
 
 

 

Abstract— An unconstrained cyclic genetic algorithm (CGA) is 
presented as a means to evolve multi-loop behavior for an 
autonomous agent.  The evolved programs control autonomous 
agents in the network space combat game Xpilot.  Ultimately, 
the agent's goal is survival; it must learn to move within a 
restricted area, avoiding obstacles while engaged in combat 
with an opposing agent.  The CGA learned multi-loop control 
programs that significantly improved the agent’s survivability 
in the hostile Xpilot environment. 

I. INTRODUCTION 
UTONOMOUS agent control learning, important in the 
study of robot control, offers agents the ability to adapt 

and refine their behaviors to changing environments.  In this 
paper we present the use of an unconstrained cyclic genetic 
algorithm (CGA) to develop a system of controls for a 
simulated robot (agent) in the space combat game Xpilot.  
The control system that was developed consists of a single 
large control program, but is capable of creating multiple 
loops of varying length through the ability to jump from any 
one gene to any other.  This potentially allows the robot to 
learn multiple sequences of repeated behavior for different 
situations; the control system has the ability to “jump” 
between loops and string several sequences together.  
Alternatively, the CGA can maintain the entire program as a 
single loop, but skip portions of the program (and their 
commands) when certain inputs are presented.  The 
algorithm uses as inputs information such as location and/or 
velocity of the agent, walls, enemy craft and incoming 
enemy fire.     

Allen Schultz of the Naval Research Lab used a GA to 
evolve navigation behavior for a simulated robot; the robot 
learned to navigate a course of obstacles to within a certain 
radius of a given goal [1].  In the Xpilot program there is no 
physical goal, but rather the goal is survival in the presence 
of obstacles and enemy craft.  Contact by the agent with an 
obstacle will result in the termination of the controlling 
chromosome’s life in Xpilot, unlike in the Schulz 
experiment.   

Previous research performed by Schulz did involve 
decision making for an agent that must avoid obstacles.  
Schultz used a GA to develop decisions for navigating a 
simulated autonomous underwater vehicle (AUV) through a 
mine field [2].  This simulation is more closely related to the 
experiment described in this paper, as contact with a mine 
by the AUV resulted in a failure.  Though the AUV and the 

Xpilot robot must both avoid collisions, the Xpilot robot is 
faced with an aggressive enemy robot in this experiment 
while the AUV is constrained by a time limit and the need to 
find a geographic goal. 

Beer and Gallagher used a GA to learn weights for a 
neural network used as a controller for an autonomous agent 
[3].  They developed a controller that was able to switch 
between different strategies dependent upon environmental 
conditions, but these strategies were not cyclical in nature. 

Games often provide excellent environments for learning 
autonomous control.  They involve problems that can be 
addressed in different manners with measurable degrees of 
success; solutions can be improved and compared to each 
other.  Fogel explored the use of evolutionary computation 
in developing strategies for board games such as checkers 
[4].  Konidaris, Shell & Oren applied evolutionary 
computation to the game Go, while other researchers have 
addressed the prisoner’s dilemma problem [5, 6]. 

Researchers have explored learning predator strategies for 
agents in a version of Pac-Man [7].  While the researchers 
concentrated on evolving the behavior of a group of 4 
predators, the research presented in this paper aims at 
learning cyclical behavior for one agent under constant 
attack from a single enemy.  The researchers using Pac-Man 
were interested foremost in what characteristics of a video 
game opponent would increase excitement and 
entertainment value; we seek to develop the most successful 
autonomous robot (agent) possible for the Xpilot 
environment.  Additional examples of the use of 
evolutionary computation for autonomous agents include 
applications to decide upon weaponry and learn behaviors in 
the first person shooter Counter-Strike and how to move a 
light-cycle in the game of Tron [8, 9]. 

Xpilot is a particularly suitable platform for learning 
autonomous agent control.  It simulates a two-dimensional 
environment, with many of the physical properties of space.  
Maps can be easily created and modified to introduce 
obstacles, enemies etc., and the agent is able to restart 
immediately upon termination. 

