
Evolving Autonomous Agent Control in the Xpilot Environment

Gary B. Parker
Computer Science

Connecticut College
New London, CT 06320

parker@conncoll.edu

Matt Parker
Computer Science Department

Indiana University
Bloomington, IN 47405
matparke@indiana.edu

Steven D. Johnson
Computer Science Department

Indiana University
Bloomington, IN 47405
sjohnson@cs.indiana.edu

Abstract- Interactive combat games are useful as test-
beds for learning systems employing evolutionary
computation. Of particular value are games that can
be modified to accommodate differing levels of com-
plexity. In this paper, we present the use of Xpilot as a
learning environment that can be used to evolve
primitive reactive behaviors, yet can be complex
enough to require combat strategies and team coop-
eration. In addition, we use this environment with a
genetic algorithm to learn the weights for an artificial
neural network controller that provides both offensive
and defensive reactive control for an autonomous
agent.

1 Introduction

The study of learning in autonomous agents is important
for the development of robots that can operate independ-
ently and have the ability to adapt to changes in their ca-
pabilities, the environment, and mission. There are many
practical applications of these types of robots including
military, search and rescue, and exploration. Computer
games represent one class of platforms for experimenta-
tion with learning in autonomous agents. They can offer
an environment that is complex and challenging, often
modeling relevant characteristics of the physical world.

The computer game Xpilot offers such benefits while
requiring minimal in-game graphics. Xpilot has several
levels of complexity that allow researchers to expand their
work as their systems grow in their learning capabilities.
It is a simple matter to restrict the area of play and/or
complexity through the design of maps and restrictions on
the player’s capabilities and the number of players in-
volved. In addition, Xpilot is an internet game that can be
downloaded for free, allowing several groups to interact
through remote agent competitions. In this paper, we pre-
sent the game Xpilot and discuss a system that we devel-
oped for using evolutionary computation for learning
agent control. A genetic algorithm used to evolve
weights for a fixed neural network is used to control an
Xpilot bot. The resulting controllers exhibit improved
combat capabilities over 256 generations of evolution,
with different runs evolving distinct combat strategies.

Using evolutionary computation for learning in games
has been approached in several ways. The bulk of this
work has been done on board games such as Go and
thought games, such as the prisoner’s dilemma problem.

Examples of this research include the work done by Fogel
to learn checkers [1]; by Konidaris, Shell, and Oren to
evolve a neural network to learn to capture in Go [2]; and
by Hingston and Kendall in using evolution in the iterated
prisoner's dilemma problem [3].

Some research has also been done on learning control-
lers for interactive computer games. In research by Cole,
Louis, and Miles, parameters for the popular first person
shooter, Counter-Strike, were evolved to help a computer
controlled bot determine when to use various weapons
and perform a variety of behaviors [4]. In work by Yan-
nakakis and Hallam, opponents were evolved for the
game Pac-Man [5]. Funes and Pollack evolved behavior
for light-cycles in his online Java Tron applet [6].

No published research on the use of evolutionary com-
putation for learning controllers for the agents in Xpilot
could be found. However, an online paper written by Fu-
nes [7] describes an attempt to evolve a combat robot in
Xpilot using programmed heuristic behaviors. There
were six possible behaviors, such as firing at the nearest
enemy and random wandering. It evolved to constantly
do one behavior: shoot at the nearest enemy. In our re-
search, we wanted to use more information about the Xpi-
lot gaming environment (inputs to the controller) than
was used by Funes and we wanted to avoid predefined
behaviors by making the output more primitive directions
such as turn direction/rate, fire or not, and thrust or not.

We hope the work described in this paper will con-
vince other researchers of the benefits of using Xpilot for
experimentation in using evolutionary computation for
learning controllers for autonomous agents. In addition,
we present preliminary work using a genetic algorithm to
learn the connection weights for a fixed artificial neural
network controlling the agent as it engages in combat
with a single opponent. Our research shows that the
agent learns reactive control allowing both defensive and
offensive maneuvers while contending with a free space
environment.

