

Abstract— Xpilot, a network game where agents engage in
space combat, has been shown to be a good test bed for
controller learning systems. In this paper, we introduce the
Core, an Xpilot learning environment where a population of
learning agents interact locally through tournament selection,
crossover, and mutation to produce offspring in the evolution
of controllers. The system does not require the researcher to
develop a fitness function or suitable agents to engage with the
evolving agent. Instead, it employs a form of co-evolution
where the environment, made up of the population of agents,
evolves to continually challenge individual agents evolving
within it. Tests show its successful use in evolving controllers
for combat agents in Xpilot.

I. INTRODUCTION
EARNING controllers for autonomous agents is a
difficult task, but important in the development of

adaptive autonomous robots. Using simulated environments
for testing learning algorithms significantly helps in their
development, provided that the environments have some of
the complexity and non-deterministic qualities of real world
environments. A computer game such as Xpilot can be used
since it offers an environment that is challenging and models
relevant characteristics of the physical world. In addition, it
offers several levels of complexity while requiring minimal
in-game graphics. Xpilot is a 2D network game that is in
wide use with several hosts sponsoring ongoing games. The
user with internet access and an installed free client program
can join a selection of arenas set with a variety of objectives
and environmental conditions. The user controls a
spaceship (represented as a triangle) that can engage in
combat (through shooting bullets) with other ships while
attempting to complete some other objective. Although
many actions exist, our current research concentrates on
control for close combat. Learning the correct behaviors to
successfully beat an opponent in this space simulation is
very challenging. We hope to have our autonomous agents
learn to compete in the world of Xpilot, which is presently
occupied by human players with a variety of skill levels and
experience.

Games have been used by several researchers to test
learning systems based on evolutionary computation. Most
of this work has been done on board games [1,2] and on
problems like the prisoner’s dilemma problem [3]. More
related to our work is research that has been done on
learning controllers for interactive computer games such as

Counter-Strike [4], a first person shooter game, Pac-Man
[5], and Tron [6]. In earlier work [7], we introduced the use
of Xpilot for the learning of complex control behaviors for
autonomous agents. Xpilot was modified to allow
researchers to write programs that obtain information about
the environment and reply with control responses generated
by an artificial intelligent agent. The system was tested by
using a standard genetic algorithm (GA) to learn a simple
neural network controller [7] and a rule based controller [8].

To make our Xpilot learning environment more usable,
we made modifications to the original system, written in C,
by creating a Scheme interface, which we call Xpilot-AI.
This interface allows programs written in Scheme to provide
control decisions, which results in easier development and
rapid testing of learning algorithms. As a further
enhancement, we wanted a training environment where the
agents could be tested in parallel. Xpilot sessions involve
periods of combat that require time enough for the
opponents to interact in positioning, firing bullets, and
evading bullets. Although we determined a way to speed
up the simulation to seven times its normal speed, any
additional speedup could cause lost frames. This would
result in controllers that were fit at the high frame rates, but
that may not be suited for actual play. We needed the
capability of running several combat episodes in parallel to
significantly increase the speed of evolution. In addition, a
system where we could distribute the clients among several
computers would provide additional speed increases in
fitness computation. To maintain the desired parallelism, we
wanted the evolution (selection, crossover, mutation) to be
decentralized. This would allow the system to be
asynchronous, which is important since some trials can take
ten times longer than others.

In addition to speed considerations, we required
reasonable agents for opponents. They needed to be
progressively better as our learning agents developed. Co-
evolution between two populations was an option, but would
require additional computation time to evolve the second
population. The system that we developed, which we refer
to as the Core, addresses this issue with no additional
computation time by creating an environment where the
other agents in the learning population are opponents who
are constantly increasing in their capabilities. In this way,
the environment as a whole is co-evolving with the
individual agents who are learning in it. The Core also
allows us to avoid developing a fitness function to achieve
the desired behavior since fitness is determined solely by

Learning Control for Xpilot Agents in the Core
Matt Parker, Computer Science, Indiana University, matparke@indiana.edu

Gary B. Parker, Computer Science, Connecticut College, parker@conncoll.edu

L

how well the agent fights in the environment. These factors
combine to make a unique learning environment that
produces excellent results.

