

Abstract— An unconstrained cyclic genetic algorithm (CGA) is
presented as a means to evolve multi-loop behavior for an
autonomous agent. The evolved programs control autonomous
agents in the network space combat game Xpilot. Ultimately,
the agent's goal is survival; it must learn to move within a
restricted area, avoiding obstacles while engaged in combat
with an opposing agent. The CGA learned multi-loop control
programs that significantly improved the agent’s survivability
in the hostile Xpilot environment.

I. INTRODUCTION
UTONOMOUS agent control learning, important in the
study of robot control, offers agents the ability to adapt

and refine their behaviors to changing environments. In this
paper we present the use of an unconstrained cyclic genetic
algorithm (CGA) to develop a system of controls for a
simulated robot (agent) in the space combat game Xpilot.
The control system that was developed consists of a single
large control program, but is capable of creating multiple
loops of varying length through the ability to jump from any
one gene to any other. This potentially allows the robot to
learn multiple sequences of repeated behavior for different
situations; the control system has the ability to “jump”
between loops and string several sequences together.
Alternatively, the CGA can maintain the entire program as a
single loop, but skip portions of the program (and their
commands) when certain inputs are presented. The
algorithm uses as inputs information such as location and/or
velocity of the agent, walls, enemy craft and incoming
enemy fire.

Allen Schultz of the Naval Research Lab used a GA to
evolve navigation behavior for a simulated robot; the robot
learned to navigate a course of obstacles to within a certain
radius of a given goal [1]. In the Xpilot program there is no
physical goal, but rather the goal is survival in the presence
of obstacles and enemy craft. Contact by the agent with an
obstacle will result in the termination of the controlling
chromosome’s life in Xpilot, unlike in the Schulz
experiment.

Previous research performed by Schulz did involve
decision making for an agent that must avoid obstacles.
Schultz used a GA to develop decisions for navigating a
simulated autonomous underwater vehicle (AUV) through a
mine field [2]. This simulation is more closely related to the
experiment described in this paper, as contact with a mine
by the AUV resulted in a failure. Though the AUV and the

Xpilot robot must both avoid collisions, the Xpilot robot is
faced with an aggressive enemy robot in this experiment
while the AUV is constrained by a time limit and the need to
find a geographic goal.

Beer and Gallagher used a GA to learn weights for a
neural network used as a controller for an autonomous agent
[3]. They developed a controller that was able to switch
between different strategies dependent upon environmental
conditions, but these strategies were not cyclical in nature.

Games often provide excellent environments for learning
autonomous control. They involve problems that can be
addressed in different manners with measurable degrees of
success; solutions can be improved and compared to each
other. Fogel explored the use of evolutionary computation
in developing strategies for board games such as checkers
[4]. Konidaris, Shell & Oren applied evolutionary
computation to the game Go, while other researchers have
addressed the prisoner’s dilemma problem [5, 6].

Researchers have explored learning predator strategies for
agents in a version of Pac-Man [7]. While the researchers
concentrated on evolving the behavior of a group of 4
predators, the research presented in this paper aims at
learning cyclical behavior for one agent under constant
attack from a single enemy. The researchers using Pac-Man
were interested foremost in what characteristics of a video
game opponent would increase excitement and
entertainment value; we seek to develop the most successful
autonomous robot (agent) possible for the Xpilot
environment. Additional examples of the use of
evolutionary computation for autonomous agents include
applications to decide upon weaponry and learn behaviors in
the first person shooter Counter-Strike and how to move a
light-cycle in the game of Tron [8, 9].

Xpilot is a particularly suitable platform for learning
autonomous agent control. It simulates a two-dimensional
environment, with many of the physical properties of space.
Maps can be easily created and modified to introduce
obstacles, enemies etc., and the agent is able to restart
immediately upon termination.

Parker, Parker and Johnson applied a GA to evolve a
fixed neural network (NN) to control an Xpilot bot [10].
Though the NN produced wide ranging results, an analysis
of the average of several runs showed that the GA was
successful in improving the performance of the NN over the
course of 256 generations.