2 Xpilot

Xpilot is an open-source 2-dimensional multiplayer space
combat game (Figure 1), playable over the internet. A
player controls a ship using the keyboard or mouse and
must destroy enemy ships while avoiding being killed by
the enemy. There are different maps that vary in size and
objectives, with team play, capture the flag, or free-for-all

combat. There are often ship upgrades made available
that enhance a ship's abilities with added weapons like la-
sers or triple fire, or with ship upgrades such as cloaking
or increased fuel. The game uses a client/server approach
to support multiple players. It has realistic physics and
solid networking code.

Figure 1: A player’s ship in combat with another ship. This is
from the player’s perspective, so only the other ships (in this
case Sel) are labeled. The grid lines at the top of are parts of a
wall. The faint dots behind the ships show thrust and the dot to
the right of the player’s ship is a bullet.

2.1 Modifications to Accommodate Learning
Because of its predetermined networking protocol and

simplicity, Xpilot makes a good platform for developing
Artificial Intelligence (AI). The Xpilot server and client
are synchronized frame by frame. For each frame, the
server sends packets to the client with information about
what to display. The client receives this information,
parses it, and displays it graphically on the screen. The
client sends back to the server information about mouse
movement and what keys the player is pressing on the
keyboard. Making Xpilot usable for AI is just a matter of
parsing the information received by the client and storing
it in easily accessible variables. We have created our own
module of Xpilot with structures containing useful infor-
mation about the player's ship, the enemy ships, the bul-
lets, the radar, and the map. The structures contain in-
formation like X and Y coordinates, velocities, accelera-
tions, distances, etc. The AI module also includes com-
monly used functions for aiming, calculating distances,
finding barriers, and so forth.

The AI module controls the ship by simulating key-
board key presses and mouse movement. To turn the
ship, it sends a packet to the server saying the mouse has
moved a certain amount. To thrust, shoot, and do other
controls it sends a packet saying a particular key has been
pressed on the keyboard. Between the sending and re-

ceiving, an AI function can be inserted that takes as inputs
environment information and outputs the control for every
frame. Because all this is done in the client, any number
of AI controlled clients may be connected to play against
one another or against real people.

2.2 Issues for this Research
There is a large variety of AI behaviors that can be
learned using Xpilot, from team combat to hunting and
path-finding. For this project we chose to have an AI de-
velop effective combat skills for a simple one-on-one
combat environment. We wanted the AI to learn to avoid
flying into walls, to dodge an opponent's bullets, and to
effectively attack the enemy. The normal AI module that
we built had all variables and coordinates relative to the
origin, the bottom left corner of the map. The angles
(heading, bearing, etc.) were relative to a compass rose
that had 0 as pointing right, parallel to the top of the
screen (this is how it is defined in Xpilot).

For the controller, inputs relative to the origin cause
problems in learning. The ship may learn only to do cer-
tain things in certain spots on a map, or learn to attack the
enemy when the enemy is directly south of it, and it may
somehow become familiar with the map on which it is
learning, not learning to really avoid walls, but only learn-
ing to stay in particular coordinates on that particular
map. Because of these problems, we decided to make a
new module for this research that normalizes coordinates
relative to the AI controlled ship (self ship). The angles
are all recalculated with 0 degrees as the direction of ve-
locity of the self ship. In this way we were able to not
only greatly simplify the input to the AI, but also allow
for the AI to learn behavior that is effective in universal
positions on various maps with various enemy locations.

The next step was to design the environment in which
the AI would learn. We decided to use a simple square
map enclosed by walls. So that the AI would learn to
avoid walls, wall contact at any but a very small velocity
is lethal. Though it is possible to have a wide variety of
weapons and ship upgrades, for this research we chose to
have no upgrades and to limit the firing rate to approxi-
mately one second between shots. This results in fewer
bullets to contend with and makes aiming more important.

The opponent of the AI controlled ship is a rule-based
bot named “Sel” that we programmed using our AI mod-
ule on another client. It is programmed to have a very
good aiming function and the ability to avoid walls and
bullets. Because Sel is the opponent for each in the popu-
lation of AI controlled ships, it is important that Sel per-
forms no random behavior and that it plays exactly the
same from one individual to the next.