Parker, Parker and Johnson applied a GA to evolve a 
fixed neural network (NN) to control an Xpilot bot [10].  
Though the NN produced wide ranging results, an analysis 
of the average of several runs showed that the GA was 
successful in improving the performance of the NN over the 
course of 256 generations. 
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Previously we have used a GA to develop behavior for an 
agent in Xpilot facing the same problem presented in this 
paper: survival in an arena in the presence of an aggressive 
enemy robot [11].  We used the GA to learn the consequents 
to a rule based system with 16 rule antecedents, as well as to 
prioritize the relative importance of each rule.  The result 
was a system that substantially improved in navigating the 
Xpilot environment as the GA learning progressed. A 
disadvantage of this system was that the robot was limited in 
its behaviors.  Only 16 different actions were possible, and 
the robot could only perform one action to react to its 
current state, utilizing the consequent of a rule whose 
antecedent state was true.  There was no potential for the 
robot to enact a strategy that took place over multiple 
frames.    

The evolving Xpilot agent in this study has the potential 
for far more complex and adaptive behaviors than in 
previous designs.  The use of a CGA allows for more 
possible actions by the robot, and also for the execution and 
repetition of sequences of actions.  The enemy robot used in 

this study was developed by a human to harry the evolving 
agent; it has a high rate of fire and quickly engages the 
evolving agent when it appears on the map. 

In addition to developing the controls for an autonomous 
agent, the system we developed outputs the contents of the 
system translated into English.  This allows the agent’s 
behavior to be analyzed; it is possible to follow the loops 
and branches of the system and see exactly how it behaves 
in every situation. 

The agent used in this research is capable of learning to 
react in numerous situations involving obstacles, enemy fire 
and enemy craft.  The hope for this project is to advance the 
use of computational intelligence, and specifically CGAs, in 
areas of adaptive robotics with multiple sensory inputs.  
Additionally, we are interested in exploring the potential for 
an unconstrained CGA with jumping to solve problems that 
are suitable for multi-loop CGAs.  This paper highlights the 
capabilities of evolutionary computation for video game and 
simulation technology. 

 
 

Fig. 1. Screenshot of evolving agent (center) evading enemy robot.  Various starting points are shown, labeled with the team to which 
they belong.  One white blip below the agent denotes a fired bullet by one of the robots, while smaller blips represent stars. 

 



 
 

 

II. XPILOT 
Xpilot (Fig. 1) is a popular 2-dimensional space-combat 

flight simulator written in the C programming language and 
freely available over the internet.  A keyboard and mouse 
are used to control a ship.  The game's open source code 
allows for modification to allow CGA controlled Xpilot 
ships.  The client/server design supports multiple players, 
and has many variables for weapon and ship upgrades, map 
settings, team play, etc.   Variables used by Xpilot to store 
information such as ship velocity, enemy and bullet location 
etc. can be parsed, and through the addition of a CGA, 
principles of evolution can be used to learn a looping control 
system for the agent.  The control system uses the AI 
interface to simulate keystrokes and mouse movement to 
control the agent.   

The evolving Xpilot agent was placed in a square arena 
enclosed by 32 blocks of 35 pixels on each side (the area of 
one block is roughly three times that of a ship).  Placed in 
the arena with the evolving agent was a predator robot 
which used a rule based system designed by the authors.   
This predator robot was quite effective at harrying the agent; 
it was frustratingly difficult for a human player to combat.  
Whenever either robot was killed, whether from an enemy 
bullet, a wall, or crashing into the other agent, it reappeared 
at its initial start location.  In addition to avoiding the enemy 
agent and its bullets, the evolving agent needed to evolve its 
flight to avoid the walls of the arena.  The aim of the CGA 
was to evolve the chromosomes to allow the robot to survive 
as long as possible, without crashing or being shot.  This 
was measured by the number of frames the robot survived.  
Each chromosome was run three times, and the sum of 
fitness taken.  This was done in an effort to give each 
chromosome ample chance to display its fitness; depending 
on the location of the enemy robot when the evolving agent 
appeared on the map, the CGA-controlled agent might be 
destroyed before it had a chance to move.  By allowing each 
chromosome to run three times, we hoped to minimize this 
effect. 

