
Evolution and Prioritization of Survival Strategies
for a Simulated Robot in Xpilot

Gary B. Parker
Computer Science

Connecticut College
New London, CT 06320

parker@conncoll.edu

Timothy S. Doherty
Computer Science

Connecticut College
New London, CT 06320

tsdoh@conncoll.edu

Matt Parker
Computer Science Department

Indiana University
Bloomington, IN 47405
matparke@indiana.edu

Abstract- Simulated evolution by the use of Genetic
Algorithms (GA) is presented as the solution to a two-
faceted problem: the challenge for an autonomous
agent to learn the reactive component of multiple
survival strategies, while simultaneously determining
the relative importance of these strategies as the agent
encounters changing multivariate obstacles. The
agent’s ultimate purpose is to prolong its survival; it
must learn to navigate its space avoiding obstacles
while engaged in combat with an opposing agent. The
GA learned rule-based controller significantly
improved the agent’s survivability in the hostile Xpilot
environment.

1 Introduction

In this paper we present the implementation of a Genetic
Algorithm (GA) to evolve behavior for a simulated robot
(agent) in the flight game Xpilot. Specifically, the
algorithm was used to evolve the behavior of the robot
when encountering such obstacles as walls, enemy craft
and incoming enemy fire. The ability to simulate the
learning of autonomous agents is important for the
development of independent robots.

Several researchers have used simulations to evolve
navigation behaviors for robots. One example is Allen
Schultz from the Naval Research Lab. Schulz (1994)
used a GA to evolve behavior for a simulated robot to
navigate a course of obstacles to within a certain radius of
a given goal. The Xpilot project differs in that there is no
physical goal, but rather the goal is to navigate without
hitting an obstacle or falling to a “predator robot” for as
long as possible. Unlike Schultz’s experiment, any
contact with an obstacle will result in the termination of
the controlling chromosome’s “life” in this experiment.
In an earlier work, Schultz (1991) used a GA to develop a
set of decisions for navigating a simulated autonomous
underwater vehicle (AUV) through a mine field.
Simulation of an AUV is closely related to the experiment
described in this paper, as contact with a mine by the
AUV would result in a failure. Though both the AUV
and the Xpilot robot must avoid collisions, the

experiments differ as the Xpilot robot must also evade or
eliminate an aggressive enemy robot in this experiment,
while the AUV is constrained by a time limit and a
geographic goal that it must reach.

Several researchers have used evolutionary
computation for learning games. Much of this work was
in developing strategies for board games such as checkers
(Fogel, 2002) and go (Konidaris, Shell, & Oren, 2002) or
for the prisoner’s dilemma problem (Hingston & Kendall,
2004).

Researchers have also used computer games to evolve
the control of autonomous agents. One example is the
work done by Yannakakis and Hallam (2004), who
explored learning predator strategies for agents in a
version of “Pac-Man.” While they concentrated on
evolving the behavior of a group of 4 predators, the
research presented in this paper aims at learning
reactionary behavior for one agent under constant attack
from a single enemy. Furthermore, Yannakakis and
Hallam were interested foremost in what characteristics of
a video game opponent would increase excitement and
entertainment value. Evolutionary computation has also
been used to allow an agent to decide upon weaponry and
learn behaviors in the first person shooter Counter-Strike
(Cole, Louis & Miles, 2004) and how to move a light-
cycle in the game of Tron (Fumes & Pollack, 2000).

An unpublished online paper was the only previous
research found which evolved behavior for robots in
Xpilot (Funes). This heuristic system evolved to
ultimately one behavior of six possible: firing at the
nearest enemy. For our research, we sought to allow the
robot to learn multiple behaviors for various situations
which may overlap and determine the relative importance
of the situations.