In this paper, we report the advancement of our previous
work through the use of the Core to learn controllers for
Xpilot agents. The development of this a unique parallel
learning environment was in response to the difficulties we
found in using the standard system for evolution. This paper
will present details of the Core’s implementation and will
show the results of a test conducted where a cyclic control
program for an autonomous combat agent was evolved.

II. THE CORE

A. Description
The Core is a large virtual arena in which a population of

Xpilot agents can learn combat controllers. It is a parallel
system that accommodates several participating computers.
Because Xpilot servers are designed to allow for a wide

variety of capabilities, the client computers do not have to be
equivalent in capabilities. A client computer’s capabilities
merely dictate the number of clients that can be run
concurrently on that computer. However, since each client
is an autonomous entity in itself, no coordination in the
number of clients run on each computer is required. It is
plausible, with a fast connection, that computers anywhere
in the world could be contributing clients to the Core. The
computer acting as the server can also have a limitation.
This limitation is placed on the system by the hardware and
operating system on which the Xpilot server runs. However,
as hardware becomes faster, more clients will be able to
concurrently connect. The Core has a spatially-distributed
population. Parameters within the system can be adjusted to
keep newly produced offspring in the local area or disperse
them anywhere in the environment. The Core’s type of
parallelism would most closely identify it with a fine-
grained parallel GA that is asynchronous [9,10].

Fig. 1. A radar screenshot of the populated Core. The white dots are individual agents; most of which are engaged in
combat. Many more agents are dead and waiting to appear, so do not show on the map.

Fig. 2. A view of the action in the Core. Here Teuber1 is firing at Bigjim19. The strange characters atop are the encoded chromosome of Bigjim25, who
recently killed Teuber1, being passed over the player-to-player messaging system.

The Core area for competition is a large 256x256 tiled

map (Figure 1). Each tile is about 3 times the area of a ship.
Each of the four quadrants of the map has a unique terrain in
order to represent multiple combat environments. The top
left quadrant has fingers of walls with an open space in the
center, the top right quadrant has fingers with no large
space, the bottom left quadrant is cluttered with small
asteroid-like chunks of walls, and the bottom right quadrant
has just a few dots of walls and mostly open space. Bases,
where a player or agent may appear upon a new life, are
scattered in the center of each quadrant. The four quadrants
collect towards the center where there is a large circle of
empty space. Combatants within each quadrant interact
mostly with agents within that quadrant, but also interact
with the agents in adjacent quadrants at the borders and the
central empty space.

When a client first joins the Core, the client generates a
random chromosome to control the agent. Therefore, when
the Core is first loaded the entire population is made of
agents with random chromosomes. Whenever an agent dies,
its ship disappears from the map for about 32 frames, then it
reappears in a new starting location, and the agent lives
again. In our current experiments, this new starting position
is randomly generated. This is intended to train for a
generalized solution. However, it is possible to keep the
agent in its local area. One possibility is to have it always

reappear within its starting quadrant. This allows for a very
natural method of niching.

There are four ways that an agent can die in our current
system: collision with a wall at sufficient speed, collision
with another agent, killed by its own shot, or shot by another
agent. Of these four deaths, the first three simply result in
the agent’s death and reappearance in another location; its
chromosome is unchanged. However, when it is shot by
another agent, the dead agent sends a request to the killer
agent, the killer sends its chromosome to the dead agent, and
the dead agent performs crossover and mutation between its
own chromosome and the chromosome of its killer. The
messages requesting the chromosome and the chromosome
itself are coded into ASCII and sent directly between the
agents using the player-to-player text messaging system
native to Xpilot (Figure 2). In this way, the agents are not
dependent on a central system for recombination.

Using this form of selection and recombination, the
agents who are more capable of killing other agents spread
their genes to a larger number of agents than do those agents
who are less capable of killing. In turn, the weaker agents
who are killed, slowly evolve to become as strong as their
killers, increasing the abilities of the entire population. By
crossover and mutation new traits are formed in agents, and
the traits that make the agent stronger are slowly spread
across the entire population. In this way, the agents

continually increase their individual abilities while the entire
population continues to evolve to be a more competitive
learning environment.
B. Setup

With modifications, a dedicated Xpilot server is capable
of hosting a very large number of Xpilot clients (we
typically run 120). The normal Xpilot-NG server, which
accepts a maximum of 32 clients, was modified to accept a
virtually limitless number of clients. In addition, the number
of informative messages that the server sends to its clients,
such as those about who killed who, or about who switched
teams, etc. was reduced to a minimum. These messages are
not important for the agents in the Core and they use extra
network bandwidth that is needed to pass chromosome
information.

