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Abstract- Simulated evolution by the use of Genetic 
Algorithms (GA) is presented as the solution to a two-
faceted problem: the challenge for an autonomous 
agent to learn the reactive component of multiple 
survival strategies, while simultaneously determining 
the relative importance of these strategies as the agent 
encounters changing multivariate obstacles. The 
agent’s ultimate purpose is to prolong its survival; it 
must learn to navigate its space avoiding obstacles 
while engaged in combat with an opposing agent.  The 
GA learned rule-based controller significantly 
improved the agent’s survivability in the hostile Xpilot 
environment.      

1 Introduction 

In this paper we present the implementation of a Genetic 
Algorithm (GA) to evolve behavior for a simulated robot 
(agent) in the flight game Xpilot.  Specifically, the 
algorithm was used to evolve the behavior of the robot 
when encountering such obstacles as walls, enemy craft 
and incoming enemy fire.  The ability to simulate the 
learning of autonomous agents is important for the 
development of independent robots.   

Several researchers have used simulations to evolve 
navigation behaviors for robots.  One example is Allen 
Schultz from the Naval Research Lab.  Schulz (1994) 
used a GA to evolve behavior for a simulated robot to 
navigate a course of obstacles to within a certain radius of 
a given goal.  The Xpilot project differs in that there is no 
physical goal, but rather the goal is to navigate without 
hitting an obstacle or falling to a “predator robot” for as 
long as possible.  Unlike Schultz’s experiment, any 
contact with an obstacle will result in the termination of 
the controlling chromosome’s “life” in this experiment.  
In an earlier work, Schultz (1991) used a GA to develop a 
set of decisions for navigating a simulated autonomous 
underwater vehicle (AUV) through a mine field.  
Simulation of an AUV is closely related to the experiment 
described in this paper, as contact with a mine by the 
AUV would result in a failure.  Though both the AUV 
and the Xpilot robot must avoid collisions, the 

experiments differ as the Xpilot robot must also evade or 
eliminate an aggressive enemy robot in this experiment, 
while the AUV is constrained by a time limit and a 
geographic goal that it must reach.   

Several researchers have used evolutionary 
computation for learning games.  Much of this work was 
in developing strategies for board games such as checkers 
(Fogel, 2002) and go (Konidaris, Shell, & Oren, 2002) or 
for the prisoner’s dilemma problem (Hingston & Kendall, 
2004). 

Researchers have also used computer games to evolve 
the control of autonomous agents.  One example is the 
work done by Yannakakis and Hallam (2004), who 
explored learning predator strategies for agents in a 
version of “Pac-Man.”  While they concentrated on 
evolving the behavior of a group of 4 predators, the 
research presented in this paper aims at learning 
reactionary behavior for one agent under constant attack 
from a single enemy.  Furthermore, Yannakakis and 
Hallam were interested foremost in what characteristics of 
a video game opponent would increase excitement and 
entertainment value. Evolutionary computation has also 
been used to allow an agent to decide upon weaponry and 
learn behaviors in the first person shooter Counter-Strike 
(Cole, Louis & Miles, 2004) and how to move a light-
cycle in the game of Tron (Fumes & Pollack, 2000). 

An unpublished online paper was the only previous 
research found which evolved behavior for robots in 
Xpilot (Funes).  This heuristic system evolved to 
ultimately one behavior of six possible: firing at the 
nearest enemy.  For our research, we sought to allow the 
robot to learn multiple behaviors for various situations 
which may overlap and determine the relative importance 
of the situations. 

The hope is for this project to advance the use of 
computational intelligence, and specifically GAs, in areas 
of adaptive robotics requiring multiple strategies to be 
learned simultaneously.  The robot used in this research is 
capable of learning to react in numerous situations 
involving obstacles, enemy fire and enemy craft.  This 
paper also highlights the capabilities of evolutionary 
computation for video game and simulation technology. 

 



2 The Problem 

2.1 Xpilot 
Xpilot is a 2-dimensional flight simulation game written 
in the C programming language in which multiple robots 
can compete (See Figures 1 & 2).  The game is open 
source, which makes it possible to modify the program to 
introduce a learning component.  Xpilot is playable over 
the internet, and players control their ships using the 
keyboard or mouse.  The design uses a client and a server 

to support multiple players, and has many variables for 
weapon and ship upgrades, map settings, team play, etc.   
By parsing variables used by Xpilot such as velocity and 
position, and through the addition of a GA, principles of 
evolution can be used to learn the consequents for the 
rules of a rule based system to control the behaviors of 
robots in the game.  The rule based system uses the AI 
interface to simulate keystrokes, and thus to control the 
agent.   

