
 
 

 

  

Abstract— In the research presented in this paper, we use 
incremental evolution to learn multifaceted neural network 
(NN) controllers for agents operating in the space game Xpilot.  
Behavioral components specific to the accomplishment of 
specific tasks, such as bullet-dodging, shooting, and closing on 
an enemy, are learned in the first increment. These behavioral 
components are used in the second increment to evolve a NN 
that prioritizes the output of a two-layer NN depending on that 
agent’s current situation.  

I. INTRODUCTION 
N previous work we introduced Xpilot as an environment 
for testing systems designed for learning control programs 

for autonomous agents.  In that paper, we presented initial 
experiments where a genetic algorithm (GA) was used to 
learn the connection weights for a single-layer artificial 
neural network (NN) controller.  The tests demonstrated the 
use of the Xpilot environment, but the controllers evolved 
lacked the sophistication required to compete with a human 
opponent.  In this paper, we report research conducted to 
take the next step in our progression toward evolving a truly 
competitive Xpilot agent.  We evolve single-layer NNs that 
are each designed to handle a specific task.  These NNs are 
then used as part of a larger NN with their outputs combined 
to produce multifaceted agent behavior.   

Xpilot is an open-source 2-dimensional space combat 
simulator which is playable over the internet.  Multiple 
players can connect to a central Xpilot server and compete 
in many varieties of game play, such as free-for-all combat, 
capture-the-flag, or team combat.  Each player controls a 
space-ship that can turn, thrust, and shoot.  There is often a 
variety of weapons and ship upgrades available on the 
particular map in which they play.  The game uses 
synchronized client/server networking to allow for solid 
network play. 

There are a number of researchers who have used GAs to 
evolve game playing agents.  Most of this work has been in 
that area of thought games where the agent is competing 
with a single opponent (board games, etc.).  Konidaris, 
Shell, and Oren worked to evolve a NN to capture in Go [1].  
Hingston and Kendall used evolution in the iterated 
prisoner’s dilemma problem [2], and Fogel researched 
learning in checkers [3].  Some research has been done in 
the area of action computer games.  Funes and Pollack 
evolved controllers for light-cycles against human 
opponents in their online Java Tron applet [4],  Yannakakis 

 
 

and Hallam evolved interesting ghost opponents for the 
game Pac-Man [5], and Cole, Louis, and Miles evolved 
agent parameters for the multiplayer first person shooter, 
Counter-Strike [6]. 

In previous work, we used evolutionary computation to 
learn controllers for agents operating in Xpilot [7].  A 
single-layer NN with 22 inputs and three outputs (thrust, 
shoot, and turn) was developed and a GA was used to learn 
the connection weights.  The evolved controllers learned to 
survive and fight against an enemy bot in a simple square 
arena.  Instead of learning the best behavior from a 
particular starting location, each generation switched starting 
locations to make the agent more skilled at general combat.  
Because the hostility of the starting locations varied, 
graphing improvement in fitness was difficult, yet it could 
clearly be seen by looking at the average fitness of the 
populations that the agents had successful evolved against 
the particular enemy bot used in the evolution.   

The results were promising in that the Xpilot environment 
showed significant potential for future work, and the 
evolved controllers showed progress as they gained survival 
fitness over training time.  However, the resultant agents 
lacked many skills needed for successful combat.  In this 
paper, we report the results of our research in which we used 
incremental evolution to learn controllers for Xpilot agents. 
In the first increment we used specific training environments 
to learn specific facets of control.  These were then used in 
the second increment to evolve a two layer NN that used a 
separate NN to control its second layer connection weights. 

II. MODIFICATIONS TO XPILOT 
 In previous work, we described the modifications made 

to Xpilot to create a system for testing artificial intelligence 
(AI) agent learning systems.  In this section those 
modifications will be reviewed and new changes discussed.  
The Xpilot client, which a player uses to join with an Xpilot 
server, is mainly used to display relevant information about 
the game world to the player and to capture keyboard and 
mouse input that it sends it to the server.  Between each 
frame, the client receives from the server information that is 
needed to display the player’s ship and the surroundings.  
We intercept this information and convert it into variables 
relevant for use with an AI agent.  We also simulate 
keyboard strokes and mouse movement to control the ship.  
Xpilot was originally coded in C, which is a difficult 
language for AI modules because it is necessary to 
recompile the entire program after making even small 
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changes.  We have now added a Scheme interface to make 
writing AI agents for Xpilot much more convenient.  This 
allows us to modify our controllers without compiling and 
even alter agent behaviors while Xpilot is running. 

