up.  The neural network is 
evolved using 1-to-1 evolutionary strategies in one method and 
genetic algorithms in the other method.  Using three 
independent trials per methodology, it was shown that 
evolutionary strategies learned faster, while genetic algorithms 
learned more consistently, leading to the idea that genetic 
algorithms may be  superior when there is ample time before 
use, but evolutionary strategies are better when pressed for 
learning time as in real-time learning. 

I. INTRODUCTION 
The problem that most artificial intelligence agents face, 

specifically scripted ones, is that rules are good when 
encountering expected situations, but they can be rather 
lacking when it comes to knowing what to do in unforeseen 
situations.  This applies even to agents that learn behaviors 
in test situations before entering the real world, as they must 
make numerous attempts before there is an ingrained 
response.  The reason that this is a problem is because of the 
chaotic nature of the world; it is unlikely for the exact same 
situation to occur, leading to a requirement for an agent to 
be able to learn to blur the lines separating rules. 

It is for this reason that real-time learning is a highly 
important field in modern research.  Real-time learning is 
the general idea that, while doing something, an agent is 
learning what about its approach works and what does not, 
meaning it is highly adaptable to changes in its 
environment.  For example, learning in real-time would 
allow for a robot that can change its gait when it moves to 
different terrain.  Learning in real-time would allow for an 
educational artificial intelligence to determine the 
appropriate pace to move a lesson along for the students.  
Learning in real-time would allow for interactive stories in 
virtual reality, according to Bates [1].   Learning in real-time  
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basically means an agent is capable of dealing with 
situations that were not foreseen when it was given 
instructions to carry out, meaning it does not require nearly 
as much supervision. 

Video games provide an excellent source of testing arenas 
for real-time learning agents.  Scripted opponents provide 
regular opposition that that does not tire, making continuous 
learning possible.  However, before agents can learn in real 
time, they need to be equipped with a learning system.  
Previous work on evolving game artificial intelligences 
includes Yannakakis and Hallam's work with Pac-Man [2], 
the work by Cole et al. on agents in Counter-Strike [3], and 
Priesterjahn et al.'s work on Quake [4].  In addition, work on 
games created and modified by the researchers in order to 
facilitate learning has been done by Miles and Louis [5], and 
neural networks have been used for learning by Stanley et 
all in the past [6]. 

Evolving neural networks with genetic algorithms has 
been shown to work in the game Xpilot in previous research 
[7].  However, maintaining a population of solutions that go 
through selection, crossover, and mutation for each 
generation is possibly too much overhead. Evolutionary 
strategies use mutation and only mutation in order to make 
changes from previous states. Given that a feed-forward 
neural net will tend to have everything interconnected, it 
makes sense to require many small changes as opposed to 
one big change which is what crossing over often does.  The 
structure of a neural net and evolutionary strategies' use of 
repeated small changes seem to be perfectly compatible in 
theory, so it was decided to test them in practice in Xpilot.  
To establish a baseline it became necessary to create a 
genetic algorithm version of the controller for purposes of 
comparison.  In this regard, we considered the research done 
by Yao on the various ways evolutionary algorithms and 
neural networks can be combined [8], and the research by 
Mandischer into evolutionary strategies being used as 
weight training for neural networks [9]. 

II. XPILOT-AI 
Xpilot-AI [7] is a creation for researchers in artificial 

intelligence to have a good testing arena for control learning 
systems.  The interactive Internet game Xpilot is the training 
battleground and the combatants are the various controllers 
created by researchers, the packaged AI that is part of the 
game itself, and the occasional human pilot who comes on 
the server. 



 

 
 
Fig. 1. A typical game of Xpilot in progress.  The outlined triangles are the ships and the black dots are the shots.  The gridded squares 
at the top are part of the stage, and the dashed lines above and below the lower of the two ships is part of the HUD (Heads-Up 
Display) to identify the player's ship.  The colors are inverted from normal Xpilot graphics, as the normal game has a black 
background. 
 
 

Xpilot is a multiplayer two-dimensional space combat 
game (Fig. 1).  It is open-source, which allowed 
modifications to the interface to enable a scripted controller 
to log in and play without the need for human assistance 
issuing commands at the keyboard after telling it to start.  It 
also facilitated the researchers' creations of functions for 
allowing the agent to control the ship (turn, thrust, and fire) 
and read in data from the area around the ship.  The main 
structure of Xpilot is in two parts: the server and the client.  
Xpilot-AI modifies the client, so technically, any agent 
made using Xpilot-AI can easily connect to any server it has 
Internet access to, assuming the correct commands are used. 