 
 

 

Figure 1: The Robot evading the predator “Clyde” during a trial run.  The specks in the vicinity of both agents indicate 
emissions from their thrusters. 

2.2 The Arena 
An Xpilot robot was placed in a specific scenario within 
the game, where it was forced to learn reactions to 
possible conditions in order to survive.  The robot was 
placed in a square “arena” enclosed by 60 blocks on each 
side (Figure 2).  Each square was comprised of 35 pixels 
on a side.  In addition to the surrounding walls, the arena 
contained a horizontal bar 1 block high and 17 blocks in 
length across the middle of the grid (Figure 1), 32 blocks 
from the bottom boundary.  The robot shared this space 
with a “predator” robot.  This enemy robot was controlled 
by the computer intelligence native to Xpilot.  The 
evolving robot started each run near the bottom left-hand 
corner of the map.  The predator started near the bottom 

right-hand corner.  Whenever one of the robots crashed or 
was shot, it was regenerated at its starting location.  In 
addition to evading the opposing agent, the learning robot 
needed to evolve its flight, avoiding the external walls 
and the single internal wall.   

The central horizontal wall was used so that the robot 
could learn to “hide” if it so desired, and to provide 
further challenges in learning navigation.  The robot thus 
had the possibility of learning to stalk or evade its enemy.  
The problem was to have the robot’s “intelligence,” 
which was imbedded in the chromosomes, evolve to 
allow the robot to survive as long as possible without 
crashing or being shot.  This was measured in the number 
of frames the robot survived.  To shorten run time for the 



GA, all runs were performed in servers running at the 
maximum rate of 100 frames per second (fps), which is 
about six times faster than normal play. 

 

  

Figure 2: The mini-map inset to Xpilot, showing the 
relative positions of the robots from Figure 1. 

3 Learning the Controller 

A set of 16 conditions important for reasonable play were 
developed.  These included conditions dealing with the 
ship’s position relative to walls, the enemy ship, and 
hostile fire.  A binary coding was developed to represent 
the possible responses that were to be learned by the GA.  
In addition, the GA learned the pointers of theses 
different rules to resolve conflicts if more than one fired 
at the same time.   

A population of 128 random chromosomes was 
generated initially.  The robot is represented by 
chromosomes of 16 genes.  Each gene is represented as a 
segment of 14 bits, with a value of either 0 or 1; thus, a 
chromosome is comprised of 224 bits (See Figure 3).  
Each 14-bit gene contains information for how the robot 
should behave in each of 16 different cases which serve 
as antecedents for a rule based system.    

3.1 The Rules 
The 16 cases were isolated as critical situations for the 
robot to learn reactions for.  When the criteria for the 
antecedent case are reached, the rule fires and the 
corresponding gene representing the consequent 
component of the system is accessible. The nature of the 
16 rules allows for more than 1 rule to fire in each frame.  
For this reason, a priority system is used to allow the 
agent to decide between rules.  To allow the robot to learn 
an optimal balance of rule priorities, the priority for each 
rule is embedded in the corresponding gene.  The first 5 
bits of each gene encode its priority from 0 – 31.  When 
multiple rules fire, the gene with the highest priority will 

be used to control the robot.  In case of ties, one of the 
tied rules will be chosen at random, but progression of the 
GA learning should limit this possibility in critical cases.  
The 16 rule antecedents are: 
 
1. Agent is approaching wall and is very close to wall. 
2. Agent is approaching wall and somewhat close to 
wall. 
3. Agent is approaching wall and at a moderate distance 
from wall. 
4. Agent is approaching wall at any distance and a bullet 
is incoming. 
5. Agent is approaching wall at any distance and an 
enemy is close and closing. 
6. Agent is approaching wall at any distance and an 
enemy is close but not closing. 
7. Bullet is incoming and very close to striking. 
8. Enemy is close and incoming bullet is close. 
9. Enemy is at a medium to far range and incoming bullet 
is close. 
10. Enemy is detected medium to close. 
11. Enemy is detected medium to far. 
12. Agent is entering a corner clockwise. 
13. Agent is entering a corner counterclockwise. 
14. Agent detects no walls, bullets or enemy agents. 
15. Wall detected 90° to left of agent. 
16. Wall detected 90° to right of agent. 
 