III. CYCLIC GENETIC ALGORTHMS 
Cyclic Genetic Algorithms (CGAs) are a type of genetic 

algorithm in which the genes represent tasks to be 
performed rather than traits of a problem solution [12] (see 
Fig. 2).  CGAs were initially developed to generate walking 
gaits for hexapod robots.  They were effective in solving this 
problem because the movement of a single leg requires a 
continual repetition of several actions such as lift leg, extend 
leg, lower leg etc. [13].  CGAs are highly suited to problem 
domains where sequential behavior is useful or necessary. 

The looping structure of a CGA allows an agent to 
perform different movements in order, and then to repeat 
those instructions any number of times.  A traditional single 
loop control system, however, may not allow certain 
complex sequences of behavior that would be useful in 
navigating the multi-variant and highly dynamic Xpilot 

environment; different sequences of actions (possibly of 
differing lengths) are desirable for the variety of tasks the 
agent may encounter, such as avoiding a wall, or trying to 
shoot an enemy. 

Parker, Parashkevov, Blumenthal and Guildman (2004) 
applied the use of CGAs to multi-loop controls [14].  A 
chromosome with four loops was developed to teach a 
predator to locate a stationary prey.  The loops each applied 
to one of four possible states in which the system could be, 
and when these states changed the program would jump to 
the loop corresponding to the new state. 

 

 
 

Fig. 2. Comparison of classic GA, a CGA sequence and CGA with single 
loop. 

 
Although this multi-loop CGA was highly successful for 

the predator/prey scenario, the researchers found that it 
becomes less feasible as the number of inputs to the system 
increased, because this multi-loop CGA must have a 
segment for each possible state condition.  To address this 
issue, Parker and Georgescu developed a multi-loop CGA 
with conditional branching to solve a search problem with 
obstacle avoidance [12].  They used the CGA to learn a 
control system for a LEGO Mindstorms robot to avoid 
obstacles while navigating towards a light.  In their design, 
they were able to incorporate new inputs into their system 
by creating new instructions, rather than by adding 
exponentially more loops. 

While the research performed by Parker and Georgescu 
used a system with 4 loops of predetermined length, the 
CGA introduced in this paper is less structured.  The Xpilot 
agent's chromosome consists of one single loop, but due to 
the ability to jump from any one gene to any other, the 
system is capable of creating looping sequences of behavior 
for situations that combine different values of the sensory 
inputs.  Loops of varying length can be created, and the 
conditional branching allows sequences to be incorporated 
into different loops.  The Xpilot environment has varied 
sensory inputs of great importance: the distance and 
direction of walls, distance and velocity of enemy craft, 
bullet collision information, the agent's own track, heading 



 
 

 

and velocity, etc.  It is the aim of this paper to research the 
efficacy of an unconstrained CGA with jumping and 
conditional branching in the Xpilot problem domain. 

A. Learning the Controller 
A set of 15 conditions (rule antecedents) important for 

reasonable play were developed (Fig. 3).  These included 
conditions dealing with the ship’s position relative to walls, 
the enemy ship, and hostile fire, as well as the relationship 
between the ship’s heading and its track.  A binary coding 
was developed to represent the possible responses that were 
to be learned by the GA.   

A population of 256 random chromosomes was generated 
initially.  The controller is represented by a chromosome of 
64 genes, with each chromosome being one large loop.  
Each gene is represented as a segment of 11 bits, so a 
chromosome is comprised of 704 bits.  Each 11-bit gene 
either contains information for how the robot should act in a 
given frame, or an instruction to jump to another gene to 
look for control information.   

The 15 different conditions were identified as potentially 
critical situations for which the robot would need to react.  
The system has the ability to check if a given condition is 
true, and to begin a different series of actions depending on 
whether it is true or false.  In addition there is a sixteenth 
conditional which is always true; the system will jump to the 
specified gene without consulting any input information 
when this conditional is checked.  This allows a gene to 
always jump to another gene, no matter the state of the 
inputs.  Although we are using 16 possible conditionals in 
this experiment, the unconstrained CGA does not have a 
limit to the number used; to have more than 16, however, we 
would have needed to add bits to each gene in order to 
represent the additional possibilities. 
 

