
 
 

 

  

Abstract— Xpilot, a network game where agents engage in 
space combat, has been shown to be a good test bed for 
controller learning systems. In this paper, we introduce the 
Core, an Xpilot learning environment where a population of 
learning agents interact locally through tournament selection, 
crossover, and mutation to produce offspring in the evolution 
of controllers. The system does not require the researcher to 
develop a fitness function or suitable agents to engage with the 
evolving agent. Instead, it employs a form of co-evolution 
where the environment, made up of the population of agents, 
evolves to continually challenge individual agents evolving 
within it. Tests show its successful use in evolving controllers 
for combat agents in Xpilot. 

 

I. INTRODUCTION 
EARNING controllers for autonomous agents is a                                                                                                             
difficult task, but important in the development of 

adaptive autonomous robots.  Using simulated environments 
for testing learning algorithms significantly helps in their 
development, provided that the environments have some of 
the complexity and non-deterministic qualities of real world 
environments.  A computer game such as Xpilot can be used 
since it offers an environment that is challenging and models 
relevant characteristics of the physical world.  In addition, it 
offers several levels of complexity while requiring minimal 
in-game graphics.  Xpilot is a 2D network game that is in 
wide use with several hosts sponsoring ongoing games.  The 
user with internet access and an installed free client program 
can join a selection of arenas set with a variety of objectives 
and environmental conditions.  The user controls a 
spaceship (represented as a triangle) that can engage in 
combat (through shooting bullets) with other ships while 
attempting to complete some other objective.  Although 
many actions exist, our current research concentrates on 
control for close combat.  Learning the correct behaviors to 
successfully beat an opponent in this space simulation is 
very challenging.  We hope to have our autonomous agents 
learn to compete in the world of Xpilot, which is presently 
occupied by human players with a variety of skill levels and 
experience.    

Games have been used by several researchers to test 
learning systems based on evolutionary computation.  Most 
of this work has been done on board games [1,2] and on 
problems like the prisoner’s dilemma problem [3].  More 
related to our work is research that has been done on 
learning controllers for interactive computer games such as 
 

 

Counter-Strike [4], a first person shooter game, Pac-Man 
[5], and Tron [6].  In earlier work [7], we introduced the use 
of Xpilot for the learning of complex control behaviors for 
autonomous agents.  Xpilot was modified to allow 
researchers to write programs that obtain information about 
the environment and reply with control responses generated 
by an artificial intelligent agent. The system was tested by 
using a standard genetic algorithm (GA) to learn a simple 
neural network controller [7] and a rule based controller [8].  

To make our Xpilot learning environment more usable, 
we made modifications to the original system, written in C, 
by creating a Scheme interface, which we call Xpilot-AI.  
This interface allows programs written in Scheme to provide 
control decisions, which results in easier development and 
rapid testing of learning algorithms.  As a further 
enhancement, we wanted a training environment where the 
agents could be tested in parallel.  Xpilot sessions involve 
periods of combat that require time enough for the 
opponents to interact in positioning, firing bullets, and 
evading bullets.   Although we determined a way to speed 
up the simulation to seven times its normal speed, any 
additional speedup could cause lost frames.  This would 
result in controllers that were fit at the high frame rates, but 
that may not be suited for actual play.  We needed the 
capability of running several combat episodes in parallel to 
significantly increase the speed of evolution.  In addition, a 
system where we could distribute the clients among several 
computers would provide additional speed increases in 
fitness computation. To maintain the desired parallelism, we 
wanted the evolution (selection, crossover, mutation) to be 
decentralized.  This would allow the system to be 
asynchronous, which is important since some trials can take 
ten times longer than others.  

In addition to speed considerations, we required 
reasonable agents for opponents.  They needed to be 
progressively better as our learning agents developed.  Co-
evolution between two populations was an option, but would 
require additional computation time to evolve the second 
population.  The system that we developed, which we refer 
to as the Core, addresses this issue with no additional 
computation time by creating an environment where the 
other agents in the learning population are opponents who 
are constantly increasing in their capabilities.  In this way, 
the environment as a whole is co-evolving with the 
individual agents who are learning in it.  The Core also 
allows us to avoid developing a fitness function to achieve 
the desired behavior since fitness is determined solely by 
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how well the agent fights in the environment.  These factors 
combine to make a unique learning environment that 
produces excellent results. 