III. EVOLUTION OF BEHAVIORAL COMPONENTS  
The first increment in the development of combat Xpilot 

agents was to evolve behavioral components.  The Xpilot 
agent operates in a complex combat environment.  In order 
to successfully engage the enemy; the AI agent needs to be 
able to locate, move towards, and track the opponent; fire 
bullets at it; and dodge bullets from it.  Each of these 
behavioral components takes specific skills. In order to 
equip our agent with these skills, specialized NNs for 
control and training environments for learning were 
developed.  The NN connection weights were learned to 
develop controllers appropriate for the specific tasks. The 
three possible outputs are thrust (on/off), shoot (on/off), and 
turn (between -15° and 15°). 

A. Bullet Dodging  
We determined that a key skill in agent survival is its 

ability to dodge bullets.  This is a very difficult task that 
advanced human players accomplish through experience.  
We wanted our Xpilot agent to learn through training in an 
environment where bullet dodging was isolated as the key to 
survival.  We used a single-layer NN that had the inputs that 
we considered to be of greatest importance.  The inputs used 
were changed as necessary through and an iteration of tests 
until a good compromise between required inputs and 
chromosome length was found.  The inputs included the 
agent’s velocity, the difference in the agent’s heading from 
its track, shot-alert (a function that computed the danger of 
bullets in the vicinity), and the difference in the agent’s 
track in comparison to the most dangerous bullet’s track.  
The outputs were turn and thrust.  Shoot was not included 
since this action is not needed for bullet dodging.   

 

Fig. 1.  Training arena for the bullet dodging behavior component.  This is a screenshot of the map.  Jim128 is navigating through a barrage of bullets (larger 
white dots). The label “1 Jim128”shows the agents starting base, which is randomly selected from the team 1 starting basis.  The agent is shown as a triangle; 
in this case it is currently heading east.  The “+” circles are repellers, which constrain the agent to the center of the map. 
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Fig. 2.  Graph of learning curve for bullet dodging.  The points are the 
average fitness of each population at each generation.  The line shows the 
mean of the five runs.  The bold line shows linear least squares trend line. 

The agent was trained in an environment (Figure 1) that 
was focused on bullet dodging with minimal need for wall 
avoidance and interaction with enemy ships.  The agent was 
placed in the center area of this arena with a perimeter of 
repeller nodes (circles marked with a +).  These nodes repel 
ships in their vicinity.  This perimeter was designed to keep 
the agent isolated in the center of the arena.  A second circle 
of repellers surrounded the first, and enemy ships were 
placed outside of the second circle.  They were programmed 
to shoot freely at the AI agent.  The two layers of repellers 
kept, for the most part, the enemy ships separate from the AI 
agent’s ship while a flurry of enemy bullets peppered the 
area where the AI agent could operate.  The AI agent’s 
fitness was determined by how many frames it survived.  In 
order to lessen the effects of luck, three tests were done for 
each individual at each generation to determine its fitness. 
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Fig. 3. Graph of learning curve for bullet dodging.  The points are the best 
individual fitness from each population at each generation.  The line shows 
the mean of the five runs.  The bold line shows linear least squares trend 
line. 

 
 Figures 2 and 3 show the fitness growth as five tests were 

run for 100 generations each.  The graph shows points for 
the five runs plus an average line showing the average at 
each generation.  As can be observed, there was a high 
degree of variation throughout the learning process.  This is 

primarily due to the fact that luck plays a large part in bullet 
dodging.  However, steady improvement can be seen as the 
agents learn the specific task. A least squares line is 
provided to help the reader visualize the improvement.  
Observations of the agents in the arena also confirmed that 
they learned techniques for bullet evasion.  They would 
thrust away from bullets heading in their direction and 
would turn if their heading was pointed in the direction of 
(or directly opposite to) the approaching bullet.   

B. Shooting 
Another important skill for an Xpilot agent is to be able to 

destroy the enemy.  Since the only means in our simulation 
for it to destroy the enemy without destroying itself was to 
shoot it, we set up a training environment for this purpose 
(Figure 4).  We did not want the agent to be concerned with 
avoiding walls, so contact with walls does not damage the 
ship.  In addition, we made collisions with the enemy 
harmless to both ships so that our agent would disregard 
potential collisions with the enemy.  Both the AI agent and 
the enemy were placed within the arena with the agent 
placed in the center and the enemy placed at any of the 
number of bases near the perimeter.  The enemy could not 
shoot and stayed in place until a bullet approached.  It would 
take action to avoid the bullet and then continue moving in 
an attempt to survive.  The AI agent had no thrust so its task 
was to use turn and shoot to destroy the enemy. 

Fig. 4. Training arena for the shooting behavior component.  The agent 
(Closec36550) is shown firing at enemy ship (Close12920).  The arena is 
not much larger than the viewable area in this screenshot.  The agent starts 
at a randomly selected 1 base.  The enemy switches between the 3 and 4 
bases.  Its base for this run was one of the 4s located directly below it.  The 
bar to the right of the agent shows its fuel remaining.  However, it will 
never last long enough to burn the fuel since self-destruct has been 
activated.  Self destruct is used as a means to enforce the time limit. 
 