The Xpilot server needs to be on a reasonably fast
computer running a reliable operating system. We tested
several computer / operating system setups to find one
appropriate for the server. A Sun AMD Opteron 64 bit and
a PC with a Pentium IV, both with over 512MB of memory
were found to be suitable computers. A Sparc Sunblade
1500, however, was apparently too slow to handle the large
number of clients. The operating system for the Xpilot
server needs to be reliable when handling many concurrent
network connections. We tested FreeBSD, Linux, and
Solaris. FreeBSD is the most reliable of the three, able to
host around 130 Xpilot-AI clients at 32 frames per second.
At the same frame rate Solaris hosts about 115 reliably, and
Linux, using a 2.6.x kernel with Fedora, could host 122
clients. For the tests reported in this paper, we ran the
Xpilot-AI clients on dual processor Xeon computers, each
with 1-3 Gigabytes of memory. The graphics of the clients
were run in a low color-depth X Video Frambuffer (Xvfb)
rather than on the graphics display, to reduce the strain on
the CPU. With these computers and settings we ran about
25 clients on each computer. Four or five computers were
sufficient to populate the Core.

C. Learning
The Core can accommodate most any type of

evolutionary computation for the agent controller learning
system. For the research reported in this paper, we used a
multi-loop cyclic genetic algorithm (CGA). The original
CGA [11] was developed to learn a single loop control
program for locomotion in hexapod robots. It is a
modification of the standard GA in that the genes (logical
groupings of bits) represent tasks to be completed in a set
amount of time as opposed to traits of the solution. Using a
CGA, single-loop control programs with variable lengths
could be evolved. In further research [12], the CGA was
expanded to be capable of evolving multiple loop programs
(allowing conditionals) and was employed to learn the
control program for a robot with light and touch sensors.

The CGA used for the research reported in this paper is
unique. The chromosome is made of 16 loops, with 8 genes

per loop and 8 bits per gene. Each loop has a set of
conditionals directing the program execution and a set of
instructions directing the agent’s actions (Figure 3). The last
five genes in each loop are devoted to controlling the actions
of the ship. While the agent’s control program is in that
particular loop, it will cycle through these five action genes
frame by frame, performing the actions as instructed by the
genes. The first bit in the action gene instructs the ship
whether or not to thrust. The second bit, whether or not to
shoot. Three bits instruct the ship’s quantity of turn and
three bits correspond with where to turn, such as from the
nearest enemy or towards the nearest wall.

Fig. 3. Diagram of an example single loop of the 16 total. The first three
genes are devoted to conditionals, which if true, results in a jump
corresponding to that conditional. The 5 action genes are cycled through
frame-by-frame to control the ship.

The first three genes of each loop are devoted

conditionals which instruct the agent’s program if it should
jump out of the current loop into a new loop. Each
conditional consists of four bits (half a gene) and
corresponds to one of sixteen conditions about the
environment, such as “agent velocity > 10” or “enemy
distance < 100”. Each of the conditionals has a
corresponding loop, which the program control will jump to
if the condition is true. Between every frame, before the
agent’s control program executes an action, it checks all the
conditionals for whatever loop it is in and jumps to the
corresponding loop of the first conditional that is true, or if
none are true, continues with the next action gene in its
current loop. To give the conditionals more versatility, we
turn the first four bits of the first gene into AND bits. The
first AND bit will act as an AND between the first two
conditionals. If all the AND bits are enabled, then all five
conditionals will be AND’ed together and the program will
not jump out of that loop unless all are true. If an entire
series of AND’s are true, then the program will jump to the
loop that corresponds with the last conditional.

D. Adjustments
The goal is to evolve controllers that equip the Xpilot

agents to excel at general combat. Genetic algorithms often
find ways to exploit the fitness function so that good
fitnesses result without the agent achieving the intended
behavior. The Core does not have a “fitness function”, but
the setup of the map and rules of play have an enormous
impact on the evolved behavior of the agents. For example,

our first tests of the Core gave the agents almost no reason
to avoid crashing into the walls, so thrusting toward a wall
was actually a good strategy to avoid being shot. Being shot
resulted in a chromosome change, whereas dying in a wall
crash did not. Consequently, the entire population soon
became fast-flying agents that were not concerned with
dying in wall collisions.

