

Abstract— In the research presented in this paper, we use
incremental evolution to learn multifaceted neural network
(NN) controllers for agents operating in the space game Xpilot.
Behavioral components specific to the accomplishment of
specific tasks, such as bullet-dodging, shooting, and closing on
an enemy, are learned in the first increment. These behavioral
components are used in the second increment to evolve a NN
that prioritizes the output of a two-layer NN depending on that
agent’s current situation.

I. INTRODUCTION
N previous work we introduced Xpilot as an environment
for testing systems designed for learning control programs

for autonomous agents. In that paper, we presented initial
experiments where a genetic algorithm (GA) was used to
learn the connection weights for a single-layer artificial
neural network (NN) controller. The tests demonstrated the
use of the Xpilot environment, but the controllers evolved
lacked the sophistication required to compete with a human
opponent. In this paper, we report research conducted to
take the next step in our progression toward evolving a truly
competitive Xpilot agent. We evolve single-layer NNs that
are each designed to handle a specific task. These NNs are
then used as part of a larger NN with their outputs combined
to produce multifaceted agent behavior.

Xpilot is an open-source 2-dimensional space combat
simulator which is playable over the internet. Multiple
players can connect to a central Xpilot server and compete
in many varieties of game play, such as free-for-all combat,
capture-the-flag, or team combat. Each player controls a
space-ship that can turn, thrust, and shoot. There is often a
variety of weapons and ship upgrades available on the
particular map in which they play. The game uses
synchronized client/server networking to allow for solid
network play.

There are a number of researchers who have used GAs to
evolve game playing agents. Most of this work has been in
that area of thought games where the agent is competing
with a single opponent (board games, etc.). Konidaris,
Shell, and Oren worked to evolve a NN to capture in Go [1].
Hingston and Kendall used evolution in the iterated
prisoner’s dilemma problem [2], and Fogel researched
learning in checkers [3]. Some research has been done in
the area of action computer games. Funes and Pollack
evolved controllers for light-cycles against human
opponents in their online Java Tron applet [4], Yannakakis

and Hallam evolved interesting ghost opponents for the
game Pac-Man [5], and Cole, Louis, and Miles evolved
agent parameters for the multiplayer first person shooter,
Counter-Strike [6].

In previous work, we used evolutionary computation to
learn controllers for agents operating in Xpilot [7]. A
single-layer NN with 22 inputs and three outputs (thrust,
shoot, and turn) was developed and a GA was used to learn
the connection weights. The evolved controllers learned to
survive and fight against an enemy bot in a simple square
arena. Instead of learning the best behavior from a
particular starting location, each generation switched starting
locations to make the agent more skilled at general combat.
Because the hostility of the starting locations varied,
graphing improvement in fitness was difficult, yet it could
clearly be seen by looking at the average fitness of the
populations that the agents had successful evolved against
the particular enemy bot used in the evolution.

The results were promising in that the Xpilot environment
showed significant potential for future work, and the
evolved controllers showed progress as they gained survival
fitness over training time. However, the resultant agents
lacked many skills needed for successful combat. In this
paper, we report the results of our research in which we used
incremental evolution to learn controllers for Xpilot agents.
In the first increment we used specific training environments
to learn specific facets of control. These were then used in
the second increment to evolve a two layer NN that used a
separate NN to control its second layer connection weights.

II. MODIFICATIONS TO XPILOT
 In previous work, we described the modifications made

to Xpilot to create a system for testing artificial intelligence
(AI) agent learning systems. In this section those
modifications will be reviewed and new changes discussed.
The Xpilot client, which a player uses to join with an Xpilot
server, is mainly used to display relevant information about
the game world to the player and to capture keyboard and
mouse input that it sends it to the server. Between each
frame, the client receives from the server information that is
needed to display the player’s ship and the surroundings.
We intercept this information and convert it into variables
relevant for use with an AI agent. We also simulate
keyboard strokes and mouse movement to control the ship.
Xpilot was originally coded in C, which is a difficult
language for AI modules because it is necessary to
recompile the entire program after making even small

The Incremental Evolution of Attack Agents in Xpilot
Gary B. Parker, Computer Science, Connecticut College, parker@conncoll.edu

Matt Parker, Computer Science, Indiana University, matparke@indiana.edu

I

changes. We have now added a Scheme interface to make
writing AI agents for Xpilot much more convenient. This
allows us to modify our controllers without compiling and
even alter agent behaviors while Xpilot is running.