1. Agent's velocity is greater than 10 pixels/second. 
2. Agent's velocity is greater than 20 pixels/second. 
3. Bullet is incoming and less than 60 pixels away. 
4. Bullet is incoming and less than 130 pixels away. 
5. Enemy ship is detected. 
6. Nearest enemy ship is moving greater than 12 pixels/second. 
7. Nearest enemy ship is closer than 200 pixels away. 
8. Nearest enemy ships is closer than 450 pixels away. 
9. Distance to nearest enemy ship is decreasing.  
10. Distance to nearest enemy ship is decreasing by more than 5 
pixels/second. 
11. Distance to enemy ship is increasing by less than 5 
pixels/second. 
12. Distance to nearest wall is greater than 40 pixels. 
13. Distance to nearest wall is greater than 132 pixels. 
14. Enemy ship is pointed within 10 degrees of agent. 
15. Enemy ship is pointed within 20 degrees of agent. 
 
Fig. 3. Conditions for branching.  The conditionals contain specific values 
(e.g., 40 pixels) that were determined by the authors to be effective values 
in previous research through trial and error.  If the condition is true, the 
conditional jumps control to a designated gene.  
 

B. Xpilot Chromosome 
The chromosome is a single loop of 64 genes, with each 

gene consisting of 11 bits (Fig. 4).  The first bit of the gene 
determines whether the gene is a control gene, which 
provides instruction for moving the agent, or a conditional 
jump gene, which causes the system to move to another gene 
if the condition is true.  If the gene is a control gene, it 
executes the command (thrust, shoot, turn) and in the next 
frame it executes the next gene in the sequence; if it is a 
conditional jump gene it jumps to the specified gene.  There 
it will either find a control gene to execute, or it will find 
another jump gene with instructions to conditionally jump.  
If the jump condition is not true, the system moves to the 
next gene in the loop and again can either execute a control 
action or a jump.  The system executes a control gene once 
each frame, regardless of the number of jumps.  With the 
ability to jump to any gene, sequences of instructions may 
be created where the final instruction commands a jump 
back to the first instruction; in this way variable length loops 
may be created. 

If the gene is a control gene (designated by the first bit), 
the next 2 bits of the gene determine whether or not the 
robot will thrust.  The binary value of the bits, from 0-3 is 
compared to a random number that is generated; only if the 
value of the bits is less than the random number will the 
robot thrust.  This allows the system to evolve different 
movement speeds when spread over multiple frames.  The 
next two bits are used in the same manner to determine 
whether or not the agent fires a bullet (thus giving the robot 
different possible rates of fire).  The 3 bits next in sequence 
determine on which of 8 different criteria the agent will base 
its turn; it may turn towards or away from enemy bullets, 
enemy craft, walls, or the agent’s own trajectory (the agent’s 
trajectory and heading may not match).  

 

 
Fig. 4. Sample chromosome used to encode control and jump commands. 

 

The agent always reacts to the nearest wall, the nearest 
enemy, and the most dangerous bullet etc.  If we were to 
label the agent's track as north, then it searches each of the 
eight primary directions (north, northeast, east etc.) to 
identify the nearest wall.  When avoiding bullets, the agent 
reacts to the location in space where the bullet will pass 
closest to the agents own track, not to the actual position of 
the bullet.   



 
 

 

 The final 3 bits of the gene determine the magnitude of 
the agent’s turn; it may turn 0, 2, 4, 6, 8, 10, 12 or 14 
degrees in the chosen direction.  In the following frame, the 
next gene in the loop will be executed, and if the final gene 
in the chromosome is executed the system will return to the 
first gene in the chromosome.   

If the first bit in a gene indicates that the gene is a jump 
gene rather than a control gene, then the remaining bits in 
the gene have a very different purpose.  The four bits 
following the control bit will give the number of a condition 
to check, from 0-15.  If that condition is true, then the 
system will jump to one of the 64 genes in the chromosome, 
designated by the final 6 bits of the current gene.  For 
example, the gene may call condition 5 which asks if an 
enemy ship is detected.  If there is an enemy detected, the 
system will jump to the gene designated by the remainder of 
the current gene.  If the condition is not true, then the system 
moves to the next gene in the loop and executes the 
command there, whether it is a control gene or another jump 
gene.  In the event that the gene checked is the final gene in 
the loop, it will return to the first gene in the loop.  Several 
jump genes can be strung together to check more complex 
states; e.g. enemy is close, but moving away. 