The game uses a consistent and relatively realistic, but 
modifiable physics setup, which specifically depends on the 
map being used.  Since when a server is started is when a 
map is selected, this means the environment is not subject to 
change for a non-discernable reason.  However, this does 
mean that any learned patterns on one map will not 
necessarily transfer well over to a different map. 

Xpilot's controls are simple in that there are only three 
actions being controlled, at least in the basic format.  
However, good behaviors are complex and dogfights in the 
game are chaotic in the mathematical sense of the word 
(minute initial differences leads to large final differences).  
This is therefore an excellent learning environment for 

neural network controllers, as neural networks take in a 
number of inputs and provide a limited number of outputs. 

III. EVOLUTIONARY STRATEGIES 
Evolutionary strategies (Rechenberg and further 

developed by Schwefel [10]) are good for evolving a 
population when the only thing known about a situation is 
that it requires using numbers to manipulate whatever the 
objective is, and that there is a known fitness function.  
Evolutionary strategies involve the use of an initial 
population, mutation, and a fitness function.  In the general 
case, evolutionary strategies take the initial population, 
mutate its members to create at least as many children, and 
then test the children's fitness using the fitness function.   

After that, one of two things happens.  In normal 
evolutionary strategies with a larger population, the children 
with the highest fitness scores completely replace the 
original population, meaning there is a vulnerability to 
backsliding.  In other versions, if there are children with 
higher fitness than members of the initial population, the 
weaker initial population members are removed and 
replaced with the children.  If the children are inferior to the 
initial population, then the children are ignored.  In either 
case, this is called an epoch.  If new individuals made it into 



the population, then it is a generation.  For clarity, in the 
first type of evolutionary strategies, there is no distinction 
between an epoch and a generation, because the parents are 
replaced every epoch by the children.  After that, the cycle 
begins again with the new initial population in the case of a 
successful generation, or with the unmodified old initial 
population in the other case. 

In 1-to-1 evolutionary strategies, the type used in this 
project, the initial population is exactly one individual, and 
one child is created and tested each epoch, with only a 
successful child replacing the parent.  This technique, while 
efficient in terms of guaranteeing progress barring flukes in 
the fitness function, is not necessarily as fast as other types 
of evolutionary strategies when the fitness can be quickly 
attained.  However, given that the goal for real-time learning 
is to always have the best version being used, using a 
population, which will not always showcase the individual 
with the highest fitness, when it can be avoided seemed to 
be an unnecessary complication.  Due to this, 1-to-1 was 
deemed the most appropriate choice. 

IV. GENETIC ALGORITHMS 
Genetic algorithms (Fraser [11]) work well at finding 

solutions in problems where not much is known about the 
solution barring that a fitness function exists and that the 
fitness function is not something which can be optimized 

easily.  In many respects, it is similar to evolutionary 
strategies in where it can be applied, though it cannot be 
applied to every situation where an evolutionary strategies 
solution can be and vice versa.  Genetic algorithms involve 
the use of an initial population, usually with a minimum size 
of fifty or greater, then using selection, cross over, and 
mutation to get the next generation of the population.  
Fitness of each individual in the population is determined by 
the fitness function. 

Selection can be done on a basis of the best individuals 
mating with their closest counterparts and producing all the 
children or by stochastic selection, where selection is 
technically random but having a greater fitness increasing 
the likelihood of a specific individual being selected.  In 
order to promote diversity, stochastic selection tends to be 
the preferred method.  Crossing over is the idea of swapping 
part of one selected individual for the corresponding part of 
another selected individual.  The goal of this is to propagate 
superior parts throughout the population, theoretically 
leading to a better population as a whole.  Mutation is then 
done to the resulting crossed over individuals at a low 
probability, as mutation in genetic algorithms tends to 
reduce scores.  It is still done, however, to help avoid a 
stagnant population. 

 

 
Fig. 2. Slightly modified image of the map, modifications include changing wireframe boxes to solid ones and color swapping from 
black to white, white to black, and bright blue to black. 



