

Abstract— In this paper, we describe a distributed learning
system used to evolve a control program for an agent operating
in the network game Xpilot. This system, which we refer to as a
queue genetic algorithm, is a steady state genetic algorithm that
uses stochastic selection and first-in-first-out replacement. We
employ it to distribute fitness evaluations over a local network
of dissimilar computers. The system made full use of our
available computers while evolving successful controller
solutions that were comparable to those evolved using a regular
generational genetic algorithm.

I. INTRODUCTION
PILOT is an internet based 2D interactive space
combat game, which is a good environment for

evolving complex multi-objective control systems. In past
work, we used a standard genetic algorithm (GA) to learn
the weights for a simple neural network (NN) controller. In
our present research, we are using incremental learning to
evolve more sophisticated controllers than those of the past.
This process has required a continual cycle of design /
evolve / evaluate to develop competent components for the
control strategies. However, since the evaluations of the
controllers are inordinately long, this process is very slow on
a single computer. In future research, we hope that evolved
agents will be evaluated in the real world, competing against
human players in different arenas. In an effort to speed up
our current development process and additionally address
our future need for real-world evaluation, we implemented a
method for evolving Xpilot controllers on a distributed
system. The method is based on a steady state genetic
algorithm (SSGA). A queue is used to store individuals of
the population with new children added to the front and the
oldest individual removed from the tail of the queue.

In a SSGA only one or two individuals are replaced in a
population at each iteration. These new individuals become
part of the population and are now available for selection.
This is in contrast to the standard GA where the entire
population (with the possible exception of an elite group of
individuals carried over from the previous generation) is
replaced each iteration (referred to as a generation in this
case). Although Holland discussed this idea in his original
work [1] and De Jong evaluated the properties in follow-on
research [2], it was not until Whitney developed GENITOR

[3] that “steady state" became of increased interest in genetic
algorithms. GENITOR uses rank-based selection where
parents are picked based on their fitness ranking as opposed
to their proportional fitness where an individual with a
fitness of 2x has twice the probability of being selected as an
individual with a fitness of x. GENITOR produces one
offspring at a time and this offspring replaces the least fit
individual in the population. This means of learning was
found to be very effective on several problems as this
replacement strategy aggressively pursues an optimal
solution. However, high selection pressure can result in
premature convergence. Large population sizes may be
needed to avoid this possibility.

 In their paper describing studies on the overlapping
generations of SSGAs [4], De Jong and Sarma use a SSGA
with a FIFO deletion strategy to better approximate the
results of a standard GA. This helped to reduce the variance
of the final solutions (high variance results in allele loss [5])
and resulted in a higher best-individual-takeover than
SSGAs using uniform replacement (replace an individual
selected at random).

SSGAs offer a reasonable method for executing GA
learning on a network of computers. They have been used
by other researchers for this purpose. Whitney and
Starkweather [6] and Takashimar et al. [7] used a SSGA in
the implementation of a parallel GA that uses the island
model of computation. In the island model, processors are
assigned subpopulations, which share genetic information
through migration. We did not use an island model; the
fitness evaluation time precludes the use of large
populations. Runarsson [8] used an asynchronous parallel
evolution strategy for multiprocessor machines. Our system
is distinct from this work in that we used GAs instead of
evolution strategies and we used FIFO replacement instead
of tournament selection/replacement. In addition, our
implementation is unique in that it is applied to learn
controllers for an interactive network computer game.

In this paper, we use a SSGA that uses FIFO replacement
to learn control strategies for Xpilot. Since the population is
stored on a queue to implement FIFO replacement, we will
refer to the algorithm as a queue genetic algorithm (QGA) in
this paper.

Using a Queue Genetic Algorithm
to Evolve Xpilot Control Strategies on a Distributed System

Matt Parker, Computer Science, Indiana University, matparke@indiana.edu
Gary B. Parker, Computer Science, Connecticut College, parker@conncoll.edu

X

II. XPILOT
Xpilot is an open-source multi-player networked two

dimensional space combat simulator in which a player
controls a ship in varieties of free-for-all combat, team
combat, and capture-the-flag game-play. Although the main
controls are few—turn, shoot, and thrust—the strategies and
maneuvers for which these simple controls are employed
can be very complex and separate poor from successful
playing styles.