In this paper, we report the advancement of our previous 
work through the use of the Core to learn controllers for 
Xpilot agents.  The development of this a unique parallel 
learning environment was in response to the difficulties we 
found in using the standard system for evolution.  This paper 
will present details of the Core’s implementation and will 
show the results of a test conducted where a cyclic control 
program for an autonomous combat agent was evolved. 

II. THE CORE 

A. Description 
The Core is a large virtual arena in which a population of 

Xpilot agents can learn combat controllers.  It is a parallel 
system that accommodates several participating computers. 
Because Xpilot servers are designed to allow for a wide 

variety of capabilities, the client computers do not have to be 
equivalent in capabilities.  A client computer’s capabilities 
merely dictate the number of clients that can be run 
concurrently on that computer.  However, since each client 
is an autonomous entity in itself, no coordination in the 
number of clients run on each computer is required.  It is 
plausible, with a fast connection, that computers anywhere 
in the world could be contributing clients to the Core. The 
computer acting as the server can also have a limitation.  
This limitation is placed on the system by the hardware and 
operating system on which the Xpilot server runs.  However, 
as hardware becomes faster, more clients will be able to 
concurrently connect.  The Core has a spatially-distributed 
population.  Parameters within the system can be adjusted to 
keep newly produced offspring in the local area or disperse 
them anywhere in the environment. The Core’s type of 
parallelism would most closely identify it with a fine-
grained parallel GA that is asynchronous [9,10].   

 
Fig. 1.  A radar screenshot of the populated Core.  The white dots are individual agents; most of which are engaged in 
combat.  Many more agents are dead and waiting to appear, so do not show on the map. 

 



 
 

 

 

 
Fig. 2.  A view of the action in the Core.  Here Teuber1 is firing at Bigjim19.  The strange characters atop are the encoded chromosome of Bigjim25, who 
recently killed Teuber1, being passed over the player-to-player messaging system. 

 
 
The Core area for competition is a large 256x256 tiled 

map (Figure 1).  Each tile is about 3 times the area of a ship.  
Each of the four quadrants of the map has a unique terrain in 
order to represent multiple combat environments.  The top 
left quadrant has fingers of walls with an open space in the 
center, the top right quadrant has fingers with no large 
space, the bottom left quadrant is cluttered with small 
asteroid-like chunks of walls, and the bottom right quadrant 
has just a few dots of walls and mostly open space.  Bases, 
where a player or agent may appear upon a new life, are 
scattered in the center of each quadrant.  The four quadrants 
collect towards the center where there is a large circle of 
empty space.  Combatants within each quadrant interact 
mostly with agents within that quadrant, but also interact 
with the agents in adjacent quadrants at the borders and the 
central empty space.   

When a client first joins the Core, the client generates a 
random chromosome to control the agent.  Therefore, when 
the Core is first loaded the entire population is made of 
agents with random chromosomes.  Whenever an agent dies, 
its ship disappears from the map for about 32 frames, then it 
reappears in a new starting location, and the agent lives 
again.  In our current experiments, this new starting position 
is randomly generated.  This is intended to train for a 
generalized solution. However, it is possible to keep the 
agent in its local area. One possibility is to have it always 

reappear within its starting quadrant. This allows for a very 
natural method of niching.   

There are four ways that an agent can die in our current 
system: collision with a wall at sufficient speed, collision 
with another agent, killed by its own shot, or shot by another 
agent.  Of these four deaths, the first three simply result in 
the agent’s death and reappearance in another location; its 
chromosome is unchanged.  However, when it is shot by 
another agent, the dead agent sends a request to the killer 
agent, the killer sends its chromosome to the dead agent, and 
the dead agent performs crossover and mutation between its 
own chromosome and the chromosome of its killer. The 
messages requesting the chromosome and the chromosome 
itself are coded into ASCII and sent directly between the 
agents using the player-to-player text messaging system 
native to Xpilot (Figure 2).  In this way, the agents are not 
dependent on a central system for recombination. 

Using this form of selection and recombination, the 
agents who are more capable of killing other agents spread 
their genes to a larger number of agents than do those agents 
who are less capable of killing.  In turn, the weaker agents 
who are killed, slowly evolve to become as strong as their 
killers, increasing the abilities of the entire population.  By 
crossover and mutation new traits are formed in agents, and 
the traits that make the agent stronger are slowly spread 
across the entire population.  In this way, the agents 



 
 

 

continually increase their individual abilities while the entire 
population continues to evolve to be a more competitive 
learning environment. 
B. Setup 

With modifications, a dedicated Xpilot server is capable 
of hosting a very large number of Xpilot clients (we 
typically run 120).  The normal Xpilot-NG server, which 
accepts a maximum of 32 clients, was modified to accept a 
virtually limitless number of clients.  In addition, the number 
of informative messages that the server sends to its clients, 
such as those about who killed who, or about who switched 
teams, etc. was reduced to a minimum.  These messages are 
not important for the agents in the Core and they use extra 
network bandwidth that is needed to pass chromosome 
information. 