 

 
 
Fig. 3. Graphical representation of the controller.  WF stands for Wall-Feeler, SD stands for Shot Danger, HD stands for Heading 
versus Track, and EN stands for Enemy Direction. 
 
 

V. METHOD 

A. Combat Situation 
The goal in our combat situation in the game Xpilot is 

rather simple: eliminate the enemy before the enemy 
eliminates the agent.  Although the goal is simple – its 
achievement is not.  This is made more complicated by the 
fact that either ship can be annihilated by running into a 
wall, as well as its own bullets and the other ship.  The main 
objective to be learned is a controller for the agent that 
allows it to avoid being destroyed before the opponent is 
destroyed.  While the simplest way to do that is to fire at 
and hit the opponent, forcing it to collide with a wall 
because it was a choice between death by the wall and death 
by bullets also works. 

The map created for learning was designed specifically 
for this purpose.  Built to be as simple as possible while still 
providing a useful learning environment, the map uses basic 
physics rules and is very unforgiving of hitting other 
objects.  To be exact, the map was designed to facilitate 
unbiased, one-on-one dogfights.  As for the map's layout, 
the best way to describe it is a small platform in the center, 
with a large open space surrounding it, all boxed in.  Figure 
2 is an approximate screenshot that gives a good idea of the 
map's structure 

The actual game uses a black background and white 
number markers, with wireframe boxes as opposed to solid 
ones; the figure is modified to make it easier to deal with 
visually and to save black ink.  The number markers in the 
middle of the map and on the bottom edge are the different 
spawn points for the agents.  The middle one of the three in 
the center and the outer two of the one on the bottom are the 
spawn points for the scripted opponent.  The other three 
spawn points are the learning agent's spawn points.  Each of 

the agents started anew from a random one of their three 
spawn points whenever either of them died. 

The opponent for the agent was a relatively simple-
minded, but still effective hand-coded agent by the name of 
Morton.  It and its code are available on the Xpilot-AI 
(www.xpilot-AI.org) website for any who wish to see it.  
Morton is a better opponent than the server-controlled ships 
that come with the game, capable of competing with the 
average human player assuming the human does not abuse 
blind spots of the AI. 

B. Controller Implementation 
The neural network used as a controller had twelve input 

nodes, five hidden nodes, and three output nodes (Figure 3), 
one for each of the three commands of turn, thrust, and fire.  
The input nodes included five separate "wall-feelers," which 
detect how many frames it would take at the current velocity 
to smash into a wall.  Each of these five goes out a different 
direction from the current velocity, with one pointing 
straight ahead, two going out at a fifteen-degree angle to 
either side from the velocity, and the last two being forty-
five degrees away from the current velocity.  The next node 
gives an estimate of how dangerous the closest shot to the 
ship is, which is determined by time to intercept and 
whether or not the bullet actually can hit the agent.  The two 
indicators after that indicate where the enemy is relative to 
the ship's heading, one for port and one for starboard.  When 
the opponent is to port, the starboard indicator is zero, and 
vice versa.  All of these indicators are scaled from anywhere 
between zero and one, to account for varying conditions.  
The last four, which are not scaled, are indicators of which 
direction the nose is pointed relative to the current velocity, 
allowing the agent knowledge of how important the various 
wall-feelers are assuming the agent decides to thrust this 
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frame.  To be specific, each of the four heading indicators 
has its own direction, which it checks to see if the nose is 
pointed in relative to the velocity.  If the nose is pointing to 
that side (which does include overlap between different 
indicators), then the node returns one.  Otherwise, it returns 
zero. 

The evolutionary strategies for the weights of the neural 
network are done in a different manner than normal.  
Normally, the mutation is done with the same amount of 
mutation allowed per generation from beginning to end.  
This is not the case here.  Earlier versions of the project 
used a static mutation amount.  Ones with a small mutation 
amount took too long to figure out how to get out of their 
initial bad habits, resulting in little to no improvement in the 
two-day learning cycle.  The versions with a large mutation 
amount had the problem that, after escaping the initial bad 
habits, they could not zero in on the right habits, and so 
ended up settling for mediocrity.  Therefore, it was decided 
to try a variable approach.  From the original range of 
mutation of 0.25 on the total range of weights from -1 to 1, 
after the first ten successful generations the range is cut in 
half, then reduced to a third of the original after the next five 
successful generations, with the pattern continuing from 
there.  This allows for both the early advantage of a large 
mutation amount for rapid evolution, and the later advantage 
of precision of a small mutation amount.  Prior research has 
been done on having a decreasing mutation rate for an 
evolutionary algorithm by Bäck and Schütz [12]. 