Xpilot uses a client/server model to allow for multiple
players. The server generates the map, calculates game
physics, receives input from clients, and sends game data to
the clients. A client captures information from the player
keyboard and mouse input, sends it to the server, and
displays information received from the server, such as ships,
bullets, walls, and player scores. The server and client are
synchronized frame by frame. In recent work, we modified
the Xpilot client by adding an interface to control the Xpilot
client ship with an artificial intellence agent (AI). We
created a module of Xpilot with structures containing useful
information about the player's ship, the enemy ships, the
bullets, the radar, and the map, which were parsed after
being received by the client and stored into variables. In
addition, commonly used functions for aiming, calculating
distances, finding barriers, etc. were added to the AI
module. The AI module uses the input information to
determine the AI’s behavior (thrust, turn, and shoot) for the
next frame.

III. DITRIBUTED SYSTEM
Because Xpilot is a real-time multi-player game, all

clients must synchronize with each other and with the
server, running the game world at a constant rate. Since a
significant amount of time is necessary to evolve an AI, it is
desirable to do the fitness computations as fast as possible.
However, Xpilot was built for human players, who can only
control their ships at a slow game world speed, so it has
natural limitations on the speed of the simulation. In past
work, we increased the possible speed of the game by

running the display in a low color-depth video buffer rather
than through a real video card and removed the 100 frames-
per-second limit built into the game. However, between
each frame we often require enough computation for the
ship controller that running the game at a high frame rate
often results in dropped frames due to lost coordination
between the server and client. The Xpilot server runs at a
constant rate, according to the CPU clock of its host
computer. If a client does not send any data to control its
ship in a frame, due perhaps to unfinished controller
computation, the server cannot wait for that client to send
the data since other clients may be connected to the server
and they must not be forced to wait as well. If a client drops
frames, it slightly changes the control of the ship and results
in a controller that does not work properly at normal speeds.
Due to the fact that the server does not wait for slow clients
and as the game play varies the client’s required
computation time between frames also varies, it is necessary
to have a large buffer of excess computational power so that
at computational peaks a client will not lose any frames.
Therefore, running a single simulation of Xpilot does not
take full advantage of the capabilities of the computer on
which it runs. The evolution is slow and it takes days to
evolve a controller.

To increase the speed of fitness computation for Xpilot
we distribute the evolution of a single GA over multiple
instances of Xpilot simulations. A single genetic algorithm
server distributes chromosomes to clients running an Xpilot
simulation (Xpilot server and client), receives from the
clients the fitness of the chromosomes, and evolves the
population. We are able to run multiple Xpilot simulations
locally on one computer and/or distribute them across
multiple computers over the network. These clients are able
to run their simulations at manageable frame rates according
to the capabilities of their local host computers. A single
computer distributing multiple simulations is now able to
safely utilize more of its processing power. Evolution that
once took days can now be accomplished in a few hours,
making Xpilot a more feasible platform for testing learning
methods.

Fig. 1. The evolutionary scheme of a QGA. The oldest individual is removed from the queue as a new individual is formed
from crossover of two stochastically (roulette wheel) selected individuals from the population, and placed at the top of the
queue.

IV. QUEUE GENETIC ALGORITHM
A regular genetic algorithm (RGA), which tests an entire

population, assigns fitnesses, and recombines (crossover and
mutation) the individuals to form a new population, is
effective for evolution but is often difficult to distribute over
several processors. If the fitness functions take varying
amounts of time to evaluate, managing the returning
evaluations often means either waiting for the last
individuals of a population to evaluate, or sending out more
chromosomes than necessary and wasting unfinished
evaluations when enough have returned. The server which
controls the GA must often remember the number of clients
connected and juggle the timing of the computations.
Because the length of fitness evaluations in Xpilot can vary
by several seconds, it is not desirable to use an RGA as a
distributed server. As an alternative, we use a steady-state
first-in-first-out genetic algorithm, which we refer to as a
queue genetic algorithm (QGA). This solution allows us
greater versatility in our distribution and offers the
advantage of an evolution scheme that is equal in effect to
an RGA.