The hope is for this project to advance the use of
computational intelligence, and specifically GAs, in areas
of adaptive robotics requiring multiple strategies to be
learned simultaneously. The robot used in this research is
capable of learning to react in numerous situations
involving obstacles, enemy fire and enemy craft. This
paper also highlights the capabilities of evolutionary
computation for video game and simulation technology.

2 The Problem

2.1 Xpilot
Xpilot is a 2-dimensional flight simulation game written
in the C programming language in which multiple robots
can compete (See Figures 1 & 2). The game is open
source, which makes it possible to modify the program to
introduce a learning component. Xpilot is playable over
the internet, and players control their ships using the
keyboard or mouse. The design uses a client and a server

to support multiple players, and has many variables for
weapon and ship upgrades, map settings, team play, etc.
By parsing variables used by Xpilot such as velocity and
position, and through the addition of a GA, principles of
evolution can be used to learn the consequents for the
rules of a rule based system to control the behaviors of
robots in the game. The rule based system uses the AI
interface to simulate keystrokes, and thus to control the
agent.

Figure 1: The Robot evading the predator “Clyde” during a trial run. The specks in the vicinity of both agents indicate
emissions from their thrusters.

2.2 The Arena
An Xpilot robot was placed in a specific scenario within
the game, where it was forced to learn reactions to
possible conditions in order to survive. The robot was
placed in a square “arena” enclosed by 60 blocks on each
side (Figure 2). Each square was comprised of 35 pixels
on a side. In addition to the surrounding walls, the arena
contained a horizontal bar 1 block high and 17 blocks in
length across the middle of the grid (Figure 1), 32 blocks
from the bottom boundary. The robot shared this space
with a “predator” robot. This enemy robot was controlled
by the computer intelligence native to Xpilot. The
evolving robot started each run near the bottom left-hand
corner of the map. The predator started near the bottom

right-hand corner. Whenever one of the robots crashed or
was shot, it was regenerated at its starting location. In
addition to evading the opposing agent, the learning robot
needed to evolve its flight, avoiding the external walls
and the single internal wall.

The central horizontal wall was used so that the robot
could learn to “hide” if it so desired, and to provide
further challenges in learning navigation. The robot thus
had the possibility of learning to stalk or evade its enemy.
The problem was to have the robot’s “intelligence,”
which was imbedded in the chromosomes, evolve to
allow the robot to survive as long as possible without
crashing or being shot. This was measured in the number
of frames the robot survived. To shorten run time for the

GA, all runs were performed in servers running at the
maximum rate of 100 frames per second (fps), which is
about six times faster than normal play.

Figure 2: The mini-map inset to Xpilot, showing the
relative positions of the robots from Figure 1.

3 Learning the Controller

A set of 16 conditions important for reasonable play were
developed. These included conditions dealing with the
ship’s position relative to walls, the enemy ship, and
hostile fire. A binary coding was developed to represent
the possible responses that were to be learned by the GA.
In addition, the GA learned the pointers of theses
different rules to resolve conflicts if more than one fired
at the same time.

A population of 128 random chromosomes was
generated initially. The robot is represented by
chromosomes of 16 genes. Each gene is represented as a
segment of 14 bits, with a value of either 0 or 1; thus, a
chromosome is comprised of 224 bits (See Figure 3).
Each 14-bit gene contains information for how the robot
should behave in each of 16 different cases which serve
as antecedents for a rule based system.

3.1 The Rules
The 16 cases were isolated as critical situations for the
robot to learn reactions for. When the criteria for the
antecedent case are reached, the rule fires and the
corresponding gene representing the consequent
component of the system is accessible. The nature of the
16 rules allows for more than 1 rule to fire in each frame.
For this reason, a priority system is used to allow the
agent to decide between rules. To allow the robot to learn
an optimal balance of rule priorities, the priority for each
rule is embedded in the corresponding gene. The first 5
bits of each gene encode its priority from 0 – 31. When
multiple rules fire, the gene with the highest priority will

be used to control the robot. In case of ties, one of the
tied rules will be chosen at random, but progression of the
GA learning should limit this possibility in critical cases.
The 16 rule antecedents are:

1. Agent is approaching wall and is very close to wall.
2. Agent is approaching wall and somewhat close to
wall.
3. Agent is approaching wall and at a moderate distance
from wall.
4. Agent is approaching wall at any distance and a bullet
is incoming.
5. Agent is approaching wall at any distance and an
enemy is close and closing.
6. Agent is approaching wall at any distance and an
enemy is close but not closing.
7. Bullet is incoming and very close to striking.
8. Enemy is close and incoming bullet is close.
9. Enemy is at a medium to far range and incoming bullet
is close.
10. Enemy is detected medium to close.
11. Enemy is detected medium to far.
12. Agent is entering a corner clockwise.
13. Agent is entering a corner counterclockwise.
14. Agent detects no walls, bullets or enemy agents.
15. Wall detected 90° to left of agent.
16. Wall detected 90° to right of agent.

All distance values such as “close” and “medium” are
not fuzzy sets, but discrete values to the robot, within the
range of 0 to 150 pixels from the robot. Cases 12 and 13
are somewhat different in nature from many of the other
antecedents. They are accessed anytime two different
walls are detected in consecutive frames, indicating that
the robot is flying into a corner. The robot can detect one
wall in a frame, and in the following frame detect either
the wall clockwise or counterclockwise from the first
wall; thus there are only 2 cases. The final 2 antecedents
fire when a wall is detected directly to the right or left of
the robot and are present to allow the robot to consider its
surroundings before evading an enemy craft or bullet.

3.2 Xpilot Chromosome
The chromosome is made up of 16 genes, each having 14
bits. The first 5 bits of the gene determine the rule’s
priority as discussed in the previous section. The next 4
bits of a gene encode the number of degrees the robot
should turn, from 0 to 15. In some cases, the robot is
allowed the option to make its turn relative to an enemy
or bullet and in these cases it may also use these bits to
adjust within 0 to 15 degrees of the target direction. The
10th and 11th bits determine whether or not the robot fires
its weapon and whether or not it uses its thruster,
respectively. The final 3 bits are not all used in all the
cases, and vary somewhat in their function. For example,
in the first three rules the bits allow the agent to choose
between turning based on the turn bits, turning 90 degrees
to the wall either direction, or 180 degrees from the wall.
The robot can only turn 15 degrees in one frame, but will
continue to turn at this maximum rate each frame as long

as that rule continues to fire. In other rules, the bits allow
the agent to turn directly towards or away from a bullet or
enemy (limited to a maximum turn rate of 15), or decide
between a left and right turn.

Figure 3: Sample chromosome used to encode the
priorities (first 5 bits) and reactionary part (remaining 9
bits) of rule system.

In the cases when no enemy or bullet is present and the

robot is approaching a wall, it is able to discern the turn it
can make with the greater angle perpendicular to the wall;
i.e. it recognizes the “easier turn” (See Figure 4). It uses
one of the final 3 bits of the gene to decide whether or not
to make the turn with the least chance of striking the wall.
If it does not use this ability, it accesses another of the
final 3 bits which is dedicated to deciding which way to
turn.

Figure 4: Agent making easier turn based on angle of
approach to wall.

3.3 Genetic Operators
Each chromosome is tested separately, and the number of
frames it survives is stored. The number of frames each
chromosome survives is squared and this number is stored
as the individual’s fitness. The total fitness of the
population is stored so that it can be accessed up to any
point in the trial of that population. Roulette wheel
selection as described by Goldberg is used to choose
parents for crossover (Goldberg 1989).