The disadvantage that this approach suffers from is a 
worsening of the already existing weakness to the "hill 
climbing to a local maximum" problem.  This occurs when a 
learning agent, in the process of maximizing its fitness 
function, finds a local maximum that is not the global 
maximum.  Due to the limited size of the possible 
perturbations at this point, it will be unable to leave said 
local maximum, even though it is inferior to the global 
maximum, because from its point of view, there is nothing 
better as an alternative.  1-to-1 evolutionary strategies are 
already rather susceptible to this problem due to their 
standard of only taking the best fitness.  The decreasing 
mutation range method exacerbates the problem because, 
while a normal evolutionary strategies agent has a small 
chance at finding another peak in the fitness function within 
its mutation range at later levels of learning, this method 
results in an ever-decreasing range to do so. 

The genetic algorithm variation of the control learner had 
identical methods for a controller, the only differences 
allowed were for the evolutionary process and the 
population requirement the technique imposes.  This was 
done in order to make the comparison as simple as possible.  
A population of sixty-four individuals was used.  Each 
individual was given control of the agent for the same time 
frame each epoch of the evolutionary strategies learner had, 

meaning a single generation of the genetic algorithm took 
the same amount of time as sixty-four epochs of the 
evolutionary strategies.  The actual evolutionary process 
used stochastic selection with a five percent chance of 
mutation per weight, with the cross-over being done by 
switching entire groups of weights.  Each actual mutation 
was done identically to the mutation of the evolutionary 
strategies, without the reduction of mutation range, so there 
was no set change value beyond being inside a certain 
range.  A genetic algorithm already has enough 
modifications going on that changing the mutation value 
was felt to be unnecessary.  

The best fitness function for learning was, as usual with 
evolutionary computation, difficult to determine.  The end 
result, however, was rather successful.  Each new mutation 
had a total initial life span of one thousand five hundred 
frames in order to prove itself better than the last.  Given 
that the servers for the learning tests were running at fifty 
frames per second, which is between three and four times 
faster than the normal human speed for the game, this meant 
that each agent option had a maximum of thirty seconds. 

Every time the agent killed its opponent, it gained a 
hundred points.  Every time the agent died, with no 
preference given to how, it both lost a point and lost an 
additional twenty-five frames out of its remaining life span.  
This allowed for the control solutions that died more often 
to be eliminated faster, making it more likely that a robot 
with survival skills would be created.  The agents all started 
with fifty points, in order to ensure all scores were positive 
so as to make stochastic selection for the genetic algorithm 
easier to manage. 

VI. RESULTS 
Three tests for each type of controller ran for 

approximately eighty hours real-time.  The evolutionary 
strategies controllers all had a minimum of over nine and a 
half thousand epochs while the genetic algorithms all had 
about one hundred fifty generations.  For the evolutionary 
strategies, the fitness at each generation (epoch with an 
increase in fitness) and the resulting fitnesses for each test 
are plotted in Figure 4.  In order to compare the ES results 
with the GA, ES epochs were converted to their GA 
generation equivalents. Information on the GA was stored at 
each 50 generations.  Figure 5 shows the average of the 
three runs conducted for the two methods with the GA 
results shown for the best individual at the recorded 
generations and the average of the population at the 
recorded generations.   

In every test for the genetic algorithms, most progress per 
generation, measured at the population average, was slow 
and steady, indicating a lack of fluke runs.  The cases of a 
jumped fitness were checked to determine if a single 
individual  in the  population  in question  was just  lucky or  
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Fig. 4. Graph of fitness versus number of successful generations for the Evolutionary Strategies controller.  The fitness function gives 
a hundred points for every kill, and loses both a point and fifty frames of lifespan for every death.  Note that, even though the count of 
generations implies that series 2 finished far before series 1, this is an illusion.  In fact, they all had the same amount of learning time, 
with series 3 actually reaching its final point first, followed by series 2 and then series 1.  The other thing to notice is that, even when 
the graph may appear flat, it is not.  A point’s existence indicates an improvement over the previous point, though in the “flat” 
portions, this is an increase in survivability as opposed to number of kills. 
 