Generation of Unconstrained Looping Programs for Control of
Xpilot Agents

Gary B. Parker, Computer Science, Connecticut College, parker@conncoll.edu
Timothy S. Doherty, Computer Science, Connecticut College, tsdoh@conncoll.edu

Matt Parker, Computer Science, Indiana University, matparke@indiana.edu

A

Previously we have used a GA to develop behavior for an
agent in Xpilot facing the same problem presented in this
paper: survival in an arena in the presence of an aggressive
enemy robot [11]. We used the GA to learn the consequents
to a rule based system with 16 rule antecedents, as well as to
prioritize the relative importance of each rule. The result
was a system that substantially improved in navigating the
Xpilot environment as the GA learning progressed. A
disadvantage of this system was that the robot was limited in
its behaviors. Only 16 different actions were possible, and
the robot could only perform one action to react to its
current state, utilizing the consequent of a rule whose
antecedent state was true. There was no potential for the
robot to enact a strategy that took place over multiple
frames.

The evolving Xpilot agent in this study has the potential
for far more complex and adaptive behaviors than in
previous designs. The use of a CGA allows for more
possible actions by the robot, and also for the execution and
repetition of sequences of actions. The enemy robot used in

this study was developed by a human to harry the evolving
agent; it has a high rate of fire and quickly engages the
evolving agent when it appears on the map.

In addition to developing the controls for an autonomous
agent, the system we developed outputs the contents of the
system translated into English. This allows the agent’s
behavior to be analyzed; it is possible to follow the loops
and branches of the system and see exactly how it behaves
in every situation.

The agent used in this research is capable of learning to
react in numerous situations involving obstacles, enemy fire
and enemy craft. The hope for this project is to advance the
use of computational intelligence, and specifically CGAs, in
areas of adaptive robotics with multiple sensory inputs.
Additionally, we are interested in exploring the potential for
an unconstrained CGA with jumping to solve problems that
are suitable for multi-loop CGAs. This paper highlights the
capabilities of evolutionary computation for video game and
simulation technology.

Fig. 1. Screenshot of evolving agent (center) evading enemy robot. Various starting points are shown, labeled with the team to which
they belong. One white blip below the agent denotes a fired bullet by one of the robots, while smaller blips represent stars.

II. XPILOT
Xpilot (Fig. 1) is a popular 2-dimensional space-combat

flight simulator written in the C programming language and
freely available over the internet. A keyboard and mouse
are used to control a ship. The game's open source code
allows for modification to allow CGA controlled Xpilot
ships. The client/server design supports multiple players,
and has many variables for weapon and ship upgrades, map
settings, team play, etc. Variables used by Xpilot to store
information such as ship velocity, enemy and bullet location
etc. can be parsed, and through the addition of a CGA,
principles of evolution can be used to learn a looping control
system for the agent. The control system uses the AI
interface to simulate keystrokes and mouse movement to
control the agent.

The evolving Xpilot agent was placed in a square arena
enclosed by 32 blocks of 35 pixels on each side (the area of
one block is roughly three times that of a ship). Placed in
the arena with the evolving agent was a predator robot
which used a rule based system designed by the authors.
This predator robot was quite effective at harrying the agent;
it was frustratingly difficult for a human player to combat.
Whenever either robot was killed, whether from an enemy
bullet, a wall, or crashing into the other agent, it reappeared
at its initial start location. In addition to avoiding the enemy
agent and its bullets, the evolving agent needed to evolve its
flight to avoid the walls of the arena. The aim of the CGA
was to evolve the chromosomes to allow the robot to survive
as long as possible, without crashing or being shot. This
was measured by the number of frames the robot survived.
Each chromosome was run three times, and the sum of
fitness taken. This was done in an effort to give each
chromosome ample chance to display its fitness; depending
on the location of the enemy robot when the evolving agent
appeared on the map, the CGA-controlled agent might be
destroyed before it had a chance to move. By allowing each
chromosome to run three times, we hoped to minimize this
effect.