C.  Genetic Operators 
The total fitness of the population is stored so that it can 

be accessed up to any point in the trial of that population.  
Roulette wheel selection is used to choose parents for 
crossover [15].  Chromosomes are tested three times, and the  

number of frames they survive each trial is summed and 
stored.  This number is squared and stored as the 
individual’s fitness.   

When two individuals are chosen for crossover, there is 
an even chance that they will be combined using one of two 
possible crossover methods.  If inter-gene crossover is 
utilized, then a random crossover point is chosen; the 
chromosome of one parent is copied up to that point, and the 
remainder is copied from the other parent.  This allows 
genes and even whole loops to be left intact.  If intra-gene 
crossover is selected, then for each bit of a new gene, the bit 
at that spot is copied at random from one of the two parents.  
This allows for greater diversification.  Each bit also has a 
chance of mutation; there is a one in three hundred chance 
of each bit being flipped, regardless of the type of crossover 
used. 

The CGA was executed as a steady state genetic 
algorithm (SSGA) with first in first out deletion (FIFO), as 
discussed by De Jong and Sarma [16].  The FIFO SSGA 
genetic algorithm removes the oldest individual from the 
population as it puts in the newest individual.  The new 
individuals are a recombination with mutation of two 
individuals picked with roulette wheel selection from the 
current population. 

The best chromosome from each generation is saved to a 
data file, while its fitness and the average fitness of the 
generation are stored in a second file.  Any of the stored 
chromosomes can be loaded into Xpilot, so that the behavior 
of the most highly fit chromosomes can be viewed over 
several robot lifetimes. 
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Fig. 5. The results of evolving controller for Xpilot using a CGA.  The average population fitness is shown for each of 5 test runs.  The 
line is the average of the 5 runs.  The bold line is a 6th order polynomial trend line positioned by least squares. 
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Fig. 6. The best individual chromosomes yielded by the evolution of a multi-loop controller for Xpilot using a CGA.  The best 
individual fitness is shown for each of 5 test runs.  The line is the average of the 5 runs.  The bold line is a 6th order polynomial trend 
line positioned by least squares. 

 
 

IV. RESULTS 
The results of the trials showed that control learning with 

the CGA was highly successful.  Five test runs were started 
with randomly generated populations and were performed 
for 250 generations.  The average fitness for each generation 
of each run is shown in Figure 5.     

The enemy-harried robot evolved from an average fitness 
of 21,676.4 to a maximum average fitness of 305,118.8 in 
the 247th generation, averaged across all runs.  The best 
individual chromosome from the 5 runs had a fitness of 
5,909,761 in the 170th generation of run 3 (Fig. 6).   

The agent evolved several different strategies across the 
runs.  The agents in each run would sometimes exhibit 
behaviors visible in other runs, but each evolved one main 
strategy for surviving in its environment.  In one run, the 
robot learned to fly in straight lines, then pivot and thrust as 
it approached walls.  It would then fly in a straight line in a 
different direction.  It would fire as the enemy crossed its 
path, but it did not seem to alter its flight drastically to seek 
or elude its enemy.  This strategy was fairly successful for 
avoiding bullets, as the enemy robot had trouble tracking the 
agent on the long legs of its flight across the map. 

Another evolving agent learned similar behavior, but it 
flew on shorter routes before altering its course; it reacted to 
the walls from a greater distance, and thus tended to use 
more of the central portion of the map.  This agent also 

drifted along its heading, adjusting its track to fire at the 
enemy robot.  It was the most successful agent in killing the 
enemy robot, but its ability to evade bullets suffered greatly.   

In one of the runs, the agent seemed to evolve to solely 
try to evade bullets.  It would fly to the middle of the map 
whenever it came too close to a wall, but would then turn 
and slow its motion to try and remain in the center.  As it 
drifted, the agent would make miniscule adjustments to its 
flight path with short bursts of thrust accompanied by 
turning.  In this way, the robot seemed to dance between the 
bullets that were fired at it.   Generally, it made no efforts to 
fire upon the enemy robot.  The success of this behavior was 
varied, but at times it was highly successful. 

A different evolving agent learned an interesting strategy, 
but one that was initiated only when fired upon; otherwise it 
would sit in place.  For this reason, it was often killed 
quickly.  When the first few enemy bullets were detected by 
the agent, it would thrust; if the agent moved quickly 
enough, or the first few shots missed, it would begin to 
make large swooping circles around the map.  As it moved, 
it would adjust its aim to fire upon the enemy when the 
enemy was detected, but would maintain its circular flight.   