All distance values such as “close” and “medium” are 
not fuzzy sets, but discrete values to the robot, within the 
range of 0 to 150 pixels from the robot.   Cases 12 and 13 
are somewhat different in nature from many of the other 
antecedents.  They are accessed anytime two different 
walls are detected in consecutive frames, indicating that 
the robot is flying into a corner.  The robot can detect one 
wall in a frame, and in the following frame detect either 
the wall clockwise or counterclockwise from the first 
wall; thus there are only 2 cases.  The final 2 antecedents 
fire when a wall is detected directly to the right or left of 
the robot and are present to allow the robot to consider its 
surroundings before evading an enemy craft or bullet. 

3.2 Xpilot Chromosome 
The chromosome is made up of 16 genes, each having 14 
bits.  The first 5 bits of the gene determine the rule’s 
priority as discussed in the previous section.  The next 4 
bits of a gene encode the number of degrees the robot 
should turn, from 0 to 15.  In some cases, the robot is 
allowed the option to make its turn relative to an enemy 
or bullet and in these cases it may also use these bits to 
adjust within 0 to 15 degrees of the target direction.  The 
10th and 11th bits determine whether or not the robot fires 
its weapon and whether or not it uses its thruster, 
respectively.  The final 3 bits are not all used in all the 
cases, and vary somewhat in their function.  For example, 
in the first three rules the bits allow the agent to choose 
between turning based on the turn bits, turning 90 degrees 
to the wall either direction, or 180 degrees from the wall.  
The robot can only turn 15 degrees in one frame, but will 
continue to turn at this maximum rate each frame as long 



as that rule continues to fire.   In other rules, the bits allow 
the agent to turn directly towards or away from a bullet or 
enemy (limited to a maximum turn rate of 15), or decide 
between a left and right turn. 
 
 

 

Figure 3:  Sample chromosome used to encode the 
priorities (first 5 bits) and reactionary part (remaining 9 
bits) of rule system. 

 
In the cases when no enemy or bullet is present and the 

robot is approaching a wall, it is able to discern the turn it 
can make with the greater angle perpendicular to the wall; 
i.e. it recognizes the “easier turn” (See Figure 4). It uses 
one of the final 3 bits of the gene to decide whether or not 
to make the turn with the least chance of striking the wall.  
If it does not use this ability, it accesses another of the 
final 3 bits which is dedicated to deciding which way to 
turn.   

 
 

 

Figure 4: Agent making easier turn based on angle of 
approach to wall. 

3.3  Genetic Operators 
Each chromosome is tested separately, and the number of 
frames it survives is stored.  The number of frames each 
chromosome survives is squared and this number is stored 
as the individual’s fitness.  The total fitness of the 
population is stored so that it can be accessed up to any 
point in the trial of that population.  Roulette wheel 
selection as described by Goldberg is used to choose 
parents for crossover (Goldberg 1989).  

Two forms of crossover are employed to generate a 
new population.  When two individuals are chosen for 
crossover, there is an even chance that they will be 
combined using either inter-gene crossover or intra-gene 
crossover.  If inter-gene crossover is utilized, then for 
each 14-bit gene, the gene from one of the two parents is 
chosen at random and copied to the offspring.  This 
allows optimal genes for specific scenarios to be kept 
intact.  If intra-gene crossover is selected, then for each 
bit of each gene, the bit at that spot is copied at random 
from one of the two parents.  This allows for greater 
diversification.  Each bit also has a chance of mutation; 
there is a one in three hundred chance of each bit being 
flipped, regardless of the type of crossover used. 

The best chromosome from each generation is saved to 
a data file, along with the number of frames it lived and 
its fitness.  Additionally, the average fitness of every 5th 
generation is stored for analysis of fitness growth.   

Although the default frame rate for Xpilot is 16 
frames/sec, the trials are conducted at the maximum rate 
of 100 frames/sec to decrease the length of the runs.  
Despite the increase in frame rate, each trial takes several 
days to complete. 

The enemy robot does not effectively search the entire 
arena for the evolving robot.  As this experiment aims to 
evolve the behavior of an agent in constant conflict with 
another agent, the evolving Xpilot robot is forced to thrust 
any time that its velocity is equal to zero.  In effect, the 
robot will drift slowly about the arena if no rule fires that 
will force it to move more rapidly.  This increases the 
possibility of interaction, as the agent cannot merely rest 
in a corner, but it allows the agent to more often behave in 
reaction to its enemy.  The ability of the agent to return 
fire at its enemy serves to balance its forced movement, 
plus it has the ability to retreat when it detects its enemy. 