III. CYCLIC GENETIC ALGORTHMS
Cyclic Genetic Algorithms (CGAs) are a type of genetic

algorithm in which the genes represent tasks to be
performed rather than traits of a problem solution [12] (see
Fig. 2). CGAs were initially developed to generate walking
gaits for hexapod robots. They were effective in solving this
problem because the movement of a single leg requires a
continual repetition of several actions such as lift leg, extend
leg, lower leg etc. [13]. CGAs are highly suited to problem
domains where sequential behavior is useful or necessary.

The looping structure of a CGA allows an agent to
perform different movements in order, and then to repeat
those instructions any number of times. A traditional single
loop control system, however, may not allow certain
complex sequences of behavior that would be useful in
navigating the multi-variant and highly dynamic Xpilot

environment; different sequences of actions (possibly of
differing lengths) are desirable for the variety of tasks the
agent may encounter, such as avoiding a wall, or trying to
shoot an enemy.

Parker, Parashkevov, Blumenthal and Guildman (2004)
applied the use of CGAs to multi-loop controls [14]. A
chromosome with four loops was developed to teach a
predator to locate a stationary prey. The loops each applied
to one of four possible states in which the system could be,
and when these states changed the program would jump to
the loop corresponding to the new state.

Fig. 2. Comparison of classic GA, a CGA sequence and CGA with single
loop.

Although this multi-loop CGA was highly successful for

the predator/prey scenario, the researchers found that it
becomes less feasible as the number of inputs to the system
increased, because this multi-loop CGA must have a
segment for each possible state condition. To address this
issue, Parker and Georgescu developed a multi-loop CGA
with conditional branching to solve a search problem with
obstacle avoidance [12]. They used the CGA to learn a
control system for a LEGO Mindstorms robot to avoid
obstacles while navigating towards a light. In their design,
they were able to incorporate new inputs into their system
by creating new instructions, rather than by adding
exponentially more loops.

While the research performed by Parker and Georgescu
used a system with 4 loops of predetermined length, the
CGA introduced in this paper is less structured. The Xpilot
agent's chromosome consists of one single loop, but due to
the ability to jump from any one gene to any other, the
system is capable of creating looping sequences of behavior
for situations that combine different values of the sensory
inputs. Loops of varying length can be created, and the
conditional branching allows sequences to be incorporated
into different loops. The Xpilot environment has varied
sensory inputs of great importance: the distance and
direction of walls, distance and velocity of enemy craft,
bullet collision information, the agent's own track, heading

and velocity, etc. It is the aim of this paper to research the
efficacy of an unconstrained CGA with jumping and
conditional branching in the Xpilot problem domain.

A. Learning the Controller
A set of 15 conditions (rule antecedents) important for

reasonable play were developed (Fig. 3). These included
conditions dealing with the ship’s position relative to walls,
the enemy ship, and hostile fire, as well as the relationship
between the ship’s heading and its track. A binary coding
was developed to represent the possible responses that were
to be learned by the GA.

A population of 256 random chromosomes was generated
initially. The controller is represented by a chromosome of
64 genes, with each chromosome being one large loop.
Each gene is represented as a segment of 11 bits, so a
chromosome is comprised of 704 bits. Each 11-bit gene
either contains information for how the robot should act in a
given frame, or an instruction to jump to another gene to
look for control information.

The 15 different conditions were identified as potentially
critical situations for which the robot would need to react.
The system has the ability to check if a given condition is
true, and to begin a different series of actions depending on
whether it is true or false. In addition there is a sixteenth
conditional which is always true; the system will jump to the
specified gene without consulting any input information
when this conditional is checked. This allows a gene to
always jump to another gene, no matter the state of the
inputs. Although we are using 16 possible conditionals in
this experiment, the unconstrained CGA does not have a
limit to the number used; to have more than 16, however, we
would have needed to add bits to each gene in order to
represent the additional possibilities.