For the tests reported in this paper, we handled the
learning agents’ propensity for wall-collision deaths by
penalizing them upon being reborn after a wall collision. If
an agent collides with a wall, that agent then reappears, like
normal, at a random starting location, but instead of being
allowed to fly immediately, it must sit motionless for a
certain amount of time. During this penalty time the agent is
defenseless against any enemy opponents and makes easy
prey for any nearby ships. This effectively weeds out from
the population those agents that carelessly collide with
walls.

E. Previous Work Relevant to the Core
Although the Core has only one population, we consider

it to be competitive co-evolution. Instead of two distinct
populations, it has an environment that is constantly
evolving to be more hostile to the individual agents within
it. Significant work has been done in the field of
competitive co-evolution by several researchers
[13,14,15,16,17]. One of the important issues with
competitive co-evolution is the problem of having one
population dominate the other [13,17] resulting in stalled
evolution. This is not an issue with the Core. The body of
agents making up the environment for testing individual
agents cannot evolve to be constantly superior to the
individual agents since it is made up of those individuals.
On the other hand, individual agents that evolve to be
superior pass their genes on to defeated foes and their traits
eventually spread throughout the population resulting in a
more challenging environment.

Using a fitness function that is a property of the
environment as opposed to a predefined fitness function has
been used in Alife simulations [18,19]. This is also a
property of embodied evolution [20] used in evolutionary
robotics. In this system, robots attain a virtual energy level
that corresponds to their performance in completing an
assigned task. They transmit their chromosomes with a rate
proportional to their energy level and receiving robots
accept it at a rate inversely proportional to their energy level.
Upon acceptance, the receiving robot crosses it with its own
chromosome producing a new controller, which overwrites
its current controller. Tournament selection using only two
opponents with the least fit being replaced by the
recombination of the two was found to be a successful
strategy (Microbial method) by Harvey [21]. We use a
similar method in the Core. When an agent kills another
agent, its chromosome is passed to that agent’s client. The
client crosses the victor’s chromosome with that of the

defeated agent’s chromosome, producing a new agent that is
sent back into the Core for continued learning.

III. TESTING THE CORE
Recording the fitness growth of individuals in the Core is

a unique issue. Since there is no fitness function, it is
difficult to measure the success of the evolution, even
though one can visually observe that the agents have
significantly improved in their development of effective
strategies. Their success cannot be measured by their time
alive or by their number of kills in the Core. An individual
agent’s competitors increase their ability to kill and avoid
being killed as the agent increases its ability to do the same.
The fitness of the agents from the Core must therefore be
judged by their ability to fight some standard opponent,
whose behavior remains the same over time. This can be
accomplished in one of two ways: introduce standard
opponents into the Core, or remove agents from the Core to
fight standard agents in a new arena. For the tests reported
in this paper we have recreated a smaller version of the
Core, approximately one fourth the size, and populated it
with 12 enemy bots. Rather than sticking one particular type
of enemy bot into the test map, we use controllers saved
from random agents pulled from the Core at equal intervals
of time. The enemy bots in the miniature Core do not
evolve or learn, so they effectively reproduce the average
conditions experienced by the agents throughout their lives
in the Core.

The Core was allowed to run for 24 hours. The clients
saved each agent’s chromosome to file every 30 minutes, so
48 chromosomes were saved for each agent in the Core. We
randomly picked five individuals from each saved
population and tested each in a separate miniature Core. In
this way, we tested every chromosome of the 48 saved for
each individual. Each chromosome was allowed control of a
ship until it had been killed by an enemy ship ten times. As
it was in the Core, if the agent crashed into a wall, it was
penalized upon its next life, being forced to sit motionless
for an extent of time, but a wall collision did not count as
one of the ten deaths. We recorded the number of times the
agent killed the enemy and how many times the agent
crashed into a wall over the span of its ten lives. This gave
us a clear idea of the general improvement in behavior and
efficiency of killing for the agents in the Core over time.

IV. RESULTS
The agents in the Core clearly show visible improvement

over the 24 hour test. The number of kills per ten lives
(Figure 4) improved over time in the miniature Core
simulation. The number of times the agents crashed into the
walls over time (Figure 5) also was reduced as the agents
learned more conservative thrusting patterns.