III. EVOLUTION OF BEHAVIORAL COMPONENTS
The first increment in the development of combat Xpilot

agents was to evolve behavioral components. The Xpilot
agent operates in a complex combat environment. In order
to successfully engage the enemy; the AI agent needs to be
able to locate, move towards, and track the opponent; fire
bullets at it; and dodge bullets from it. Each of these
behavioral components takes specific skills. In order to
equip our agent with these skills, specialized NNs for
control and training environments for learning were
developed. The NN connection weights were learned to
develop controllers appropriate for the specific tasks. The
three possible outputs are thrust (on/off), shoot (on/off), and
turn (between -15° and 15°).

A. Bullet Dodging
We determined that a key skill in agent survival is its

ability to dodge bullets. This is a very difficult task that
advanced human players accomplish through experience.
We wanted our Xpilot agent to learn through training in an
environment where bullet dodging was isolated as the key to
survival. We used a single-layer NN that had the inputs that
we considered to be of greatest importance. The inputs used
were changed as necessary through and an iteration of tests
until a good compromise between required inputs and
chromosome length was found. The inputs included the
agent’s velocity, the difference in the agent’s heading from
its track, shot-alert (a function that computed the danger of
bullets in the vicinity), and the difference in the agent’s
track in comparison to the most dangerous bullet’s track.
The outputs were turn and thrust. Shoot was not included
since this action is not needed for bullet dodging.

Fig. 1. Training arena for the bullet dodging behavior component. This is a screenshot of the map. Jim128 is navigating through a barrage of bullets (larger
white dots). The label “1 Jim128”shows the agents starting base, which is randomly selected from the team 1 starting basis. The agent is shown as a triangle;
in this case it is currently heading east. The “+” circles are repellers, which constrain the agent to the center of the map.

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

0 10 20 30 40 50 60 70 80 90 100

Generations

Fi
tn
es
s

Fig. 2. Graph of learning curve for bullet dodging. The points are the
average fitness of each population at each generation. The line shows the
mean of the five runs. The bold line shows linear least squares trend line.

The agent was trained in an environment (Figure 1) that
was focused on bullet dodging with minimal need for wall
avoidance and interaction with enemy ships. The agent was
placed in the center area of this arena with a perimeter of
repeller nodes (circles marked with a +). These nodes repel
ships in their vicinity. This perimeter was designed to keep
the agent isolated in the center of the arena. A second circle
of repellers surrounded the first, and enemy ships were
placed outside of the second circle. They were programmed
to shoot freely at the AI agent. The two layers of repellers
kept, for the most part, the enemy ships separate from the AI
agent’s ship while a flurry of enemy bullets peppered the
area where the AI agent could operate. The AI agent’s
fitness was determined by how many frames it survived. In
order to lessen the effects of luck, three tests were done for
each individual at each generation to determine its fitness.

0

10000000

20000000

30000000

40000000

50000000

60000000

0 10 20 30 40 50 60 70 80 90 100

Generations

Fi
tn
es
s

Fig. 3. Graph of learning curve for bullet dodging. The points are the best
individual fitness from each population at each generation. The line shows
the mean of the five runs. The bold line shows linear least squares trend
line.

 Figures 2 and 3 show the fitness growth as five tests were

run for 100 generations each. The graph shows points for
the five runs plus an average line showing the average at
each generation. As can be observed, there was a high
degree of variation throughout the learning process. This is

primarily due to the fact that luck plays a large part in bullet
dodging. However, steady improvement can be seen as the
agents learn the specific task. A least squares line is
provided to help the reader visualize the improvement.
Observations of the agents in the arena also confirmed that
they learned techniques for bullet evasion. They would
thrust away from bullets heading in their direction and
would turn if their heading was pointed in the direction of
(or directly opposite to) the approaching bullet.