Two forms of crossover are employed to generate a
new population. When two individuals are chosen for
crossover, there is an even chance that they will be
combined using either inter-gene crossover or intra-gene
crossover. If inter-gene crossover is utilized, then for
each 14-bit gene, the gene from one of the two parents is
chosen at random and copied to the offspring. This
allows optimal genes for specific scenarios to be kept
intact. If intra-gene crossover is selected, then for each
bit of each gene, the bit at that spot is copied at random
from one of the two parents. This allows for greater
diversification. Each bit also has a chance of mutation;
there is a one in three hundred chance of each bit being
flipped, regardless of the type of crossover used.

The best chromosome from each generation is saved to
a data file, along with the number of frames it lived and
its fitness. Additionally, the average fitness of every 5th
generation is stored for analysis of fitness growth.

Although the default frame rate for Xpilot is 16
frames/sec, the trials are conducted at the maximum rate
of 100 frames/sec to decrease the length of the runs.
Despite the increase in frame rate, each trial takes several
days to complete.

The enemy robot does not effectively search the entire
arena for the evolving robot. As this experiment aims to
evolve the behavior of an agent in constant conflict with
another agent, the evolving Xpilot robot is forced to thrust
any time that its velocity is equal to zero. In effect, the
robot will drift slowly about the arena if no rule fires that
will force it to move more rapidly. This increases the
possibility of interaction, as the agent cannot merely rest
in a corner, but it allows the agent to more often behave in
reaction to its enemy. The ability of the agent to return
fire at its enemy serves to balance its forced movement,
plus it has the ability to retreat when it detects its enemy.

4 Results

The results of the trials were highly successful. Five test
runs that were started with randomly generated
populations were performed for 145 generations. The
average survival frames (fitness) for every fifth
generation of each run is shown in Figure 5.

The enemy-harried robot evolved from an average life
of 82.61 frames to a maximum average lifetime of 265.50
frames in the 130th generation, averaged across all runs.
The best individual chromosome from the 5 runs lasted
2507 frames in the 117th generation of run 4. At the
normal Xpilot frame rate of 16 frames per second, the

maximum average life would correspond to 16.59
seconds, with the best chromosome lasting 156.69
seconds.

In all five runs, the robot evolved wall-avoidance
behavior that appears near-optimal. The robot coasts
through its environment until it approaches a wall. When
it first detects the wall, it will begin to turn slightly, as
dictated by gene 3. It continues to turn as it nears the
wall, and when the robot is close enough to the wall to
fall under the jurisdiction of gene 1, it turns as much as
possible away from the wall, and uses a short burst of
thrust. In this way the robot appears to “bounce” off the
wall. This burst propels it away from the wall, and it
again allows itself to drift.

The robot thus showed marked improvement in its
ability to successfully navigate the arena. The robot
exhibits a variety of behaviors when encountering its
enemy. In some chromosomes the robot continues to drift

but pivots to face the enemy craft so that it might fire
upon the enemy robot. In others it thrusts to engage the
enemy toe-to-toe, or circles the enemy while firing.

In one run, the robot learned more successful behavior.
The robot learned to constantly thrust, flying in quick
counterclockwise circles around the arena. As it moved,
it would continually adjust its aim to point towards the
center of the arena. When the enemy would be detected,
the robot would continue its motion but adjusts its aim to
fire at the enemy agent. This behavior was very
successful for evading enemy attacks while returning fire.
The usual cause of the agent’s death in this run was that
after the agent would kill the enemy agent, the enemy
would restart in the corner behind the circling robot. If
the swooping robot were to pass by as the enemy
restarted, it was unable to change its motion or turn fast
enough to return fire.

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Generations

 A
ve

ra
ge

 F
ra

m
es

 S
ur

vi
ve

d

Figure 5: The results of evolving rule consequents and priorities for Xpilot simulated robot controllers. The average
population fitness is shown for each of 5 test runs with the average of the 5 runs shown in bold.