1. Agent's velocity is greater than 10 pixels/second.
2. Agent's velocity is greater than 20 pixels/second.
3. Bullet is incoming and less than 60 pixels away.
4. Bullet is incoming and less than 130 pixels away.
5. Enemy ship is detected.
6. Nearest enemy ship is moving greater than 12 pixels/second.
7. Nearest enemy ship is closer than 200 pixels away.
8. Nearest enemy ships is closer than 450 pixels away.
9. Distance to nearest enemy ship is decreasing.
10. Distance to nearest enemy ship is decreasing by more than 5
pixels/second.
11. Distance to enemy ship is increasing by less than 5
pixels/second.
12. Distance to nearest wall is greater than 40 pixels.
13. Distance to nearest wall is greater than 132 pixels.
14. Enemy ship is pointed within 10 degrees of agent.
15. Enemy ship is pointed within 20 degrees of agent.

Fig. 3. Conditions for branching. The conditionals contain specific values
(e.g., 40 pixels) that were determined by the authors to be effective values
in previous research through trial and error. If the condition is true, the
conditional jumps control to a designated gene.

B. Xpilot Chromosome
The chromosome is a single loop of 64 genes, with each

gene consisting of 11 bits (Fig. 4). The first bit of the gene
determines whether the gene is a control gene, which
provides instruction for moving the agent, or a conditional
jump gene, which causes the system to move to another gene
if the condition is true. If the gene is a control gene, it
executes the command (thrust, shoot, turn) and in the next
frame it executes the next gene in the sequence; if it is a
conditional jump gene it jumps to the specified gene. There
it will either find a control gene to execute, or it will find
another jump gene with instructions to conditionally jump.
If the jump condition is not true, the system moves to the
next gene in the loop and again can either execute a control
action or a jump. The system executes a control gene once
each frame, regardless of the number of jumps. With the
ability to jump to any gene, sequences of instructions may
be created where the final instruction commands a jump
back to the first instruction; in this way variable length loops
may be created.

If the gene is a control gene (designated by the first bit),
the next 2 bits of the gene determine whether or not the
robot will thrust. The binary value of the bits, from 0-3 is
compared to a random number that is generated; only if the
value of the bits is less than the random number will the
robot thrust. This allows the system to evolve different
movement speeds when spread over multiple frames. The
next two bits are used in the same manner to determine
whether or not the agent fires a bullet (thus giving the robot
different possible rates of fire). The 3 bits next in sequence
determine on which of 8 different criteria the agent will base
its turn; it may turn towards or away from enemy bullets,
enemy craft, walls, or the agent’s own trajectory (the agent’s
trajectory and heading may not match).

Fig. 4. Sample chromosome used to encode control and jump commands.

The agent always reacts to the nearest wall, the nearest
enemy, and the most dangerous bullet etc. If we were to
label the agent's track as north, then it searches each of the
eight primary directions (north, northeast, east etc.) to
identify the nearest wall. When avoiding bullets, the agent
reacts to the location in space where the bullet will pass
closest to the agents own track, not to the actual position of
the bullet.

 The final 3 bits of the gene determine the magnitude of
the agent’s turn; it may turn 0, 2, 4, 6, 8, 10, 12 or 14
degrees in the chosen direction. In the following frame, the
next gene in the loop will be executed, and if the final gene
in the chromosome is executed the system will return to the
first gene in the chromosome.

If the first bit in a gene indicates that the gene is a jump
gene rather than a control gene, then the remaining bits in
the gene have a very different purpose. The four bits
following the control bit will give the number of a condition
to check, from 0-15. If that condition is true, then the
system will jump to one of the 64 genes in the chromosome,
designated by the final 6 bits of the current gene. For
example, the gene may call condition 5 which asks if an
enemy ship is detected. If there is an enemy detected, the
system will jump to the gene designated by the remainder of
the current gene. If the condition is not true, then the system
moves to the next gene in the loop and executes the
command there, whether it is a control gene or another jump
gene. In the event that the gene checked is the final gene in
the loop, it will return to the first gene in the loop. Several
jump genes can be strung together to check more complex
states; e.g. enemy is close, but moving away.

C. Genetic Operators
The total fitness of the population is stored so that it can

be accessed up to any point in the trial of that population.
Roulette wheel selection is used to choose parents for
crossover [15]. Chromosomes are tested three times, and the

number of frames they survive each trial is summed and
stored. This number is squared and stored as the
individual’s fitness.