The Xpilot server needs to be on a reasonably fast 
computer running a reliable operating system.  We tested 
several computer / operating system setups to find one 
appropriate for the server.  A Sun AMD Opteron 64 bit and 
a PC with a Pentium IV, both with over 512MB of memory 
were found to be suitable computers. A Sparc Sunblade 
1500, however, was apparently too slow to handle the large 
number of clients.  The operating system for the Xpilot 
server needs to be reliable when handling many concurrent 
network connections.  We tested FreeBSD, Linux, and 
Solaris.  FreeBSD is the most reliable of the three, able to 
host around 130 Xpilot-AI clients at 32 frames per second.  
At the same frame rate Solaris hosts about 115 reliably, and 
Linux, using a 2.6.x kernel with Fedora, could host 122 
clients. For the tests reported in this paper, we ran the 
Xpilot-AI clients on dual processor Xeon computers, each 
with 1-3 Gigabytes of memory.  The graphics of the clients 
were run in a low color-depth X Video Frambuffer (Xvfb) 
rather than on the graphics display, to reduce the strain on 
the CPU.  With these computers and settings we ran about 
25 clients on each computer.  Four or five computers were 
sufficient to populate the Core. 

C. Learning 
The Core can accommodate most any type of 

evolutionary computation for the agent controller learning 
system.  For the research reported in this paper, we used a 
multi-loop cyclic genetic algorithm (CGA).  The original 
CGA [11] was developed to learn a single loop control 
program for locomotion in hexapod robots.  It is a 
modification of the standard GA in that the genes (logical 
groupings of bits) represent tasks to be completed in a set 
amount of time as opposed to traits of the solution.  Using a 
CGA, single-loop control programs with variable lengths 
could be evolved.  In further research [12], the CGA was 
expanded to be capable of evolving multiple loop programs 
(allowing conditionals) and was employed to learn the 
control program for a robot with light and touch sensors.   

The CGA used for the research reported in this paper is 
unique.  The chromosome is made of 16 loops, with 8 genes 

per loop and 8 bits per gene.  Each loop has a set of 
conditionals directing the program execution and a set of 
instructions directing the agent’s actions (Figure 3).  The last 
five genes in each loop are devoted to controlling the actions 
of the ship.  While the agent’s control program is in that 
particular loop, it will cycle through these five action genes 
frame by frame, performing the actions as instructed by the 
genes.  The first bit in the action gene instructs the ship 
whether or not to thrust.  The second bit, whether or not to 
shoot.  Three bits instruct the ship’s quantity of turn and 
three bits correspond with where to turn, such as from the 
nearest enemy or towards the nearest wall.   

Fig. 3. Diagram of an example single loop of the 16 total.  The first three 
genes are devoted to conditionals, which if true, results in a jump 
corresponding to that conditional.  The 5 action genes are cycled through 
frame-by-frame to control the ship. 

 
The first three genes of each loop are devoted 

conditionals which instruct the agent’s program if it should 
jump out of the current loop into a new loop.  Each 
conditional consists of four bits (half a gene) and 
corresponds to one of sixteen conditions about the 
environment, such as “agent velocity > 10” or “enemy 
distance < 100”. Each of the conditionals has a 
corresponding loop, which the program control will jump to 
if the condition is true.  Between every frame, before the 
agent’s control program executes an action, it checks all the 
conditionals for whatever loop it is in and jumps to the 
corresponding loop of the first conditional that is true, or if 
none are true, continues with the next action gene in its 
current loop.  To give the conditionals more versatility, we 
turn the first four bits of the first gene into AND bits.  The 
first AND bit will act as an AND between the first two 
conditionals.  If all the AND bits are enabled, then all five 
conditionals will be AND’ed together and the program will 
not jump out of that loop unless all are true.  If an entire 
series of AND’s are true, then the program will jump to the 
loop that corresponds with the last conditional. 