The QGA’s structure (Figure 1) is a queue in which new
individuals are formed from crossovers of stochastically
(roulette wheel) selected individuals from the population
while the oldest individuals are removed. The queue is the
size of the desired population and consists entirely of
individuals who have already been tested for fitness. When
a client is available, two individuals are chosen
stochastically according to fitness from the population, their
chromosomes are crossed over to form the new child. The
child is sent to the client where it is tested for fitness and
placed at the beginning of the queue. The oldest individual
is removed, and each individual moves down one slot closer
to the end where it will eventually be removed. If the size of
the population is p, each individual has p chances to be
chosen as a parent of a new child. Because each individual
has p chances to reproduce, the QGA is very similar in
evolutionary behavior to an RGA, which performs p
recombinations to form a new population after every
individual in the generation is evaluated.

To begin a population, as in an RGA, a QGA population
is filled with random individuals. Because a QGA only
places an individual on the queue after its fitness has been
evaluated, the QGA must form the random individuals and
test them to build the queue to the size of the population. If
the QGA builds a population entirely of random individuals
and commences with its standard evolutionary cycle of
recombining new children and removing the oldest in the
queue, then the oldest individual will have only one
opportunity to be selected as a parent for a new child. The
second oldest will have only two opportunities, the third,
three, and so on, and the last randomly created individual
will have the most opportunities to reproduce. The
evolution would favor the later formed individuals with little
regard to their fitnesses. However, if while the random

population is formed, the early individuals are given
opportunities to reproduce offspring in the place of
producing a random individual, the initial population will
lack diversity.

Fig. 2. Map which the evolving ship must learn to navigate to get close to
target ship. The evolved ship is the white dot in the center of the screen
with a white directional line. The target ship, which does not move, is at the
top of the map. It cycles its position between the top of the map and the
bottom. The other lines are walls or obstacles.

To create a population with diversity in which there is

negligible advantage for an individual according to the time
of its creation, the initial queue is filled to at least double the
target population. In addition, we use probabilities to
determine how each new individual will be produced. Given
a target population size of p, a current population size of n,
and an initial population size of 2p, while n < 2p, there is a
n/2p chance that the newest formed individual will be a
recombination of stochastically selected parents from the
current n sized population. Otherwise, a new random
individual will be created. This gives roughly equal
opportunity to all newly formed individuals to reproduce,
while still forming approximately p random individuals.
When n=2p, any new individuals formed will be children
formed from crossover, and in order to reduce the size of the
population back to p, two rather than one of the oldest
individuals are removed for every new individual formed.

QGAs are naturally easy to distribute. The population of
the QGA is steady state and always made of the most current
individuals, so the QGA server may form any number of
new chromosomes on demand from its single population
without keeping a saved history of an older population, as
may be necessary in an RGA. The QGA server can create
and send new chromosomes to the QGA clients, receive

back the chromosomes with the fitnesses, add them to the
population, and drop the oldest individuals. This can be
done at any rate and to any number of clients; all without
remembering the number of individuals sent out or the
number received. It is even possible to have more clients
testing individuals than there are individuals in the
population. Each returned individual still has the same
number of chances to mate, no matter the rate at which
individuals are being created, dropped, or added.

The QGA server is implemented in such a way that after
starting it waits for QGA clients to connect. When the
server first starts, it either loads a previously saved
population or creates a new one. If a client connects, the
server sends to the client a chromosome; either a randomly
created chromosome, or a crossover from two selected
individuals in the population. Once the server sends away
the new chromosome it forgets it, erasing it from memory.
After the client has tested the chromosome to attain fitness,
which in our case is done in an Xpilot simulation (made up
of an Xpilot server and client), it sends back the
chromosome and its fitness to the QGA server. The server
adds the new individual to the queue and drops the oldest

individual. It then immediately forms a new chromosome
and sends it out to the client from which it received the latest
individual with fitness. Because the server does not add the
chromosome to a population until after it has been tested,
there is no problem if a client must quit and never returns
the chromosome. All that is lost is a new chromosome,
which can easily be generated again.