When two individuals are chosen for crossover, there is
an even chance that they will be combined using one of two
possible crossover methods. If inter-gene crossover is
utilized, then a random crossover point is chosen; the
chromosome of one parent is copied up to that point, and the
remainder is copied from the other parent. This allows
genes and even whole loops to be left intact. If intra-gene
crossover is selected, then for each bit of a new gene, the bit
at that spot is copied at random from one of the two parents.
This allows for greater diversification. Each bit also has a
chance of mutation; there is a one in three hundred chance
of each bit being flipped, regardless of the type of crossover
used.

The CGA was executed as a steady state genetic
algorithm (SSGA) with first in first out deletion (FIFO), as
discussed by De Jong and Sarma [16]. The FIFO SSGA
genetic algorithm removes the oldest individual from the
population as it puts in the newest individual. The new
individuals are a recombination with mutation of two
individuals picked with roulette wheel selection from the
current population.

The best chromosome from each generation is saved to a
data file, while its fitness and the average fitness of the
generation are stored in a second file. Any of the stored
chromosomes can be loaded into Xpilot, so that the behavior
of the most highly fit chromosomes can be viewed over
several robot lifetimes.

0

100000

200000

300000

400000

500000

600000

0 50 100 150 200 250

Generations

Fi
tn
es
s

Fig. 5. The results of evolving controller for Xpilot using a CGA. The average population fitness is shown for each of 5 test runs. The
line is the average of the 5 runs. The bold line is a 6th order polynomial trend line positioned by least squares.

0

1000000

2000000

3000000

4000000

5000000

6000000

0 50 100 150 200 250

Generations

Fi
tn
es
s

Fig. 6. The best individual chromosomes yielded by the evolution of a multi-loop controller for Xpilot using a CGA. The best
individual fitness is shown for each of 5 test runs. The line is the average of the 5 runs. The bold line is a 6th order polynomial trend
line positioned by least squares.

IV. RESULTS
The results of the trials showed that control learning with

the CGA was highly successful. Five test runs were started
with randomly generated populations and were performed
for 250 generations. The average fitness for each generation
of each run is shown in Figure 5.

The enemy-harried robot evolved from an average fitness
of 21,676.4 to a maximum average fitness of 305,118.8 in
the 247th generation, averaged across all runs. The best
individual chromosome from the 5 runs had a fitness of
5,909,761 in the 170th generation of run 3 (Fig. 6).

The agent evolved several different strategies across the
runs. The agents in each run would sometimes exhibit
behaviors visible in other runs, but each evolved one main
strategy for surviving in its environment. In one run, the
robot learned to fly in straight lines, then pivot and thrust as
it approached walls. It would then fly in a straight line in a
different direction. It would fire as the enemy crossed its
path, but it did not seem to alter its flight drastically to seek
or elude its enemy. This strategy was fairly successful for
avoiding bullets, as the enemy robot had trouble tracking the
agent on the long legs of its flight across the map.

Another evolving agent learned similar behavior, but it
flew on shorter routes before altering its course; it reacted to
the walls from a greater distance, and thus tended to use
more of the central portion of the map. This agent also

drifted along its heading, adjusting its track to fire at the
enemy robot. It was the most successful agent in killing the
enemy robot, but its ability to evade bullets suffered greatly.

In one of the runs, the agent seemed to evolve to solely
try to evade bullets. It would fly to the middle of the map
whenever it came too close to a wall, but would then turn
and slow its motion to try and remain in the center. As it
drifted, the agent would make miniscule adjustments to its
flight path with short bursts of thrust accompanied by
turning. In this way, the robot seemed to dance between the
bullets that were fired at it. Generally, it made no efforts to
fire upon the enemy robot. The success of this behavior was
varied, but at times it was highly successful.