Occasionally it would break out of this and fly in a 
straight line, or make a figure eight, until more bullets would 
put it in danger.  This robot would often be followed by a 
hail of enemy bullets that continually passed just behind it.  



 
 

 

The behavior was successful both for evading enemy attacks 
and returning fire.   

A different evolving agent learned an interesting strategy, 
but one that was initiated only when fired upon; otherwise it 
would sit in place.  For this reason, it was often killed 
quickly.  When the first few enemy bullets were detected by 
the agent, it would thrust; if the agent moved quickly 
enough, or the first few shots missed, it would begin to 
make large swooping circles around the map.  As it moved, 
it would adjust its aim to fire upon the enemy when the 
enemy was detected, but would maintain its circular flight.  
Occasionally it would break out of this and fly in a straight 
line, or make a figure eight, until more bullets would put it 
in danger.  This robot would often be followed by a hail of 
enemy bullets that continually passed just behind it.  The 
behavior was successful both for evading enemy attacks and 
returning fire.   

The final agent would sit in place but turn to fire upon the 
enemy robot.  When bullets were detected, however, it 
would immediately thrust and attempt to flee the bullets.  
Unfortunately, the robot would often flee directly into a 
wall, and so be terminated in that manner.  Even when this 
did not happen, it was often cut down quickly by the enemy 
robot's bullets. 

The complete interpreted instructions for one of the more 
successful chromosomes are displayed below in order to 
demonstrate how the system functions. 
0: Thrust 3/4 Shot 1/4 Turn 8 degrees Away from AIself.track 
1: Check Rule: *Closing rate < -5*   If true, jump to 25 
2: Check Rule: *Shot is closer than 60 pixels*   If true, jump to 25 
3: Check Rule: *No Rule, Automatic jump*  If true, jump to 21 
4: Check Rule: *Wall > 40 pixels away*   If true, jump to 41 
5: Check Rule: *Closing rate < -5*   If true, jump to 63 
6: Check Rule: *Enemy velocity greater than 0*   If true, jump to 26 
7: Thrust 1/4 Shot 0 Turn 8 degrees Away from AIself.track 
8: Check Rule: *Enemy closer than 200 pixels*   If true, jump to 14 
9: Thrust 3/4 Shot 0 Turn 8 degrees Towards Bullet 
10: Check Rule: *Enemy velocity greater than 12*   If true, jump to 38 
11: Thrust 1/4 Shot 1/4 Turn -10 degrees Away from Wall 
12: Thrust 1/4 Shot 0 Turn -10 degrees Away from Wall 
13: Check Rule: *Enemy closer than 450 pixels*   If true, jump to 7 
14: Check Rule: *Wall > 40 pixels away*   If true, jump to 23 
15: Thrust 0 Shot 3/4 Turn 14 degrees Towards Bullet 
16: Check Rule: *Enemy velocity greater than 12*   If true, jump to 37 
17: Thrust 1/4 Shot 0 Turn -10 degrees Away from Bullet 
18: Thrust 0 Shot 1/2 Turn -12 degrees Away from Bullet 
19: Check Rule: *Enemy aimed w/in 10 deg of ship*   If true, jump to 18 
20: Check Rule: *Wall > 40 pixels away*   If true, jump to 46 
21: Thrust 1/2 Shot 1/4 Turn -14 degrees Away from Wall 
22: Thrust 3/4 Shot 3/4 Turn -14 degrees Away from Wall 
23: Thrust 3/4 Shot 3/4 Turn -12 degrees Away from Bullet 
24: Check Rule: Agent velocity < 20*   If true, jump to 5 
25: Thrust 0 Shot 0 Turn 12 degrees Away from AIself.track 
26: Check Rule: *Wall > 40 pixels away*   If true, jump to 1 
27: Check Rule: *Closing rate < 5*   If true, jump to 48 
28: Thrust 3/4 Shot 3/4 Turn -6 degrees Away from Bullet 
29: Check Rule: *Closing rate < 0*   If true, jump to 22 
30: Check Rule: *Enemy velocity greater than 12*   If true, jump to 61 
31: Check Rule: *Wall > 132 pixels away*   If true, jump to 48 
32: Check Rule: *No Rule, Automatic jump*  If true, jump to 0 
33: Check Rule: *Enemy closer than 450 pixels*   If true, jump to 6 