The input the AI agent used was the difference of its 
heading to the direction of the enemy, the history of this 
difference in the previous frame, the difference of agent’s 
track to the direction of the enemy, the distance to the 
enemy, the difference between its own track and heading, its 
velocity, and a node always set to one to act as the threshold.  
These seven values are all inputs to a single-layer NN that 



 
 

 

has turn and shoot as outputs.  The output value of turn was 
multiplied by 15 yielding a resultant turn (heading change) 
between -15° and 15° (15° is the maximum turn rate).  We 
impose a maximum turn rate of 15° on our agents to better 
simulate reasonable human play.  The shoot node caused the 
agent to shoot if its resulting value was zero or above.  The 
weights for this NN were evolved using a GA.  Each weight 
could have a value between -1 and 1, which was converted 
from an 8 bit number; 14 of these made up the chromosome.   
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Fig. 5.  Graph of learning curve for shooting.  The points are the average 
fitness of each population at each generation.  The line shows the mean of 
the five runs.   
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Fig. 6. Graph of learning curve for shooting.  The points are the best 
individual fitness from each population at each generation.  The line shows 
the mean of the five runs.  The bold line shows a 6th order polynomial least 
squares trend line. 

 
The tests yielded favorable results.  Five tests were run 

with the average and best fitnesses at each generation shown 
in Figures 5 and 6.  The fitness was determined by how 
close the bullets approached the enemy with a bonus added 
for a kill (each individual was run 3 times).  The graphs 
show increased fitness growth through 100 generations.  A 
mean line is displayed on the graph showing the average 
fitness.  There is much more variation from generation to 
generation for the best of each population.  This graph 
shows a means line and a least squares 6th order polynomial 
is also shown.  Observation of the agents revealed that they 
had learned to turn toward the enemy and shoot.  Some 

individuals appeared to be using the difference in heading to 
the ship from the previous frame (one of the input nodes) to 
predict the future position of the enemy and lead it with a 
shot.  The shooting agents were successful in their task. 

C.   Close  
The final task for the agent to learn involved two skills: 

the agent was to close on an enemy to attack and avoid 
flying into the lethal walls while navigating toward the ship.  
The arena for this is shown in Figure 7.  The AI agent 
always started someplace in the center of the arena and the 
stationery enemy was placed alternately at the top or bottom 
of the arena.   

 
Fig 7: Training arena for the close behavior component.  The agent, 
represented as a white dot with a heading indicator, is located in center.  It 
must attempt to reach the enemy ship, the white dot in the southern extreme 
of the map.  The enemy ship cycles between two random locations, one at 
the extreme north and the other at the extreme south of the map. 
 

The fitness of the agent was determined by its continual 
closure on the enemy with a bonus for each frame it stayed 
within 35 pixels of it (two runs were done for each 
individual).  The NN had 16 inputs going to two outputs 
(thrust and turn).  The inputs dealt with wall locations 
relative to 15° left and right of the agent’s track and the 
enemy ship’s bearing relative to the agent’s heading and 
track.  Figures 8 and 9 show the learning curve through 100 
generations.  The GA learned the weights needed for the 
agent to find its way to the target going both in the north and 
south directions.  Observations of the agent revealed a 
peculiar behavior; it would spin as it advanced toward the 
enemy.  At first, it seemed to make little sense because 
spinning required extra coordination since thrusts had to be 
timed to occur when the heading was facing in the correct 
direction.  After some consideration, it was speculated that 



 
 

 

the spinning helped in avoiding death through wall 
collisions.  In the default Xpilot settings, a ship is more 
sensitive to wall collisions on its bow than on its stern.  The 
spinning reduced the probability that initial contact with a 
wall would be in the front.   
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Fig. 8.  Graph of learning curve for close.  The points are the average fitness 
of each population at each generation.  The line shows the mean of the five 
runs.   
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Fig. 9. Graph of learning curve for close.  The points are the best individual 
fitness from each population at each generation.  The line shows the mean 
of the five runs.  The bold line shows a 6th order polynomial least squares 
trend line. 

IV. EVOLUTION OF CONTROL FROM THE COMPONENTS  
The second increment in the evolution was to use the 

components evolved in the first increment to evolve a 
complete controller.  We had three good components 
evolved to handle three tasks: dodge bullets, shoot the 
enemy, and close on the enemy while avoiding walls.  
Joining these together was the next step.  The obvious 
method would be to use the best controllers from each of the 
three components as the first layer of a NN and evolve a 
second layer.  The outputs of the three components were 
turn and thrust for bullet dodging, turn and shoot for 
shooting, and turn and thrust for close.  This would give us 
three middle layer turn nodes and two middle layer thrust 
nodes.  The shoot node (from shooting) could go directly to 
the output.  The problem with this method had to do with the 
combining of middle layer nodes.  For example, combining 

the best turn for dodging, with the best turn for shooting, 
with the best turn for closing, was very unlikely to result in 
the desired behavior without some other input.   