A different evolving agent learned an interesting strategy,
but one that was initiated only when fired upon; otherwise it
would sit in place. For this reason, it was often killed
quickly. When the first few enemy bullets were detected by
the agent, it would thrust; if the agent moved quickly
enough, or the first few shots missed, it would begin to
make large swooping circles around the map. As it moved,
it would adjust its aim to fire upon the enemy when the
enemy was detected, but would maintain its circular flight.

Occasionally it would break out of this and fly in a
straight line, or make a figure eight, until more bullets would
put it in danger. This robot would often be followed by a
hail of enemy bullets that continually passed just behind it.

The behavior was successful both for evading enemy attacks
and returning fire.

A different evolving agent learned an interesting strategy,
but one that was initiated only when fired upon; otherwise it
would sit in place. For this reason, it was often killed
quickly. When the first few enemy bullets were detected by
the agent, it would thrust; if the agent moved quickly
enough, or the first few shots missed, it would begin to
make large swooping circles around the map. As it moved,
it would adjust its aim to fire upon the enemy when the
enemy was detected, but would maintain its circular flight.
Occasionally it would break out of this and fly in a straight
line, or make a figure eight, until more bullets would put it
in danger. This robot would often be followed by a hail of
enemy bullets that continually passed just behind it. The
behavior was successful both for evading enemy attacks and
returning fire.

The final agent would sit in place but turn to fire upon the
enemy robot. When bullets were detected, however, it
would immediately thrust and attempt to flee the bullets.
Unfortunately, the robot would often flee directly into a
wall, and so be terminated in that manner. Even when this
did not happen, it was often cut down quickly by the enemy
robot's bullets.

The complete interpreted instructions for one of the more
successful chromosomes are displayed below in order to
demonstrate how the system functions.
0: Thrust 3/4 Shot 1/4 Turn 8 degrees Away from AIself.track
1: Check Rule: *Closing rate < -5* If true, jump to 25
2: Check Rule: *Shot is closer than 60 pixels* If true, jump to 25
3: Check Rule: *No Rule, Automatic jump* If true, jump to 21
4: Check Rule: *Wall > 40 pixels away* If true, jump to 41
5: Check Rule: *Closing rate < -5* If true, jump to 63
6: Check Rule: *Enemy velocity greater than 0* If true, jump to 26
7: Thrust 1/4 Shot 0 Turn 8 degrees Away from AIself.track
8: Check Rule: *Enemy closer than 200 pixels* If true, jump to 14
9: Thrust 3/4 Shot 0 Turn 8 degrees Towards Bullet
10: Check Rule: *Enemy velocity greater than 12* If true, jump to 38
11: Thrust 1/4 Shot 1/4 Turn -10 degrees Away from Wall
12: Thrust 1/4 Shot 0 Turn -10 degrees Away from Wall
13: Check Rule: *Enemy closer than 450 pixels* If true, jump to 7
14: Check Rule: *Wall > 40 pixels away* If true, jump to 23
15: Thrust 0 Shot 3/4 Turn 14 degrees Towards Bullet
16: Check Rule: *Enemy velocity greater than 12* If true, jump to 37
17: Thrust 1/4 Shot 0 Turn -10 degrees Away from Bullet
18: Thrust 0 Shot 1/2 Turn -12 degrees Away from Bullet
19: Check Rule: *Enemy aimed w/in 10 deg of ship* If true, jump to 18
20: Check Rule: *Wall > 40 pixels away* If true, jump to 46
21: Thrust 1/2 Shot 1/4 Turn -14 degrees Away from Wall
22: Thrust 3/4 Shot 3/4 Turn -14 degrees Away from Wall
23: Thrust 3/4 Shot 3/4 Turn -12 degrees Away from Bullet
24: Check Rule: Agent velocity < 20* If true, jump to 5
25: Thrust 0 Shot 0 Turn 12 degrees Away from AIself.track
26: Check Rule: *Wall > 40 pixels away* If true, jump to 1
27: Check Rule: *Closing rate < 5* If true, jump to 48
28: Thrust 3/4 Shot 3/4 Turn -6 degrees Away from Bullet
29: Check Rule: *Closing rate < 0* If true, jump to 22
30: Check Rule: *Enemy velocity greater than 12* If true, jump to 61
31: Check Rule: *Wall > 132 pixels away* If true, jump to 48
32: Check Rule: *No Rule, Automatic jump* If true, jump to 0
33: Check Rule: *Enemy closer than 450 pixels* If true, jump to 6