4 Results 

The results of the trials were highly successful.  Five test 
runs that were started with randomly generated 
populations were performed for 145 generations.   The 
average survival frames (fitness) for every fifth 
generation of each run is shown in Figure 5.   

The enemy-harried robot evolved from an average life 
of 82.61 frames to a maximum average lifetime of 265.50 
frames in the 130th generation, averaged across all runs.  
The best individual chromosome from the 5 runs lasted 
2507 frames in the 117th generation of run 4.  At the 
normal Xpilot frame rate of 16 frames per second, the 



maximum average life would correspond to 16.59 
seconds, with the best chromosome lasting 156.69 
seconds.   

In all five runs, the robot evolved wall-avoidance 
behavior that appears near-optimal.  The robot coasts 
through its environment until it approaches a wall.  When 
it first detects the wall, it will begin to turn slightly, as 
dictated by gene 3.  It continues to turn as it nears the 
wall, and when the robot is close enough to the wall to 
fall under the jurisdiction of gene 1, it turns as much as 
possible away from the wall, and uses a short burst of 
thrust.  In this way the robot appears to “bounce” off the 
wall.  This burst propels it away from the wall, and it 
again allows itself to drift. 

The robot thus showed marked improvement in its 
ability to successfully navigate the arena.  The robot 
exhibits a variety of behaviors when encountering its 
enemy.  In some chromosomes the robot continues to drift 

but pivots to face the enemy craft so that it might fire 
upon the enemy robot.  In others it thrusts to engage the 
enemy toe-to-toe, or circles the enemy while firing.   

In one run, the robot learned more successful behavior.  
The robot learned to constantly thrust, flying in quick 
counterclockwise circles around the arena.  As it moved, 
it would continually adjust its aim to point towards the 
center of the arena.  When the enemy would be detected, 
the robot would continue its motion but adjusts its aim to 
fire at the enemy agent.  This behavior was very 
successful for evading enemy attacks while returning fire.  
The usual cause of the agent’s death in this run was that 
after the agent would kill the enemy agent, the enemy 
would restart in the corner behind the circling robot.  If 
the swooping robot were to pass by as the enemy 
restarted, it was unable to change its motion or turn fast 
enough to return fire.   
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Figure 5: The results of evolving rule consequents and priorities for Xpilot simulated robot controllers.  The average 
population fitness is shown for each of 5 test runs with the average of the 5 runs shown in bold.  

5 Conclusions 

Based upon the results of the experiment, a GA can be 
used to simultaneously evolve multiple survival strategies 
and their relative priorities for an autonomous robot 
operating in the Xpilot environment.  In the later portions 
of the runs, the GA driven robot was more successful at 

dispatching its enemy than was the enemy robot.  Survival 
attempts were somewhat frustrated by the enemy robot’s 
willingness to sacrifice its own life and crash into the GA 
driven robot.  If the robot was allowed to remain 
stationary it might live longer, though it is probable that it 
would be unable to accelerate sufficiently to avoid enemy 
fire.  If given a larger number of possible behaviors, 
particularly for attacking its enemy, and the ability to 



more finely adjust its motion, we speculate that the robot 
could survive significantly longer in the arena.  The robot 
has the capability to predict where the enemy will be 
within a few frames and aim for that point, but if it were 
given more genes involving an enemy robot it might be 
able to evolve more complex attack patterns.  Currently, 
the robot will not seek out its enemy; it will engage it only 
as a defensive maneuver as the enemy enters within a 
certain range. Adding a “fitness bonus” to chromosomes 
that successfully defeat the enemy robot might encourage 
that trend in evolution, and ultimately lead to longer 
average lifespans.   More complex attack patterns and the 
option to be the aggressor might allow the intelligent 
robot to be a successful predator, rather than a prey 
relying on evasion and self-defense.   

Several possibilities exist for future research.  
Although the enemy was generally the cause of death for 
the evolving robot in the battle arena, it was not always 
directly so; at times the fleeing robot would fly into a 
wall.  The robot might perform more successfully if it 
were granted the ability to map the entire arena, rather 
than merely detecting obstacles in its flight path or off its 
flanks.  Better results might also be achieved if navigation 
genes were evolved in an environment free of enemies, 
and then placed in the chromosomes of a robot in a battle 
arena.  This same concept could be used to evolve the 
robot in an arena with stationary enemies, to allow the 
robot to more highly evolve its ability to evade shots.  A 
scenario in which several robots evolved simultaneously 
would open up many possibilities, such as evolution of 
predator/prey roles, and the possibility for evolving 
coordinated attacks as a “pack.”   
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