Fig. 10. Diagram of entire incremental network.  The enemy distance and 
bullet alert are inputs to a network whose outputs are the weights between 
the specialized networks’ outputs and the three resultant outputs. 

 

Fig. 11. Training arena for the final increment of evolution, in which the 
priority network was evolved.  The map is very similar to Close, but it has 
fewer obstacles and the enemy only starts in the south. 

 
We reasoned that what was really needed was a NN that 

determined the priority of these three components and 
combine them with that in mind.  This meant that we needed 
a separate NN to set the weights for the second layer of our 
two-layer NN.  In other words, the weights of the 
connections of the second layer needed to change depending 
on the environment.  The two primary conditions to be 
considered were the risk of being killed by a bullet and the 
distance from the enemy ship.  Bullet risk should give 
dodging the priority, a close ship should give shooting the 
priority, and a far ship should give close the priority.  We 
used a formula to determine the risk of the bullets; this 
included their distance, their closing velocity, and collision 
probability assuming that the agent maintained its current 
track and speed.  Using these two inputs (bullet risk and 



 
 

 

enemy distance) as input nodes, we used a GA to learn the 
weights of a separate NN that set the weights between the 
middle and output layer of the control NN. 

A drawing of the NN is shown in Figure 10.  These two 
inputs, through the separate NN, set the weights for the two-
layer control NN.  This separate network required that 
twelve weights be learned.  Each of these had a value 
between -1.0 and 1.0 and was represented by eight bits.  In 
addition, the GA learned the threshold weights for the three 
output notes (thrust, turn, & shoot) making a chromosome 
that consisted of fifteen eight bit numbers.   

The fitness function rewarded aggressive behavior by 
giving points for being closer to the enemy and for killing 
the enemy.  Survival was not directly rewarded, although the 
run ended when the ship was destroyed, so no further near / 
kill enemy points could be accumulated.  The tests were 
done in an arena similar to one used for the close test 
(Figure 11).  Except that some wall obstacles were removed 
and the enemy always started in the lower section.   

For these tests, the enemy was a hand-coded attack bot 
that remained stationary until there were no walls between it 

and the learning agent, at which time it would attack. 
Figures 12 and 13 show the results of five tests run for 100 
generations (3 run for each individual).  As can be seen, the 
GA continually improved the control program, which 
resulted in good agent behavior.   

Observations of the resultant agents revealed that they had 
all improved in their effectiveness, but varied in their 
strategies.  In most cases they spun as they closed on the 
enemy, firing sporadically.  The spin often continued as they 
approached the enemy, but the firing rate increased.  Some 
individuals would tend more toward shifting into a shoot 
mode when close to the enemy, turning and firing without 
using thrust.  None of the learned bullet dodging behavior 
was observed.  Although in some cases the agent would 
have an irregular spin pattern when a bullet approached.  
This resulted in less likelihood of bullet contact, but the 
behavior appeared to be random as opposed to motions 
appropriate for the situation.  In all cases the tests resulted in 
aggressive agents who engaged the enemy and attempted to 
destroy it. 
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Fig. 12.  Graph of learning curve for the second increment NN.  The points are the average fitness of each population at each generation.  The line shows the 
mean of the five runs.   
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Fig. 13. Graph of learning curve for the second increment NN.  The points are the best individual fitness from each population at each generation.  The line 
shows the mean of the five runs.  The bold line shows a 6th order polynomial least squares trend line.  
                                                                                                                                                         

V. CONCLUSIONS  
This research uses incremental evolution to continue to 

advance our work in evolving NN controllers for agents 
operating in the Xpilot combat environment.  The first 
increment was to learn NN controllers that were evolved to 
be proficient in specific tasks.  The second increment used 
the outputs of these controllers, plus a separate NN to assign 
them varying degrees of priority to create a two-layer NN 
that was responsive to changes in the agent’s combat 
conditions.  This controller produced an output that took all 
three learned responses into consideration, giving priority to 
the one most appropriate for the current situation.   

In future work, we will continue to use incremental 
learning to evolve behaviors appropriate for specific 
situations pertinent to space combat.  These will be used to 
increase the complexity of controllers for Xpilot agents.  For 
example, adding a behavioral component which had learned 
the proper behavior for moving away from an enemy would 
allow the agent to retreat after a failed attack or in situations 
where multiple enemies were present.  In addition, 
components could be learned that help the agents participate 
in coordinated efforts such as teams of agents working 
together to complete an assigned task.  
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