34: Check Rule: *Wall > 132 pixels away*   If true, jump to 22 
35: Check Rule: *Wall > 132 pixels away*   If true, jump to 13 
36: Check Rule: Agent velocity < 20*   If true, jump to 63 
37: Check Rule: *Closing rate < -5*   If true, jump to 36 
38: Thrust 1/4 Shot 0 Turn -10 degrees Towards AIself.track 
39: Thrust 3/4 Shot 3/4 Turn 12 degrees Towards Wall 
40: Check Rule: *Enemy velocity greater than 12*   If true, jump to 1 
41: Check Rule: *Wall > 40 pixels away*   If true, jump to 63 
42: Check Rule: *No Rule, Automatic jump*  If true, jump to 29 
43: Check Rule: *Enemy closer than 450 pixels*   If true, jump to 13 
44: Check Rule: *Closing rate < 5*   If true, jump to 37 
45: Thrust 3/4 Shot 1/4 Turn 0 degrees Away from Enemy ship 
46: Check Rule: *Enemy velocity greater than 12*   If true, jump to 5 
47: Check Rule: *No Rule, Automatic jump*  If true, jump to 3 
48: Check Rule: Agent velocity < 20*   If true, jump to 23 
49: Check Rule: *Enemy velocity greater than 12*   If true, jump to 25 
50: Thrust 1/4 Shot 0 Turn -8 degrees Away from Bullet 
51: Check Rule: *Enemy closer than 200 pixels*   If true, jump to 43 
52: Thrust 3/4 Shot 0 Turn 0 degrees Towards Enemy ship 
53: Thrust 1/2 Shot 1/2 Turn 0 degrees Towards AIself.track 
54: Check Rule: *Enemy closer than 200 pixels*   If true, jump to 57 
55: Check Rule: Agent velocity < 20*   If true, jump to 5 
56: Check Rule: *Enemy velocity greater than 12*   If true, jump to 51 
57: Check Rule: *Closing rate < -5*   If true, jump to 59 
58: Check Rule: *Enemy velocity greater than 12*   If true, jump to 18 
59: Check Rule: *Closing rate < 5*   If true, jump to 6 
60: Check Rule: *Enemy aimed w/in 20 deg of ship*   If true, jump to 54 
61: Thrust 1/2 Shot 1/2 Turn -12 degrees Away from Enemy ship 
62: Thrust 3/4 Shot 1/2 Turn -8 degrees Away from Enemy ship 
63: Thrust 0 Shot 3/4 Turn -4 degrees Away from Wall 

By beginning with the first gene of the system denoted by 
“0”, we can follow the system's jumps, most of which are 
conditional upon inputs from the environment (several 
demand jumps regardless of the inputs).  The system begins 
by instructing the robot away from its own track with a high 
chance of thrusting.  After this initial step, the system begins 
to act according to the state the robot is in.  It first checks if 
the enemy agent is closing at a fast rate (gene 1).  If it is, the 
system jumps to gene 25 and turns the agent away from its 
current track.  The system then checks if the agent is farther 
than 40 pixels from a wall (gene 26), and if it is safe from 
walls it returns to gene 1. 

If the robot is close to a wall and the distance to the 
enemy is increasing by 5+ pixels/second (gene 27), the robot 
will thrust away from any dangerous incoming bullets (gene 
28). 

If the enemy is now closing on the robot (gene 29), the 
system will jump and the robot will finally turn and thrust 
from the nearby wall (gene 22) detected by gene 26.  If other 
branches are taken, it will be several more frames before a 
turn is made from a wall. 

The above sequence suggests that the learned controller 
considers a closing enemy agent to be the most important 
input, even more important perhaps than incoming bullets.  
This makes sense when one observes that the enemy agent 
has a high rate of fire, but is extremely inaccurate as the 
distance increases from the evolving agent.  The sequence 
also helps explain why wall avoidance behavior can still be 
imperfect in highly evolved agents.  (It is important to 
recognize that the above steps took place in just a few 
frames; that is, fractions of a second). 