Because of this great versatility and simplicity, we are
able to easily distribute our Xpilot evolution. We can add
and drop clients to a QGA server whenever we wish. We
can run as many clients as we would like, increasing the
speed of evolution numerous times over. We can also run
the clients at different frame rates, depending on the
capabilities of the clients’ local computers. Connected to
the same QGA server, we can run 30 clients in the
background on our cluster running at 100 frames per second,
5 clients on a dual processor Xeon running at 64 frames per
second, and a single client on a desktop computer in the lab
running at 32 frames per second with a graphics display to
view the progress of the evolution. Our QGA distribution
allows great speed with versatility, and the simple design
makes it robust and easy to use.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 10 20 30 40 50 60 70 80 90 100

Generations

Fi
tn
es
s

RGA
QGA

Fig. 3. Results showing similar improvement between the distributed Queue GA and the Regular GA. This is the average
of the average fitness of the five tests for each evolutionary method.

0

100000

200000

300000

400000

500000

600000

700000

0 10 20 30 40 50 60 70 80 90 100

Generations

Fi
tn
es
s

RGA
QGA

Fig. 4. Graph of the average of the best fitness over the generations for each of the five tests for each evolutionary method.

V. TESTS AND RESULTS
For this paper we tested a particular problem in Xpilot

with both a distributed QGA and an RGA, in order see if the
QGA evolution was as effective as that of the RGA.

We chose to evolve a controller for a ship that was to
navigate the ship through obstacles to fly as near as possible
to a target ship. The controller is a single-layer neural
network with 16 inputs going to two outputs, with 32
weights in between. Each weight is a real number with a
value between -1.0 and 1.0 and is derived from an 8 bit gene
from the chromosome. Since there are 32 weights, the
length of the chromosome is 256 bits. The inputs consist of
information about the distance of walls surrounding the ship,
the ship’s own velocity and heading, the direction to the
target ship, etc. One of the outputs is for thrust; the ship will
thrust if the output is greater than or equal to zero. The
other output controls the turn of the ship, which can be
anywhere from -15 to 15 degrees per frame. The output of
the turn node is mapped onto this range.

The evolving ship starts at a random location in the center
of the map (Figure 2) and the target ship starts either at the
top or the bottom of the map. Each individual in the
population lives two lives, once where the target ship is
located to the north, and once where it is to the south. The

walls are lethal if crashed into at anything but a very slow
speed. The layout of the walls differs from north and south
in order to make the agent learn a more robust navigational
controller. The agent is given a reasonable amount of time
to fly to the target ship. If the target ship is reached, it will
fly a little ways away to make the agent learn to follow.
Fitness is awarded the agent according to how close it flew
to the target ship from its original location, summed over
every frame of game-play. It is also given bonus points for
every frame that it is located right next to the target ship, and
to encourage it to fly carefully its score is doubled if it stays
alive during the whole allotted run time-limit. The fitness is
summed over the two runs, north and south.

We ran five tests with a distributed QGA and five tests
with an RGA, each at 64 frames per second with a
population of 256. We set the QGA to build up an initial
population that was four times (rather than two times) its
target population of 256 to increase initial diversity and then
decreased it down to 256 (removing two oldest instead of
one). Figure 3 shows the average of the average fitnesses of
the five test populations for the RGA and the QGA and
Figure 4 shows the average of the best fitnesses for each
generation of each of the five tests for the QGA and RGA.
Because there are no discrete “generations” in the QGA, we
determine them by each time p number of individuals have

been tested, where p is the actual size of the population.
Because p first expands out to four times the target
population, the generations are first read at 1024 and then
512 individuals, after which every generation is made of 256
individuals. For this reason, we start the graphs of the QGA
4 generations later than the RGA.

With both the RGA and the QGA the agents evolved
similarly successful strategies to fly close to the target ship.
Their best and average fitnesses are very similar, with the
QGA’s average fitness being slightly higher, which could be
luck or because at the start the QGA built up to a larger
initial population, allowing for greater diversity. The real
advantage with using the distributed QGA is that the
evolution was finished in a matter of hours rather than a few
days, as it took the single RGA tests. By using a distributed
RGA we could have sped up the time of evolution, but not
to the extent of the QGA and not with the same flexibility
for distribution.