34: Check Rule: *Wall > 132 pixels away* If true, jump to 22
35: Check Rule: *Wall > 132 pixels away* If true, jump to 13
36: Check Rule: Agent velocity < 20* If true, jump to 63
37: Check Rule: *Closing rate < -5* If true, jump to 36
38: Thrust 1/4 Shot 0 Turn -10 degrees Towards AIself.track
39: Thrust 3/4 Shot 3/4 Turn 12 degrees Towards Wall
40: Check Rule: *Enemy velocity greater than 12* If true, jump to 1
41: Check Rule: *Wall > 40 pixels away* If true, jump to 63
42: Check Rule: *No Rule, Automatic jump* If true, jump to 29
43: Check Rule: *Enemy closer than 450 pixels* If true, jump to 13
44: Check Rule: *Closing rate < 5* If true, jump to 37
45: Thrust 3/4 Shot 1/4 Turn 0 degrees Away from Enemy ship
46: Check Rule: *Enemy velocity greater than 12* If true, jump to 5
47: Check Rule: *No Rule, Automatic jump* If true, jump to 3
48: Check Rule: Agent velocity < 20* If true, jump to 23
49: Check Rule: *Enemy velocity greater than 12* If true, jump to 25
50: Thrust 1/4 Shot 0 Turn -8 degrees Away from Bullet
51: Check Rule: *Enemy closer than 200 pixels* If true, jump to 43
52: Thrust 3/4 Shot 0 Turn 0 degrees Towards Enemy ship
53: Thrust 1/2 Shot 1/2 Turn 0 degrees Towards AIself.track
54: Check Rule: *Enemy closer than 200 pixels* If true, jump to 57
55: Check Rule: Agent velocity < 20* If true, jump to 5
56: Check Rule: *Enemy velocity greater than 12* If true, jump to 51
57: Check Rule: *Closing rate < -5* If true, jump to 59
58: Check Rule: *Enemy velocity greater than 12* If true, jump to 18
59: Check Rule: *Closing rate < 5* If true, jump to 6
60: Check Rule: *Enemy aimed w/in 20 deg of ship* If true, jump to 54
61: Thrust 1/2 Shot 1/2 Turn -12 degrees Away from Enemy ship
62: Thrust 3/4 Shot 1/2 Turn -8 degrees Away from Enemy ship
63: Thrust 0 Shot 3/4 Turn -4 degrees Away from Wall

By beginning with the first gene of the system denoted by
“0”, we can follow the system's jumps, most of which are
conditional upon inputs from the environment (several
demand jumps regardless of the inputs). The system begins
by instructing the robot away from its own track with a high
chance of thrusting. After this initial step, the system begins
to act according to the state the robot is in. It first checks if
the enemy agent is closing at a fast rate (gene 1). If it is, the
system jumps to gene 25 and turns the agent away from its
current track. The system then checks if the agent is farther
than 40 pixels from a wall (gene 26), and if it is safe from
walls it returns to gene 1.

If the robot is close to a wall and the distance to the
enemy is increasing by 5+ pixels/second (gene 27), the robot
will thrust away from any dangerous incoming bullets (gene
28).

If the enemy is now closing on the robot (gene 29), the
system will jump and the robot will finally turn and thrust
from the nearby wall (gene 22) detected by gene 26. If other
branches are taken, it will be several more frames before a
turn is made from a wall.

The above sequence suggests that the learned controller
considers a closing enemy agent to be the most important
input, even more important perhaps than incoming bullets.
This makes sense when one observes that the enemy agent
has a high rate of fire, but is extremely inaccurate as the
distance increases from the evolving agent. The sequence
also helps explain why wall avoidance behavior can still be
imperfect in highly evolved agents. (It is important to
recognize that the above steps took place in just a few
frames; that is, fractions of a second).