 
 

 

V. CONCLUSIONS 
Based upon the results of the experiment, an 

unconstrained CGA can be used to develop a branching 
controller with multiple loops for an autonomous robot 
operating in the Xpilot environment.  The control system 
supports the potential for unconstrained CGAs to evolve 
multiple loops of variable length to solve problems that are 
suited to traditional multi-loop CGAs.  In the later portions 
of the runs, the GA driven robot was often more successful 
at dispatching its enemy than was the enemy robot.  If given 
a larger number of possible behaviors or a predictive aiming 
function, we speculate that the robot could survive 
significantly longer in the arena; ongoing research is being 
conducted to explore these hypotheses.  With the increased 
difficulty in facing the enemy robot we designed taken into 
account, the unconstrained CGA controller is a significant 
improvement over our previous rule-based system for Xpilot 
control. 

REFERENCES 
[1] Schultz, A. C. (1994). Learning robot behavior using genetic 

algorithms. Intelligent Automation and Soft Computing: Trends in 
Research, Development, and Applications. 

[2] Schultz. A. C. (1991). Using a genetic algorithm to learn strategies for 
collision avoidance and local navigation. Proceedings of the Seventh 
International Symposium on Unmanned, Untethered Submersible 
Technology. 

[3] Beer, R., & Gallagher, J. (1992). Evolving dynamical neural networks 
for adaptive behavior.  Adaptive Behavior, 3, 469-509. 

[4] Fogel, D. (2002). Blondie24: Playing at the edge of AI.  Morgan 
Kaufmann Publishers, Inc., San Francisco, CA.  

[5] Konidaris, G., Shell, D., and Oren, N. (2002).  Evolving neural 
networks for the capture game.  Proceedings of the SAICSIT 
Postgraduate Symposium. 

[6] Hingston, P. and Kendall, G. (2004). Learning versus evolution in 
iterated prisoner's dilemma.  Proceedings of the International Congress 
on Evolutionary Computation 2004 (CEC'04). 

[7] Yannakakis, G. and Hallam, J.  (2004)  Evolving opponents for 
interesting interactive computer games. Proceedings of the 8th 
International Conference on the Simulation of Adaptive Behavior 
(SAB’04). 

[8] Cole, N., Louis, S., and Miles, C. (2004). Using a genetic algorithm to 
tune first-person shooter bots.  Proceedings of the International 
Congress on Evolutionary Computation 2004 (CEC’04). 

[9] Funes, P., & Pollack, J.  (2000). Measuring progress in coevolutionary 
competition. From Animals to Animats 6: Proceedings of the Sixth 
International Conference on Simulation of Adaptive Behavior. 

[10] Parker, G., Parker, M., & Johnson, S. (2005).  Evolving autonomous 
agent control in the Xpilot environment.  Proceedings of the 2005 
Congress on Evolutionary Computation (CEC 2005).  Edinburgh, UK.   

[11] Parker, G., Doherty, T., & Parker, M. (2005).  Evolution and 
prioritization of survival strategies for simulated robots in Xpilot.  
Proceedings of the 2005 Congress on Evolutionary Computation 
(CEC 2005).  Edinburgh, UK. 

[12] Parker, G., & Georgescu, R. (2005).  Using cyclic genetic algorithms 
to evolve multi-loop control programs.  Proceedings of the 2005 IEEE 
International Conference on Mechatronics and Automation (IMCA 
2005).  Niagra Falls, Ontario, Canada. 

[13] Parker, G., Rawlins, G. (1996).  Cyclic genetic algorithms for the 
locomotion of hexapod robots.  Proceedings of the World Automation 
Congress (WAC 1996), 3, Robotic and Manufacturing Systems. 

[14] Parker, G., Parashkevov, I., Blumenthal, H., & Guildman, T. (2004).  
Cyclic genetic algorithms for evolving multi-loop control programs.  
Proceedings of the 2004 World Automation Congress (WAC 2004).  
Seville, Spain. 

[15] Goldberg, D. (1989)  Genetic algorithms in search optimization and 
machine learning.  Addison-Wesley, Reading MA. 

[16] De Jong, K., & Sarma, J. (1992).  Generation gaps revisited.  
Proceedings of the Second Workshop on Foundations of Genetic 
Algorithms (FOGA 1992). Vail, Colorado, USA 

 


