
 
 

 

  

Abstract— In this paper, we describe a distributed learning 
system used to evolve a control program for an agent operating 
in the network game Xpilot. This system, which we refer to as a 
queue genetic algorithm, is a steady state genetic algorithm that 
uses stochastic selection and first-in-first-out replacement.  We 
employ it to distribute fitness evaluations over a local network 
of dissimilar computers.  The system made full use of our 
available computers while evolving successful controller 
solutions that were comparable to those evolved using a regular 
generational genetic algorithm. 

 

I. INTRODUCTION 
PILOT is an internet based 2D interactive space 
combat game, which is a good environment for 

evolving complex multi-objective control systems.  In past 
work, we used a standard genetic algorithm (GA) to learn 
the weights for a simple neural network (NN) controller.  In 
our present research, we are using incremental learning to 
evolve more sophisticated controllers than those of the past.  
This process has required a continual cycle of design / 
evolve / evaluate to develop competent components for the 
control strategies.  However, since the evaluations of the 
controllers are inordinately long, this process is very slow on 
a single computer.  In future research, we hope that evolved 
agents will be evaluated in the real world, competing against 
human players in different arenas.  In an effort to speed up 
our current development process and additionally address 
our future need for real-world evaluation, we implemented a 
method for evolving Xpilot controllers on a distributed 
system.  The method is based on a steady state genetic 
algorithm (SSGA).  A queue is used to store individuals of 
the population with new children added to the front and the 
oldest individual removed from the tail of the queue.   

In a SSGA only one or two individuals are replaced in a 
population at each iteration.  These new individuals become 
part of the population and are now available for selection.  
This is in contrast to the standard GA where the entire 
population (with the possible exception of an elite group of 
individuals carried over from the previous generation) is 
replaced each iteration (referred to as a generation in this 
case).  Although Holland discussed this idea in his original 
work [1] and De Jong evaluated the properties in follow-on 
research [2], it was not until Whitney developed GENITOR 

 
 

 

[3] that “steady state" became of increased interest in genetic 
algorithms.  GENITOR uses rank-based selection where 
parents are picked based on their fitness ranking as opposed 
to their proportional fitness where an individual with a 
fitness of 2x has twice the probability of being selected as an 
individual with a fitness of x.  GENITOR produces one 
offspring at a time and this offspring replaces the least fit 
individual in the population.  This means of learning was 
found to be very effective on several problems as this 
replacement strategy aggressively pursues an optimal 
solution.  However, high selection pressure can result in 
premature convergence.  Large population sizes may be 
needed to avoid this possibility. 

 In their paper describing studies on the overlapping 
generations of SSGAs [4], De Jong and Sarma use a SSGA 
with a FIFO deletion strategy to better approximate the 
results of a standard GA.  This helped to reduce the variance 
of the final solutions (high variance results in allele loss [5]) 
and resulted in a higher best-individual-takeover than 
SSGAs using uniform replacement (replace an individual 
selected at random). 

SSGAs offer a reasonable method for executing GA 
learning on a network of computers.  They have been used 
by other researchers for this purpose. Whitney and 
Starkweather [6] and Takashimar et al. [7] used a SSGA in 
the implementation of a parallel GA that uses the island 
model of computation.  In the island model, processors are 
assigned subpopulations, which share genetic information 
through migration.  We did not use an island model; the 
fitness evaluation time precludes the use of large 
populations.  Runarsson [8] used an asynchronous parallel 
evolution strategy for multiprocessor machines.  Our system 
is distinct from this work in that we used GAs instead of 
evolution strategies and we used FIFO replacement instead 
of tournament selection/replacement.  In addition, our 
implementation is unique in that it is applied to learn 
controllers for an interactive network computer game.   

In this paper, we use a SSGA that uses FIFO replacement 
to learn control strategies for Xpilot.  Since the population is 
stored on a queue to implement FIFO replacement, we will 
refer to the algorithm as a queue genetic algorithm (QGA) in 
this paper.  
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II. XPILOT 
Xpilot is an open-source multi-player networked two 

dimensional space combat simulator in which a player 
controls a ship in varieties of free-for-all combat, team 
combat, and capture-the-flag game-play.  Although the main 
controls are few—turn, shoot, and thrust—the strategies and 
maneuvers for which these simple controls are employed 
can be very complex and separate poor from successful 
playing styles.   