5 Conclusions

Based upon the results of the experiment, a GA can be
used to simultaneously evolve multiple survival strategies
and their relative priorities for an autonomous robot
operating in the Xpilot environment. In the later portions
of the runs, the GA driven robot was more successful at

dispatching its enemy than was the enemy robot. Survival
attempts were somewhat frustrated by the enemy robot’s
willingness to sacrifice its own life and crash into the GA
driven robot. If the robot was allowed to remain
stationary it might live longer, though it is probable that it
would be unable to accelerate sufficiently to avoid enemy
fire. If given a larger number of possible behaviors,
particularly for attacking its enemy, and the ability to

more finely adjust its motion, we speculate that the robot
could survive significantly longer in the arena. The robot
has the capability to predict where the enemy will be
within a few frames and aim for that point, but if it were
given more genes involving an enemy robot it might be
able to evolve more complex attack patterns. Currently,
the robot will not seek out its enemy; it will engage it only
as a defensive maneuver as the enemy enters within a
certain range. Adding a “fitness bonus” to chromosomes
that successfully defeat the enemy robot might encourage
that trend in evolution, and ultimately lead to longer
average lifespans. More complex attack patterns and the
option to be the aggressor might allow the intelligent
robot to be a successful predator, rather than a prey
relying on evasion and self-defense.

Several possibilities exist for future research.
Although the enemy was generally the cause of death for
the evolving robot in the battle arena, it was not always
directly so; at times the fleeing robot would fly into a
wall. The robot might perform more successfully if it
were granted the ability to map the entire arena, rather
than merely detecting obstacles in its flight path or off its
flanks. Better results might also be achieved if navigation
genes were evolved in an environment free of enemies,
and then placed in the chromosomes of a robot in a battle
arena. This same concept could be used to evolve the
robot in an arena with stationary enemies, to allow the
robot to more highly evolve its ability to evade shots. A
scenario in which several robots evolved simultaneously
would open up many possibilities, such as evolution of
predator/prey roles, and the possibility for evolving
coordinated attacks as a “pack.”

Bibliography

Cole, N., Louis, S., and Miles, C. (2004). “Using a

Genetic Algorithm to Tune First-Person Shooter
Bots,” Proceedings of the International Congress on
Evolutionary Computation 2004 (CEC’04).

Fogel, D. (2002). Blondie24: Playing at the Edge of AI,
Morgan Kaufmann Publishers, Inc., San Francisco,
CA.

Funes, P. “XPILOT: A differential game and a learning
game bot.”
http://www.cs.brandeis.edu/~pablo/xpilot2.ps

Funes, P. and Pollack, J. (2000). “Measuring Progress in
Coevolutionary Competition,” From Animals to
Animats 6: Proceedings of the Sixth International
Conference on Simulation of Adaptive Behavior.

Luke, S. and Spector, L. (1996) “Evolving Teamwork
and Coordination with Genetic Programming.
Proceedings of the Genetic Programmin Conference,
Stanford University, 1996. (GP96)

Goldberg, D. (1989). Genetic Algorithms in Search
Optimization and Machine Learning. Addison-
Wesley, Reading MA.

Hingston, P. and Kendall, G. (2004). “Learning versus
Evolution in Iterated Prisoner's Dilemma,”
Proceedings of the International Congress on
Evolutionary Computation 2004 (CEC'04).

Konidaris, G., Shell, D., and Oren, N. (2002). “Evolving
Neural Networks for the Capture Game,”
Proceedings of the SAICSIT Postgraduate
Symposium.

Schultz. A. C. (1991). “Using a genetic algorithm to learn
strategies for collision avoidance and local
navigation.” Proceedings of the Seventh International
Symposium on Unmanned, Untethered Submersible
Technology.

Schultz, A. C. (1994). “Learning robot behavior using
genetic algorithms.” Intelligent Automation and Soft
Computing: Trends in Research, Development, and
Applications.

Yannakakis, G. and Hallam, J. (2004) “Evolving
opponents for interesting interactive computer
games.” Proceedings of the 8th International
Conference on the Simulation of Adaptive Behavior
(SAB’04).