B. Shooting
Another important skill for an Xpilot agent is to be able to

destroy the enemy. Since the only means in our simulation
for it to destroy the enemy without destroying itself was to
shoot it, we set up a training environment for this purpose
(Figure 4). We did not want the agent to be concerned with
avoiding walls, so contact with walls does not damage the
ship. In addition, we made collisions with the enemy
harmless to both ships so that our agent would disregard
potential collisions with the enemy. Both the AI agent and
the enemy were placed within the arena with the agent
placed in the center and the enemy placed at any of the
number of bases near the perimeter. The enemy could not
shoot and stayed in place until a bullet approached. It would
take action to avoid the bullet and then continue moving in
an attempt to survive. The AI agent had no thrust so its task
was to use turn and shoot to destroy the enemy.

Fig. 4. Training arena for the shooting behavior component. The agent
(Closec36550) is shown firing at enemy ship (Close12920). The arena is
not much larger than the viewable area in this screenshot. The agent starts
at a randomly selected 1 base. The enemy switches between the 3 and 4
bases. Its base for this run was one of the 4s located directly below it. The
bar to the right of the agent shows its fuel remaining. However, it will
never last long enough to burn the fuel since self-destruct has been
activated. Self destruct is used as a means to enforce the time limit.

The input the AI agent used was the difference of its
heading to the direction of the enemy, the history of this
difference in the previous frame, the difference of agent’s
track to the direction of the enemy, the distance to the
enemy, the difference between its own track and heading, its
velocity, and a node always set to one to act as the threshold.
These seven values are all inputs to a single-layer NN that

has turn and shoot as outputs. The output value of turn was
multiplied by 15 yielding a resultant turn (heading change)
between -15° and 15° (15° is the maximum turn rate). We
impose a maximum turn rate of 15° on our agents to better
simulate reasonable human play. The shoot node caused the
agent to shoot if its resulting value was zero or above. The
weights for this NN were evolved using a GA. Each weight
could have a value between -1 and 1, which was converted
from an 8 bit number; 14 of these made up the chromosome.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 10 20 30 40 50 60 70 80 90 100

Generations

Fi
tn
es
s

Fig. 5. Graph of learning curve for shooting. The points are the average
fitness of each population at each generation. The line shows the mean of
the five runs.

0

5000

10000

15000

20000

25000

30000

0 10 20 30 40 50 60 70 80 90 100

Generations

Fi
tn
es
s

Fig. 6. Graph of learning curve for shooting. The points are the best
individual fitness from each population at each generation. The line shows
the mean of the five runs. The bold line shows a 6th order polynomial least
squares trend line.

The tests yielded favorable results. Five tests were run

with the average and best fitnesses at each generation shown
in Figures 5 and 6. The fitness was determined by how
close the bullets approached the enemy with a bonus added
for a kill (each individual was run 3 times). The graphs
show increased fitness growth through 100 generations. A
mean line is displayed on the graph showing the average
fitness. There is much more variation from generation to
generation for the best of each population. This graph
shows a means line and a least squares 6th order polynomial
is also shown. Observation of the agents revealed that they
had learned to turn toward the enemy and shoot. Some

individuals appeared to be using the difference in heading to
the ship from the previous frame (one of the input nodes) to
predict the future position of the enemy and lead it with a
shot. The shooting agents were successful in their task.

C. Close
The final task for the agent to learn involved two skills:

the agent was to close on an enemy to attack and avoid
flying into the lethal walls while navigating toward the ship.
The arena for this is shown in Figure 7. The AI agent
always started someplace in the center of the arena and the
stationery enemy was placed alternately at the top or bottom
of the arena.

Fig 7: Training arena for the close behavior component. The agent,
represented as a white dot with a heading indicator, is located in center. It
must attempt to reach the enemy ship, the white dot in the southern extreme
of the map. The enemy ship cycles between two random locations, one at
the extreme north and the other at the extreme south of the map.