 

unlucky, and for the most part, they ended as being slightly 
lucky, but not enough to throw off the learning.  However, 
even towards the end of testing, there was steady evidence 
of progress towards a higher fitness for the population 
averages of the genetic algorithms, indicating they had not 
yet peaked. 

The evolutionary strategies tests went quite well, all 
progressing quickly to a score where they were killing their 
opponent more than they were dying to anything during 
their half-minute runs.  Though it is not visible on the graph, 
in each case, the majority of the generations were done in 
the first few hundred epochs, with fine-tuning occurring 
over a much greater period of time.  Even the fine-tuning, 
however, tended to end before the genetic algorithms had 
finished their sixtieth generation.  An example of this fine-
tuning would be the final four points of series 1.  The fourth 
to last point of series 1 happened on the thirty-second epoch, 
with a score of 448, indicating four kills of the opponent 
while only dying twice.  The third to last point happened on 
the three thousand nine hundred twenty-sixth epoch, with a 
score of 546, indicating five kills with four deaths.  The next 
point happened slightly over two hundred epochs later, with 

a score of 548, indicating an improvement of two fewer 
deaths, leaving the agent with five kills to two deaths.  The 
final point of series 1, however, took an additional eighteen 
hundred epochs to come about.  The improvement was to a 
score of 549, meaning that the agent killed its opponent five 
times while dying exactly once. 

Due to the fitness function so heavily rewarding killing 
the opponent, it comes as no surprise that most behaviors 
were focused on hitting the enemy.  What is interesting 
about this is the fact that, even the individuals that started 
off simply trying to stay alive changed to a more aggressive 
stance.  Further thought on the subject lead to the realization 
that, in the scenario where testing was occurring, when one 
of the combatants died, the situation was reset.  This meant 
that the best defense was a good offense for the agents.  The 
fitness function fulfilled its job admirably in this case, as all 
three of the evolutionary strategies agents proceeded to end 
the testing with five kills to anywhere between one to four 
deaths from all sources. 

The genetic algorithms agents had more varied controller 
results, with some individuals seeming to decide on a 
pacifistic stance at the start, meaning they refused to fire, 



which led to them not having acceptable scores to pass on to 
the next generation, leading to populations that, while 
somewhat diverse, all had a habit of shooting first and 
aiming later.  Some of the time this actually worked, by 
filling the space with enough shots the opponent was 
incapable of dodging all of them, but it was a costly few 
generations before aiming first became a dominant behavior 
among the population. 
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Fig. 5. Graph showing the average fitness for the ES and GA through the 
equivalent of 15 generations of GA evolution.  The ES resulted in the best 
eventual performance.  The learning curves for the population average and 
best individual are shown.  The standard deviation at the end of training for 
the three sets of data are: ES: 2, GA best: 52, and GA average: 14. 
 

The other noticeable thing about the genetic algorithms 
was that while, occasionally, the best members of the 
populations could approach or even top the fitness of 
evolutionary strategies agents from the same time, this 
ability was not passed completely on to their population.  
While the genetic algorithms agents most definitely were 
progressing, it was not at the same prodigious rate the 
evolutionary strategies agents did at the start.  However, by 
the end of testing, the best individuals in the populations 
were competitive against Morton and the average of the 
population was still progressing. 

VII. CONCLUSIONS 
Our use of evolutionary strategies and genetic algorithms 

to learn the weights for a multilayer neural network 
controller in a real-time environment was successful.  The 
evolutionary strategies agents made quick improvements; 
within a few hours were capable of beating their unchanging 
opponents.  However, they reached a score plateau rather 
quickly, with few changes occurring once they had hit that 

ceiling.  The genetic algorithms agents did not learn as 
quickly, however their rate of progress was more constant 
and still progressing, so we speculate that they could have 
ended up equaling if not exceeding the evolutionary 
strategies agents in due time. In either case, the resultant 
controller was competitive with the hand coded agent.  Due 
to the quick learning aspect of evolutionary strategies, we 
find that they are a viable option for real-time learning in the 
Xpilot video game. 

In future research, the ES learning system will be used to 
adapt to new playing strategies.  An agent trained on Morton 
will be put in the arena with a new agent to see if it can 
adapt its play to remain competitive in real-time. 
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