Xpilot uses a client/server model to allow for multiple 
players.  The server generates the map, calculates game 
physics, receives input from clients, and sends game data to 
the clients.  A client captures information from the player 
keyboard and mouse input, sends it to the server, and 
displays information received from the server, such as ships, 
bullets, walls, and player scores.  The server and client are 
synchronized frame by frame.  In recent work, we modified 
the Xpilot client by adding an interface to control the Xpilot 
client ship with an artificial intellence agent (AI).  We 
created a module of Xpilot with structures containing useful 
information about the player's ship, the enemy ships, the 
bullets, the radar, and the map, which were parsed after 
being received by the client and stored into variables.  In 
addition, commonly used functions for aiming, calculating 
distances, finding barriers, etc. were added to the AI 
module.   The AI module uses the input information to 
determine the AI’s behavior (thrust, turn, and shoot) for the 
next frame.   

III. DITRIBUTED SYSTEM 
Because Xpilot is a real-time multi-player game, all 

clients must synchronize with each other and with the 
server, running the game world at a constant rate.  Since a 
significant amount of time is necessary to evolve an AI, it is 
desirable to do the fitness computations as fast as possible.  
However, Xpilot was built for human players, who can only 
control their ships at a slow game world speed, so it has 
natural limitations on the speed of the simulation.  In past 
work, we increased the possible speed of the game by 

running the display in a low color-depth video buffer rather 
than through a real video card and removed the 100 frames-
per-second limit built into the game.  However, between 
each frame we often require enough computation for the 
ship controller that running the game at a high frame rate 
often results in dropped frames due to lost coordination 
between the server and client.  The Xpilot server runs at a 
constant rate, according to the CPU clock of its host 
computer.  If a client does not send any data to control its 
ship in a frame, due perhaps to unfinished controller 
computation, the server cannot wait for that client to send 
the data since other clients may be connected to the server 
and they must not be forced to wait as well.  If a client drops 
frames, it slightly changes the control of the ship and results 
in a controller that does not work properly at normal speeds.  
Due to the fact that the server does not wait for slow clients 
and as the game play varies the client’s required 
computation time between frames also varies, it is necessary 
to have a large buffer of excess computational power so that 
at computational peaks a client will not lose any frames.  
Therefore, running a single simulation of Xpilot does not 
take full advantage of the capabilities of the computer on 
which it runs.  The evolution is slow and it takes days to 
evolve a controller. 

To increase the speed of fitness computation for Xpilot 
we distribute the evolution of a single GA over multiple 
instances of Xpilot simulations.  A single genetic algorithm 
server distributes chromosomes to clients running an Xpilot 
simulation (Xpilot server and client), receives from the 
clients the fitness of the chromosomes, and evolves the 
population.  We are able to run multiple Xpilot simulations 
locally on one computer and/or distribute them across 
multiple computers over the network.  These clients are able 
to run their simulations at manageable frame rates according 
to the capabilities of their local host computers.  A single 
computer distributing multiple simulations is now able to 
safely utilize more of its processing power. Evolution that 
once took days can now be accomplished in a few hours, 
making Xpilot a more feasible platform for testing learning 
methods. 

 
 

Fig. 1. The evolutionary scheme of a QGA.  The oldest individual is removed from the queue as a new individual is formed 
from crossover of two stochastically (roulette wheel) selected individuals from the population, and placed at the top of the 
queue. 



 
 

 

IV. QUEUE GENETIC ALGORITHM 
A regular genetic algorithm (RGA), which tests an entire 

population, assigns fitnesses, and recombines (crossover and 
mutation) the individuals to form a new population, is 
effective for evolution but is often difficult to distribute over 
several processors.  If the fitness functions take varying 
amounts of time to evaluate, managing the returning 
evaluations often means either waiting for the last 
individuals of a population to evaluate, or sending out more 
chromosomes than necessary and wasting unfinished 
evaluations when enough have returned.  The server which 
controls the GA must often remember the number of clients 
connected and juggle the timing of the computations.  
Because the length of fitness evaluations in Xpilot can vary 
by several seconds, it is not desirable to use an RGA as a 
distributed server.  As an alternative, we use a steady-state 
first-in-first-out genetic algorithm, which we refer to as a 
queue genetic algorithm (QGA).  This solution allows us 
greater versatility in our distribution and offers the 
advantage of an evolution scheme that is equal in effect to 
an RGA. 

The QGA’s structure (Figure 1) is a queue in which new 
individuals are formed from crossovers of stochastically 
(roulette wheel) selected individuals from the population 
while the oldest individuals are removed.  The queue is the 
size of the desired population and consists entirely of 
individuals who have already been tested for fitness.  When 
a client is available, two individuals are chosen 
stochastically according to fitness from the population, their 
chromosomes are crossed over to form the new child.  The 
child is sent to the client where it is tested for fitness and 
placed at the beginning of the queue.  The oldest individual 
is removed, and each individual moves down one slot closer 
to the end where it will eventually be removed.  If the size of 
the population is p, each individual has p chances to be 
chosen as a parent of a new child.  Because each individual 
has p chances to reproduce, the QGA is very similar in 
evolutionary behavior to an RGA, which performs p 
recombinations to form a new population after every 
individual in the generation is evaluated. 