The fitness of the agent was determined by its continual
closure on the enemy with a bonus for each frame it stayed
within 35 pixels of it (two runs were done for each
individual). The NN had 16 inputs going to two outputs
(thrust and turn). The inputs dealt with wall locations
relative to 15° left and right of the agent’s track and the
enemy ship’s bearing relative to the agent’s heading and
track. Figures 8 and 9 show the learning curve through 100
generations. The GA learned the weights needed for the
agent to find its way to the target going both in the north and
south directions. Observations of the agent revealed a
peculiar behavior; it would spin as it advanced toward the
enemy. At first, it seemed to make little sense because
spinning required extra coordination since thrusts had to be
timed to occur when the heading was facing in the correct
direction. After some consideration, it was speculated that

the spinning helped in avoiding death through wall
collisions. In the default Xpilot settings, a ship is more
sensitive to wall collisions on its bow than on its stern. The
spinning reduced the probability that initial contact with a
wall would be in the front.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 10 20 30 40 50 60 70 80 90 100

Generations

Fi
tn
es
s

Fig. 8. Graph of learning curve for close. The points are the average fitness
of each population at each generation. The line shows the mean of the five
runs.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 10 20 30 40 50 60 70 80 90 100

Generations

Fi
tn
es
s

Fig. 9. Graph of learning curve for close. The points are the best individual
fitness from each population at each generation. The line shows the mean
of the five runs. The bold line shows a 6th order polynomial least squares
trend line.

IV. EVOLUTION OF CONTROL FROM THE COMPONENTS
The second increment in the evolution was to use the

components evolved in the first increment to evolve a
complete controller. We had three good components
evolved to handle three tasks: dodge bullets, shoot the
enemy, and close on the enemy while avoiding walls.
Joining these together was the next step. The obvious
method would be to use the best controllers from each of the
three components as the first layer of a NN and evolve a
second layer. The outputs of the three components were
turn and thrust for bullet dodging, turn and shoot for
shooting, and turn and thrust for close. This would give us
three middle layer turn nodes and two middle layer thrust
nodes. The shoot node (from shooting) could go directly to
the output. The problem with this method had to do with the
combining of middle layer nodes. For example, combining

the best turn for dodging, with the best turn for shooting,
with the best turn for closing, was very unlikely to result in
the desired behavior without some other input.

Fig. 10. Diagram of entire incremental network. The enemy distance and
bullet alert are inputs to a network whose outputs are the weights between
the specialized networks’ outputs and the three resultant outputs.

Fig. 11. Training arena for the final increment of evolution, in which the
priority network was evolved. The map is very similar to Close, but it has
fewer obstacles and the enemy only starts in the south.

We reasoned that what was really needed was a NN that

determined the priority of these three components and
combine them with that in mind. This meant that we needed
a separate NN to set the weights for the second layer of our
two-layer NN. In other words, the weights of the
connections of the second layer needed to change depending
on the environment. The two primary conditions to be
considered were the risk of being killed by a bullet and the
distance from the enemy ship. Bullet risk should give
dodging the priority, a close ship should give shooting the
priority, and a far ship should give close the priority. We
used a formula to determine the risk of the bullets; this
included their distance, their closing velocity, and collision
probability assuming that the agent maintained its current
track and speed. Using these two inputs (bullet risk and

enemy distance) as input nodes, we used a GA to learn the
weights of a separate NN that set the weights between the
middle and output layer of the control NN.

A drawing of the NN is shown in Figure 10. These two
inputs, through the separate NN, set the weights for the two-
layer control NN. This separate network required that
twelve weights be learned. Each of these had a value
between -1.0 and 1.0 and was represented by eight bits. In
addition, the GA learned the threshold weights for the three
output notes (thrust, turn, & shoot) making a chromosome
that consisted of fifteen eight bit numbers.

The fitness function rewarded aggressive behavior by
giving points for being closer to the enemy and for killing
the enemy. Survival was not directly rewarded, although the
run ended when the ship was destroyed, so no further near /
kill enemy points could be accumulated. The tests were
done in an arena similar to one used for the close test
(Figure 11). Except that some wall obstacles were removed
and the enemy always started in the lower section.