VI. CONCLUSIONS
The Queue Genetic Algorithm has proved to be an

effective evolutionary method, with results very similar to
the evolution of a Regular Genetic Algorithm. The design
of a QGA is such that it may be easily distributed amongst
numerous computers, and its simplicity makes it robust
enough to handle varied client capabilities and network
limitations. When evolving agents in Xpilot, a game that
can not be run fast enough to utilize the full processing
capabilities of a computer and that takes varied time to test
agents, a distributed solution is necessary for timely
evolution results. A distributed QGA has been ideal for
evolving one population over multiple Xpilot simulations
and in our test to evolve the weights in a neural network to
control an agent to navigate towards a target ship, the QGA
yielded behavior and fitness extremely similar to our same
test performed with an RGA.

In the future we plan to continue using the QGA to evolve
tests, as well as to create “chains” of Xpilot simulations,
where individuals will be tested in several different maps
and arenas. We hope to be able to eventually send
individuals out into a public Xpilot server to play against

human players. In further research, we intend to test the
QGA on other problems requiring simulated evolution. A
distributed QGA is an effective learning method that
significantly increases the speed of evolution and can be
used in several evolutionary computation applications.

REFERENCES
[1] Holland, J. (1975). Adaptation in Natural and Artificial Systems, The

University of Michigan Press.
[2] De Jong, K. (1975). An Analysis of the Behavior of a Class of Genetic

Adaptive Systems, Doctoral Thesis, Department of Computer and
Communication Sciences, University of Michigan, Ann Arbor.

[3] Whitley, D. (1989). “The GENITOR Algorithm and Selection
Pressure: Why Rank-Based Allocation of Reproductive Trials is
Best,” Proceedings of the Third International Conference on Genetic
Algorithms.

[4] De Jong, K. and Sarma, J. (1993). “Generation Gaps Revisited,”
Foundations of Genetic Algorithms 2, San Mateo, CA.

[5] Sarma,J. and De Jong K. (1997). "Generation Gap Method,"
Handbook of Evolutionary Computation, Oxford University Press,
New York Oxford, C2.7.

[6] Whitley, D. and Starkweather, T. (1990). “Genitor II: a Distributed
Genetic Algorithm,” Journal of Experimental & Theoretical Artificial
Intelligence Volume 2 , Issue 3, July/Sept. 1990, pp. 189 – 214.

[7] Takashima, E., Murata, Y., Shibata, N. and Ito, M. (2004).
“Techniques to Improve Exploration Efficiency of Parallel Self
Adaptive Genetic Algorithms by Dispensing Synchronization,”
Proceedings of the Fifth International Conference on Simulated
Evolution And Learning (SEAL2004), October 2004.

[8] Runarsson, T. (2003). “An Asynchronous Parallel Evolution
Strategy,” International Journal of Computational Intelligence and
Applications, Volume 3, Number 4, pp 1-14, 2003.

[9] Parker, G. and Rawlins, G. (1996). “Cyclic Genetic Algorithms for
the Locomotion of Hexapod Robots,” Proceedings of the World
Automation Congress (WAC '96), Volume 3, Robotic and
Manufacturing Systems. May 1996.

[10] Parker, G. and Georgescu, R. (2005). “Using Cyclic Genetic
Algorithms to Evolve Multi-Loop Control Programs,” Proceedings of
the 2005 IEEE International Conference on Mechatronics and
Automation (ICMA 2005), Niagara Falls, Ontario, Canada, July 2005.

[11] Parker, G., Parker, M., and Johnson, S. (2005). “Evolving
Autonomous Agent Control in the Xpilot Environment,” Proceedings
of the 2005 IEEE Congress on Evolutionary Computation (CEC
2005), Edinburgh, UK., September 2005.

[12] Parker, G., Doherty, T., and Parker, M. (2005). “Evolution and
Prioritization of Survival Strategies for a Simulated Robot in Xpilot,”
Proceedings of the 2005 IEEE Congress on Evolutionary
Computation (CEC 2005), Edinburgh, UK., September 2005.