To begin a population, as in an RGA, a QGA population 
is filled with random individuals.  Because a QGA only 
places an individual on the queue after its fitness has been 
evaluated, the QGA must form the random individuals and 
test them to build the queue to the size of the population.  If 
the QGA builds a population entirely of random individuals 
and commences with its standard evolutionary cycle of 
recombining new children and removing the oldest in the 
queue, then the oldest individual will have only one 
opportunity to be selected as a parent for a new child.  The 
second oldest will have only two opportunities, the third, 
three, and so on, and the last randomly created individual 
will have the most opportunities to reproduce.  The 
evolution would favor the later formed individuals with little 
regard to their fitnesses.  However, if while the random 

population is formed, the early individuals are given 
opportunities to reproduce offspring in the place of 
producing a random individual, the initial population will 
lack diversity.   

 

 
Fig. 2. Map which the evolving ship must learn to navigate to get close to 
target ship.  The evolved ship is the white dot in the center of the screen 
with a white directional line.  The target ship, which does not move, is at the 
top of the map.  It cycles its position between the top of the map and the 
bottom.  The other lines are walls or obstacles. 

 
To create a population with diversity in which there is 

negligible advantage for an individual according to the time 
of its creation, the initial queue is filled to at least double the 
target population.  In addition, we use probabilities to 
determine how each new individual will be produced. Given 
a target population size of  p, a current population size of  n, 
and an initial population size of 2p, while n < 2p, there is a 
n/2p chance that the newest formed individual will be a 
recombination of stochastically selected parents from the 
current n sized population.  Otherwise, a new random 
individual will be created.  This gives roughly equal 
opportunity to all newly formed individuals to reproduce, 
while still forming approximately p random individuals.  
When n=2p, any new individuals formed will be children 
formed from crossover, and in order to reduce the size of the 
population back to p, two rather than one of the oldest 
individuals are removed for every new individual formed. 

QGAs are naturally easy to distribute.  The population of 
the QGA is steady state and always made of the most current 
individuals, so the QGA server may form any number of 
new chromosomes on demand from its single population 
without keeping a saved history of an older population, as 
may be necessary in an RGA.  The QGA server can create 
and send new chromosomes to the QGA clients, receive 



 
 

 

back the chromosomes with the fitnesses, add them to the 
population, and drop the oldest individuals.  This can be 
done at any rate and to any number of clients; all without 
remembering the number of individuals sent out or the 
number received.  It is even possible to have more clients 
testing individuals than there are individuals in the 
population.  Each returned individual still has the same 
number of chances to mate, no matter the rate at which 
individuals are being created, dropped, or added. 

The QGA server is implemented in such a way that after 
starting it waits for QGA clients to connect.  When the 
server first starts, it either loads a previously saved 
population or creates a new one.  If a client connects, the 
server sends to the client a chromosome; either a randomly 
created chromosome, or a crossover from two selected 
individuals in the population.   Once the server sends away 
the new chromosome it forgets it, erasing it from memory.  
After the client has tested the chromosome to attain fitness, 
which in our case is done in an Xpilot simulation (made up 
of an Xpilot server and client), it sends back the 
chromosome and its fitness to the QGA server.  The server 
adds the new individual to the queue and drops the oldest 

individual.  It then immediately forms a new chromosome 
and sends it out to the client from which it received the latest 
individual with fitness.  Because the server does not add the 
chromosome to a population until after it has been tested, 
there is no problem if a client must quit and never returns 
the chromosome.  All that is lost is a new chromosome, 
which can easily be generated again.   

Because of this great versatility and simplicity, we are 
able to easily distribute our Xpilot evolution.  We can add 
and drop clients to a QGA server whenever we wish.  We 
can run as many clients as we would like, increasing the 
speed of evolution numerous times over.  We can also run 
the clients at different frame rates, depending on the 
capabilities of the clients’ local computers.  Connected to 
the same QGA server, we can run 30 clients in the 
background on our cluster running at 100 frames per second, 
5 clients on a dual processor Xeon running at 64 frames per 
second, and a single client on a desktop computer in the lab 
running at 32 frames per second with a graphics display to 
view the progress of the evolution.  Our QGA distribution 
allows great speed with versatility, and the simple design 
makes it robust and easy to use. 
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Fig. 3. Results showing similar improvement between the distributed Queue GA and the Regular GA.  This is the average 
of the average fitness of the five tests for each evolutionary method. 
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Fig. 4. Graph of the average of the best fitness over the generations for each of the five tests for each evolutionary method. 