For these tests, the enemy was a hand-coded attack bot
that remained stationary until there were no walls between it

and the learning agent, at which time it would attack.
Figures 12 and 13 show the results of five tests run for 100
generations (3 run for each individual). As can be seen, the
GA continually improved the control program, which
resulted in good agent behavior.

Observations of the resultant agents revealed that they had
all improved in their effectiveness, but varied in their
strategies. In most cases they spun as they closed on the
enemy, firing sporadically. The spin often continued as they
approached the enemy, but the firing rate increased. Some
individuals would tend more toward shifting into a shoot
mode when close to the enemy, turning and firing without
using thrust. None of the learned bullet dodging behavior
was observed. Although in some cases the agent would
have an irregular spin pattern when a bullet approached.
This resulted in less likelihood of bullet contact, but the
behavior appeared to be random as opposed to motions
appropriate for the situation. In all cases the tests resulted in
aggressive agents who engaged the enemy and attempted to
destroy it.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 10 20 30 40 50 60 70 80 90 100

Generations

Fi
tn
es
s

Fig. 12. Graph of learning curve for the second increment NN. The points are the average fitness of each population at each generation. The line shows the
mean of the five runs.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 10 20 30 40 50 60 70 80 90 100

Generations

Fi
tn
es
s

Fig. 13. Graph of learning curve for the second increment NN. The points are the best individual fitness from each population at each generation. The line
shows the mean of the five runs. The bold line shows a 6th order polynomial least squares trend line.

V. CONCLUSIONS
This research uses incremental evolution to continue to

advance our work in evolving NN controllers for agents
operating in the Xpilot combat environment. The first
increment was to learn NN controllers that were evolved to
be proficient in specific tasks. The second increment used
the outputs of these controllers, plus a separate NN to assign
them varying degrees of priority to create a two-layer NN
that was responsive to changes in the agent’s combat
conditions. This controller produced an output that took all
three learned responses into consideration, giving priority to
the one most appropriate for the current situation.

In future work, we will continue to use incremental
learning to evolve behaviors appropriate for specific
situations pertinent to space combat. These will be used to
increase the complexity of controllers for Xpilot agents. For
example, adding a behavioral component which had learned
the proper behavior for moving away from an enemy would
allow the agent to retreat after a failed attack or in situations
where multiple enemies were present. In addition,
components could be learned that help the agents participate
in coordinated efforts such as teams of agents working
together to complete an assigned task.

REFERENCES
[1] Konidaris, G., Shell, D., and Oren, N. “Evolving Neural Networks for

the Capture Game,” Proceedings of the SAICSIT Postgraduate
Symposium, Port Elizabeth, South Africa, September 2002.

[2] Hingston, P. and Kendall, G. “Learning versus Evolution in Iterated
Prisoner's Dilemma,” Proceedings of the International Congress on
Evolutionary Computation 2004 (CEC'04), Portland, Oregon, 20-23
June 2004, pp 364-372.

[3] Fogel, D. Blondie24: Playing at the Edge of AI, Morgan Kaufmann
Publishers, Inc., San Francisco, CA., 2002.

[4] Funes, P. and Pollack, J. “Measuring Progress in Coevolutionary
Competition,” From Animals to Animats 6: Proceedings of the Sixth
International Conference on Simulation of Adaptive Behavior. 2000,
pp 450-459.

[5] Yannakakis, G. and Hallam, J. "Evolving Opponents for Interesting
Interactive Computer Games,'' Proceedings of the 8th International
Conference on the Simulation of Adaptive Behavior (SAB'04); From
Animals to Animats 8, 2004, pp 499-508.

[6] Cole, N., Louis, S., and Miles, C. “Using a Genetic Algorithm to Tune
First-Person Shooter Bots,” Proceedings of the International Congress
on Evolutionary Computation 2004 (CEC’04), Portland, Oregon,
2004, pp 139–145.

[7] Parker, G., Parker, M., and Johnson, S. “Evolving Autonomous Agent
Control in the Xpilot Environment,” Proceedings of the 2005 IEEE
Congress on Evolutionary Computation (CEC 2005), Edinburgh, UK.,
September 2005.