Behavior in the Core was never completely homogenous;
the average of the agents grew better over time, but there
were always some with superior controllers and others with
poor controllers. Some agents became good aimers, others
perfected a style of wall-crashing, and still others had an
inferior strategy because of a bad mutation or detrimental
crossover. Since the 5 agents tested in the miniature Core
were a random sampling taken every 30 minutes, some of
the chromosomes sampled at the 30 minute intervals were
less or more intelligent than the average. For this reason,
the graphs spike up and down. However, they show overall
improvement, mirroring the general improvement of the
population.

The improvement in behavior of the agents can also be
visibly seen by watching them fight in the Core. When first
started, the majority of the population flew wildly about the
map, some shooting, some turning, and mostly all dying
very quickly by a wall collision. After a time, those who
were flying less quickly, and those who had some ability to
aim at the enemy, began to kill more than the others, and
their genes began to spread across the map. Soon everyone
was flying more slowly and aiming more. Eventually the
Core was dominated mostly by ships that would merely aim
and shoot at the nearest enemy, not attempting to avoid an

oncoming wall or dodge an enemy bullet. Very rarely one of
the agents appeared to be consistently thrusting away from
oncoming walls, but after being killed by a less advanced
agent, it would lose that ability, and apparently it did not
spread its genes successfully enough while still alive for the
entire population to learn the trait. By the end of the Core
test, many of the agents had learned to slowly thrust while
they were aiming and shooting at the nearest ship. Their
acceleration was only about double the backwards
acceleration caused by firing bullets, so their flight was slow
enough to put them in no major danger of dying from
crashing into a wall and fast enough to make them a more
difficult target to shoot.

Just as the entire population visibly evolves over time, a
new random agent placed into a mature Core also visibly
evolves over a span of a few minutes. When it first joins, it
appears to fly in unintelligent flight patterns, usually not
heeding the enemy opponents. Then, after it is shot by an
enemy, it changes into a strange mix of its previous wild
behavior combined with a faint ability to aim at the enemy.
After a few more deaths from the more advanced enemies, it
becomes nearly indistinguishable from the other agents in
the Core.

0

2

4

6

8

10

12

14

16

18

20

0 6 12 18 24

Hours of Evolution

K
ill

s

Fig. 4. Results of 5 tests showing enemy kills per 10 lives. All 5 tests are shown as points; the average is shown as a solid line.

0

50

100

150

200

250

0 6 12 18 24

Hours of Evolution

W
al

l C
ra

sh
es

Fig. 5. Results of 5 tests showing fatal wall crashes per 10 lives. All 5 tests are shown as points; the average is shown as a solid line.

V. CONCLUSIONS
Xpilot offers a challenging environment for testing

learning systems for autonomous agents. The Core allows
the researcher the flexibility of evolving a controller that
will be useful in the wide variety of available combat
environments. It avoids the need for the creation of a fitness
function that adequately tests the large number of tasks in
general combat and an environment populated with hand-
coded opponents that reliably test the agent. The Core is
highly parallel, employs simple single population co-
evolution, and can be run on several dissimilar computers.
Tests show that it is effective for evolving robust combat
agents in the Xpilot environment.

There are several modifications that can be made to the
Core which change its characteristics. The rules of play, the
map, and the clients can be altered to change the nature of
the evolved controllers. In future work, we will investigate
where multiple species of agents compete against one
another, fighting to become the dominant population in the
Core. The idea of the Core could have general applicability
to the evolution of competitive agents, including the
evolution of non-combatant agents such as controllers for
racing cars. In a Core like environment, the dominant cars

can send their chromosome to the less successful cars as
they are lapped.

Tests show that the Core is a suitable method for evolving
combat agents in Xpilot. Future work will expand its use
with other forms of evolutionary computation and test its
general applicability in the evolution of controllers for
competitive agents.

REFERENCES
[1] Fogel, D. Blondie24: Playing at the Edge of AI, Morgan Kaufmann

Publishers, Inc., San Francisco, CA., 2002.
[2] Konidaris, G., Shell, D., and Oren, N. “Evolving Neural Networks for

the Capture Game,” Proceedings of the SAICSIT Postgraduate
Symposium, Port Elizabeth, South Africa, September 2002.