 
 

V. TESTS AND RESULTS 
For this paper we tested a particular problem in Xpilot 

with both a distributed QGA and an RGA, in order see if the 
QGA evolution was as effective as that of the RGA.     

We chose to evolve a controller for a ship that was to 
navigate the ship through obstacles to fly as near as possible 
to a target ship. The controller is a single-layer neural 
network with 16 inputs going to two outputs, with 32 
weights in between.  Each weight is a real number with a 
value between -1.0 and 1.0 and is derived from an 8 bit gene 
from the chromosome.  Since there are 32 weights, the 
length of the chromosome is 256 bits.  The inputs consist of 
information about the distance of walls surrounding the ship, 
the ship’s own velocity and heading, the direction to the 
target ship, etc.  One of the outputs is for thrust; the ship will 
thrust if the output is greater than or equal to zero.  The 
other output controls the turn of the ship, which can be 
anywhere from -15 to 15 degrees per frame.  The output of 
the turn node is mapped onto this range. 

The evolving ship starts at a random location in the center 
of the map (Figure 2) and the target ship starts either at the 
top or the bottom of the map.  Each individual in the 
population lives two lives, once where the target ship is 
located to the north, and once where it is to the south.  The 

walls are lethal if crashed into at anything but a very slow 
speed.  The layout of the walls differs from north and south 
in order to make the agent learn a more robust navigational 
controller.  The agent is given a reasonable amount of time 
to fly to the target ship.  If the target ship is reached, it will 
fly a little ways away to make the agent learn to follow.  
Fitness is awarded the agent according to how close it flew 
to the target ship from its original location, summed over 
every frame of game-play.  It is also given bonus points for 
every frame that it is located right next to the target ship, and 
to encourage it to fly carefully its score is doubled if it stays 
alive during the whole allotted run time-limit.  The fitness is 
summed over the two runs, north and south. 

We ran five tests with a distributed QGA and five tests 
with an RGA, each at 64 frames per second with a 
population of 256.  We set the QGA to build up an initial 
population that was four times (rather than two times) its 
target population of 256 to increase initial diversity and then 
decreased it down to 256 (removing two oldest instead of 
one).  Figure 3 shows the average of the average fitnesses of 
the five test populations for the RGA and the QGA and 
Figure 4 shows the average of the best fitnesses for each 
generation of each of the five tests for the QGA and RGA.  
Because there are no discrete “generations” in the QGA, we 
determine them by each time p number of individuals have 



 
 

 

been tested, where p is the actual size of the population.  
Because p first expands out to four times the target 
population, the generations are first read at 1024 and then 
512 individuals, after which every generation is made of 256 
individuals.  For this reason, we start the graphs of the QGA 
4 generations later than the RGA. 

With both the RGA and the QGA the agents evolved 
similarly successful strategies to fly close to the target ship.  
Their best and average fitnesses are very similar, with the 
QGA’s average fitness being slightly higher, which could be 
luck or because at the start the QGA built up to a larger 
initial population, allowing for greater diversity.  The real 
advantage with using the distributed QGA is that the 
evolution was finished in a matter of hours rather than a few 
days, as it took the single RGA tests.  By using a distributed 
RGA we could have sped up the time of evolution, but not 
to the extent of the QGA and not with the same flexibility 
for distribution. 

VI. CONCLUSIONS 
The Queue Genetic Algorithm has proved to be an 

effective evolutionary method, with results very similar to 
the evolution of a Regular Genetic Algorithm.  The design 
of a QGA is such that it may be easily distributed amongst 
numerous computers, and its simplicity makes it robust 
enough to handle varied client capabilities and network 
limitations.  When evolving agents in Xpilot, a game that 
can not be run fast enough to utilize the full processing 
capabilities of a computer and that takes varied time to test 
agents, a distributed solution is necessary for timely 
evolution results.  A distributed QGA has been ideal for 
evolving one population over multiple Xpilot simulations 
and in our test to evolve the weights in a neural network to 
control an agent to navigate towards a target ship, the QGA 
yielded behavior and fitness extremely similar to our same 
test performed with an RGA.   

In the future we plan to continue using the QGA to evolve 
tests, as well as to create “chains” of Xpilot simulations, 
where individuals will be tested in several different maps 
and arenas.  We hope to be able to eventually send 
individuals out into a public Xpilot server to play against 

human players.  In further research, we intend to test the 
QGA on other problems requiring simulated evolution.  A 
distributed QGA is an effective learning method that 
significantly increases the speed of evolution and can be 
used in several evolutionary computation applications. 
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