V. CONCLUSIONS
Based upon the results of the experiment, an

unconstrained CGA can be used to develop a branching
controller with multiple loops for an autonomous robot
operating in the Xpilot environment. The control system
supports the potential for unconstrained CGAs to evolve
multiple loops of variable length to solve problems that are
suited to traditional multi-loop CGAs. In the later portions
of the runs, the GA driven robot was often more successful
at dispatching its enemy than was the enemy robot. If given
a larger number of possible behaviors or a predictive aiming
function, we speculate that the robot could survive
significantly longer in the arena; ongoing research is being
conducted to explore these hypotheses. With the increased
difficulty in facing the enemy robot we designed taken into
account, the unconstrained CGA controller is a significant
improvement over our previous rule-based system for Xpilot
control.

REFERENCES
[1] Schultz, A. C. (1994). Learning robot behavior using genetic

algorithms. Intelligent Automation and Soft Computing: Trends in
Research, Development, and Applications.

[2] Schultz. A. C. (1991). Using a genetic algorithm to learn strategies for
collision avoidance and local navigation. Proceedings of the Seventh
International Symposium on Unmanned, Untethered Submersible
Technology.

[3] Beer, R., & Gallagher, J. (1992). Evolving dynamical neural networks
for adaptive behavior. Adaptive Behavior, 3, 469-509.

[4] Fogel, D. (2002). Blondie24: Playing at the edge of AI. Morgan
Kaufmann Publishers, Inc., San Francisco, CA.

[5] Konidaris, G., Shell, D., and Oren, N. (2002). Evolving neural
networks for the capture game. Proceedings of the SAICSIT
Postgraduate Symposium.

[6] Hingston, P. and Kendall, G. (2004). Learning versus evolution in
iterated prisoner's dilemma. Proceedings of the International Congress
on Evolutionary Computation 2004 (CEC'04).

[7] Yannakakis, G. and Hallam, J. (2004) Evolving opponents for
interesting interactive computer games. Proceedings of the 8th
International Conference on the Simulation of Adaptive Behavior
(SAB’04).

[8] Cole, N., Louis, S., and Miles, C. (2004). Using a genetic algorithm to
tune first-person shooter bots. Proceedings of the International
Congress on Evolutionary Computation 2004 (CEC’04).

[9] Funes, P., & Pollack, J. (2000). Measuring progress in coevolutionary
competition. From Animals to Animats 6: Proceedings of the Sixth
International Conference on Simulation of Adaptive Behavior.

[10] Parker, G., Parker, M., & Johnson, S. (2005). Evolving autonomous
agent control in the Xpilot environment. Proceedings of the 2005
Congress on Evolutionary Computation (CEC 2005). Edinburgh, UK.

[11] Parker, G., Doherty, T., & Parker, M. (2005). Evolution and
prioritization of survival strategies for simulated robots in Xpilot.
Proceedings of the 2005 Congress on Evolutionary Computation
(CEC 2005). Edinburgh, UK.

[12] Parker, G., & Georgescu, R. (2005). Using cyclic genetic algorithms
to evolve multi-loop control programs. Proceedings of the 2005 IEEE
International Conference on Mechatronics and Automation (IMCA
2005). Niagra Falls, Ontario, Canada.

[13] Parker, G., Rawlins, G. (1996). Cyclic genetic algorithms for the
locomotion of hexapod robots. Proceedings of the World Automation
Congress (WAC 1996), 3, Robotic and Manufacturing Systems.

[14] Parker, G., Parashkevov, I., Blumenthal, H., & Guildman, T. (2004).
Cyclic genetic algorithms for evolving multi-loop control programs.
Proceedings of the 2004 World Automation Congress (WAC 2004).
Seville, Spain.

[15] Goldberg, D. (1989) Genetic algorithms in search optimization and
machine learning. Addison-Wesley, Reading MA.

[16] De Jong, K., & Sarma, J. (1992). Generation gaps revisited.
Proceedings of the Second Workshop on Foundations of Genetic
Algorithms (FOGA 1992). Vail, Colorado, USA