[3] Hingston, P. and Kendall, G. “Learning versus Evolution in Iterated
Prisoner's Dilemma,” Proceedings of the International Congress on
Evolutionary Computation 2004 (CEC'04), Portland, Oregon, 20-23
June 2004, pp 364-372.

[4] Cole, N., Louis, S., and Miles, C. “Using a Genetic Algorithm to Tune
First-Person Shooter Bots,” Proceedings of the International
Congress on Evolutionary Computation 2004 (CEC’04), Portland,
Oregon, 2004, pp 139–145.

[5] Yannakakis, G. and Hallam, J. "Evolving Opponents for Interesting
Interactive Computer Games,'' Proceedings of the 8th International
Conference on the Simulation of Adaptive Behavior (SAB'04); From
Animals to Animats 8, 2004, pp 499-508.

[6] Funes, P. and Pollack, J. “Measuring Progress in Coevolutionary
Competition,” From Animals to Animats 6: Proceedings of the Sixth
International Conference on Simulation of Adaptive Behavior. 2000,
pp 450-459.

[7] Parker, G., Parker, M., and Johnson, S. “Evolving Autonomous Agent
Control in the Xpilot Environment,” Proceedings of the 2005 IEEE
Congress on Evolutionary Computation (CEC 2005), Edinburgh, UK.,
September 2005.

[8] Parker, G., Doherty, T., and Parker, M. “Evolution and Prioritization
of Survival Strategies for a Simulated Robot in Xpilot,” Proceedings
of the 2005 IEEE Congress on Evolutionary Computation (CEC
2005), Edinburgh, UK., September 2005.

[9] Cantu-Paz, E. “A Survey of Parallel Genetic Algorithms,” Technical
Report 97003, Illinois Genetic Algorithms Laboratory, Department of
General Engineering, University of Illinois, Urbana, Illinois, 1997.

[10] Tomassini, T. “Parallel and Distributed Evolutionary Algorithms: A
Review,” Evolutionary Algorithms in Engineering and Computer
Science, pages 113–133. J. Wiley and Sons, Chichester,1999.

[11] Parker, G. and Rawlins, G. “Cyclic Genetic Algorithms for the
Locomotion of Hexapod Robots,” Proceedings of the World
Automation Congress (WAC '96), Volume 3, Robotic and
Manufacturing Systems. May 1996.

[12] Parker, G. and Georgescu, R. “Using Cyclic Genetic Algorithms to
Evolve Multi-Loop Control Programs,” The 2005 IEEE International
Conference on Mechatronics and Automation (ICMA 2005), Niagara
Falls, Ontario, Canada, July 2005.

[13] Bongard J. and Lipson, H. "Nonlinear System Identification using Co-
Evolution of Models and Tests," IEEE Transactions on Evolutionary
Computation, 2004.

[14] de Jong, E. “The Maxsolve Algorithm for Coevolution.” Proceedings
of the Genetic and Evolutionary Computation Conference, 2005.

[15] Popovici, E. and De Jong, K. “Relationships between Internal and
External Metrics in Co-evolution,” Proceedings of the Congress on
Evolutionary Computation -- CEC-2005.

[16] Rosin, C. and Belew, R. "New Methods for Competitive
Coevolution." Evolutionary Computation, 1997, 5(1):1–29.

[17] Williams, N. and Mitchell, M. “Investigating the Success of Spatial
Coevolutionary Learning,” Proceedings of the 2005 Genetic and
Evolutionary Computation Conference, GECCO-2005 , New York:
ACM Press, 523-530, 2005.

[18] Ventrella, J. “Attractiveness vs Efficiency (How Mate Preference
Affects Locomotion in the Evolution of Artificial Swimming
Organisms),” Artificial Life VI, MIT Press. 178-186, 1998.

[19] Werner, G. and Dyer, M. “Evolution of communication in artificial
organisms.” Artificial Life II, Addison-Wesley. 659-687, 1991.

[20] Watson R., Ficici S., and Pollack J., “Embodied Evolution:
Embodying an Evolutionary Algorithm in a Population of Robots”.
Proceedings of the IEEE Congress on Evolutionary Computation, pp.
335-342, 1999.

[21] Harvey I. “Artificial Evolution: A Continuing SAGA,” In
Evolutionary Robotics: From Intelligent Robots to Artificial Life,
Takashi Gomi (ed.), Proceedings of the 8th International Symposium
on Evolutionary Robotics (ER2001). 2001.