D. Adjustments 
The goal is to evolve controllers that equip the Xpilot 

agents to excel at general combat. Genetic algorithms often 
find ways to exploit the fitness function so that good 
fitnesses result without the agent achieving the intended 
behavior.  The Core does not have a “fitness function”, but 
the setup of the map and rules of play have an enormous 
impact on the evolved behavior of the agents.  For example, 



 
 

 

our first tests of the Core gave the agents almost no reason 
to avoid crashing into the walls, so thrusting toward a wall 
was actually a good strategy to avoid being shot.  Being shot 
resulted in a chromosome change, whereas dying in a wall 
crash did not.  Consequently, the entire population soon 
became fast-flying agents that were not concerned with 
dying in wall collisions.  

For the tests reported in this paper, we handled the 
learning agents’ propensity for wall-collision deaths by 
penalizing them upon being reborn after a wall collision.  If 
an agent collides with a wall, that agent then reappears, like 
normal, at a random starting location, but instead of being 
allowed to fly immediately, it must sit motionless for a 
certain amount of time.  During this penalty time the agent is 
defenseless against any enemy opponents and makes easy 
prey for any nearby ships.  This effectively weeds out from 
the population those agents that carelessly collide with 
walls.  

E. Previous Work Relevant to the Core 
Although the Core has only one population, we consider 

it to be competitive co-evolution.  Instead of two distinct 
populations, it has an environment that is constantly 
evolving to be more hostile to the individual agents within 
it.  Significant work has been done in the field of 
competitive co-evolution by several researchers 
[13,14,15,16,17].  One of the important issues with 
competitive co-evolution is the problem of having one 
population dominate the other [13,17] resulting in stalled 
evolution.  This is not an issue with the Core.  The body of 
agents making up the environment for testing individual 
agents cannot evolve to be constantly superior to the 
individual agents since it is made up of those individuals.  
On the other hand, individual agents that evolve to be 
superior pass their genes on to defeated foes and their traits 
eventually spread throughout the population resulting in a 
more challenging environment.  

Using a fitness function that is a property of the 
environment as opposed to a predefined fitness function has 
been used in Alife simulations [18,19].  This is also a 
property of embodied evolution [20] used in evolutionary 
robotics.  In this system, robots attain a virtual energy level 
that corresponds to their performance in completing an 
assigned task.  They transmit their chromosomes with a rate 
proportional to their energy level and receiving robots 
accept it at a rate inversely proportional to their energy level.  
Upon acceptance, the receiving robot crosses it with its own 
chromosome producing a new controller, which overwrites 
its current controller. Tournament selection using only two 
opponents with the least fit being replaced by the 
recombination of the two was found to be a successful 
strategy (Microbial method) by Harvey [21].  We use a 
similar method in the Core.  When an agent kills another 
agent, its chromosome is passed to that agent’s client.  The 
client crosses the victor’s chromosome with that of the 

defeated agent’s chromosome, producing a new agent that is 
sent back into the Core for continued learning. 

III. TESTING THE CORE 
Recording the fitness growth of individuals in the Core is 

a unique issue.  Since there is no fitness function, it is 
difficult to measure the success of the evolution, even 
though one can visually observe that the agents have 
significantly improved in their development of effective 
strategies.  Their success cannot be measured by their time 
alive or by their number of kills in the Core.  An individual 
agent’s competitors increase their ability to kill and avoid 
being killed as the agent increases its ability to do the same.  
The fitness of the agents from the Core must therefore be 
judged by their ability to fight some standard opponent, 
whose behavior remains the same over time.  This can be 
accomplished in one of two ways: introduce standard 
opponents into the Core, or remove agents from the Core to 
fight standard agents in a new arena.  For the tests reported 
in this paper we have recreated a smaller version of the 
Core, approximately one fourth the size, and populated it 
with 12 enemy bots.  Rather than sticking one particular type 
of enemy bot into the test map, we use controllers saved 
from random agents pulled from the Core at equal intervals 
of time.  The enemy bots in the miniature Core do not 
evolve or learn, so they effectively reproduce the average 
conditions experienced by the agents throughout their lives 
in the Core. 

The Core was allowed to run for 24 hours.  The clients 
saved each agent’s chromosome to file every 30 minutes, so 
48 chromosomes were saved for each agent in the Core.  We 
randomly picked five individuals from each saved 
population and tested each in a separate miniature Core.  In 
this way, we tested every chromosome of the 48 saved for 
each individual.  Each chromosome was allowed control of a 
ship until it had been killed by an enemy ship ten times.  As 
it was in the Core, if the agent crashed into a wall, it was 
penalized upon its next life, being forced to sit motionless 
for an extent of time, but a wall collision did not count as 
one of the ten deaths.  We recorded the number of times the 
agent killed the enemy and how many times the agent 
crashed into a wall over the span of its ten lives.  This gave 
us a clear idea of the general improvement in behavior and 
efficiency of killing for the agents in the Core over time. 

IV. RESULTS 
The agents in the Core clearly show visible improvement 

over the 24 hour test.  The number of kills per ten lives 
(Figure 4) improved over time in the miniature Core 
simulation.  The number of times the agents crashed into the 
walls over time (Figure 5) also was reduced as the agents 
learned more conservative thrusting patterns. 

 
 
 



 
 

 

Behavior in the Core was never completely homogenous; 
the average of the agents grew better over time, but there 
were always some with superior controllers and others with 
poor controllers.  Some agents became good aimers, others 
perfected a style of wall-crashing, and still others had an 
inferior strategy because of a bad mutation or detrimental 
crossover.  Since the 5 agents tested in the miniature Core 
were a random sampling taken every 30 minutes, some of 
the chromosomes sampled at the 30 minute intervals were 
less or more intelligent than the average.  For this reason, 
the graphs spike up and down.  However, they show overall 
improvement, mirroring the general improvement of the 
population.   

The improvement in behavior of the agents can also be 
visibly seen by watching them fight in the Core.  When first 
started, the majority of the population flew wildly about the 
map, some shooting, some turning, and mostly all dying 
very quickly by a wall collision.  After a time, those who 
were flying less quickly, and those who had some ability to 
aim at the enemy, began to kill more than the others, and 
their genes began to spread across the map.  Soon everyone 
was flying more slowly and aiming more.  Eventually the 
Core was dominated mostly by ships that would merely aim 
and shoot at the nearest enemy, not attempting to avoid an 

oncoming wall or dodge an enemy bullet.  Very rarely one of 
the agents appeared to be consistently thrusting away from 
oncoming walls, but after being killed by a less advanced 
agent, it would lose that ability, and apparently it did not 
spread its genes successfully enough while still alive for the 
entire population to learn the trait.  By the end of the Core 
test, many of the agents had learned to slowly thrust while 
they were aiming and shooting at the nearest ship.  Their 
acceleration was only about double the backwards 
acceleration caused by firing bullets, so their flight was slow 
enough to put them in no major danger of dying from 
crashing into a wall and fast enough to make them a more 
difficult target to shoot. 

Just as the entire population visibly evolves over time, a 
new random agent placed into a mature Core also visibly 
evolves over a span of a few minutes.  When it first joins, it 
appears to fly in unintelligent flight patterns, usually not 
heeding the enemy opponents.  Then, after it is shot by an 
enemy, it changes into a strange mix of its previous wild 
behavior combined with a faint ability to aim at the enemy.  
After a few more deaths from the more advanced enemies, it 
becomes nearly indistinguishable from the other agents in 
the Core. 
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Fig. 4.  Results of 5 tests showing enemy kills per 10 lives.  All 5 tests are shown as points; the average is shown as a solid line.   
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Fig. 5.  Results of 5 tests showing fatal wall crashes per 10 lives.  All 5 tests are shown as points; the average is shown as a solid line.   
 

 
 

V. CONCLUSIONS 
Xpilot offers a challenging environment for testing 

learning systems for autonomous agents. The Core allows 
the researcher the flexibility of evolving a controller that 
will be useful in the wide variety of available combat 
environments.  It avoids the need for the creation of a fitness 
function that adequately tests the large number of tasks in 
general combat and an environment populated with hand-
coded opponents that reliably test the agent.  The Core is 
highly parallel, employs simple single population co-
evolution, and can be run on several dissimilar computers.  
Tests show that it is effective for evolving robust combat 
agents in the Xpilot environment.   

There are several modifications that can be made to the 
Core which change its characteristics. The rules of play, the 
map, and the clients can be altered to change the nature of 
the evolved controllers. In future work, we will investigate 
where multiple species of agents compete against one 
another, fighting to become the dominant population in the 
Core.  The idea of the Core could have general applicability 
to the evolution of competitive agents, including the 
evolution of non-combatant agents such as controllers for 
racing cars.  In a Core like environment, the dominant cars 

can send their chromosome to the less successful cars as 
they are lapped.   

Tests show that the Core is a suitable method for evolving 
combat agents in Xpilot.  Future work will expand its use 
with other forms of evolutionary computation and test its 
general applicability in the evolution of controllers for 
competitive agents. 
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