Fitness tests of the AI bot runs until it dies. If it kills
Sel, both bots are reset to run again from the same loca-
tion. The behavior of both Sel and the AI controlled bots
lack enough randomness that endless repetitive behavioral
loops became a problem. The same AI individual would
kill Sel over and over again, simply because they were
each flying exactly the same path every time. To fix this,
we have Sel turn and thrust at the start of each run at an
angle determined by the number of times in a row that he

has been killed by that individual. In this way, with every
individual Sel starts out the same, but varies as he is killed
by that same individual, so that the evolving individual
never enters an endless loop of killing, except by great
skill.

Another problem, particularly with the graphics-driven
Xpilot, is the preprogrammed limit to game speed. A
normal Xpilot server runs at 16 frames per second (FPS),
which accommodates human vision and reaction times.
The AI controlled clients can play at a speed faster than
humans can play, but are still limited by the server to 100
FPS. The Xpilot clients also load the graphics for the
game, which can make the game sluggish. On our Sun-
blade 100s, the clients can only run consistently at 32
FPS, only about double the speed of normal play. This
means that the evolution process takes many days. In the
future we plan to make an option to disable the client
graphics and to remove the 100 FPS limit on the server.

3 The Controller

The AI ship uses a single layer feedforward neural net-
work to control its movements (Figure 2). There are
twenty-two inputs and three outputs. The inputs are:

• Self Heading: degrees from velocity direction.
• Self Velocity
• Self Reload Time: frames left until self can fire a shot.
• 8 Wall Sensor Inputs: the AI ship has 8 sensors to

check the distance to the nearest wall at the angle of
the sensor. Each is sensing at evenly spaced angles,
with the ship's velocity direction being North, and
from that there is NW, NE, W, E, SW, SE, and S.

• Enemy Distance from Self
• Enemy Direction from Self
• Enemy Heading: direction enemy ship is pointing.
• Enemy Change in Distance from Self
• Enemy Change in Direction from Self
• Enemy Reload Time
• MDB (Most Dangerous Bullet) Distance from Self
• MDB Direction from Self
• MDB Change in Distance from Self
• MDB Change in Direction from Self
• Threshold: Inputs always fully enabled

All inputs are between -1 and 1. In the case of an an-
gular input, 0 degrees is represented as 0.0, 179 degrees
as 1.0, and 181 degrees as -1.0, with all other angles fal-
ling between -1.0 and 1.0, proportionately. The distance,
time, velocity, and change values are calculated by divid-
ing the actual input by the maximum possible value. For
instance, a wall sensor input is divided by the maximum
distance the sensor can check for walls, so that distant
wall input is almost 1.0, but closer is near 0.0. The
threshold node always has an input of 1.

Between these twenty two inputs and each of the out-
puts is an evolved floating point weight, valued between
or equal to -1.0 and 1.0. The sum of each input multiplied

by the weight is used to determine the output of three out-
put control nodes:
• Thrust: either true or false. If the input to this node is

above 0, true, otherwise, false.
• Shoot: either true or false, just like Thrust.
• Turn: for the sake of realism, we decided to limit

turning to 15 degrees or below per frame. To
determine the turn rate between -15 and 15, the input
sum is translated to a floating point value between -1.0
and 1.0, which is then multiplied by 15. The equation
to determine the floating value from the sum of inputs
is shown in Equation (1). If output is greater than 1.0,
it is set to 1.0, and if less than -1.0, to -1.0.

 suminputoutput _4
1 ×= (1)

This function reduces the input sum by ¼ so that a
broad domain of input_sum values, between -4.0 and 4.0,
will turn the ship less than maximum, yielding output be-
tween -1.0 and 1.0, allowing for finer precision in turning.

Figure 2: Artificial Neural Network with 22 inputs discussed in
Section 5 and three outputs. Thrust and Shoot are either on or
off, while turn can have a value between -1 and 1, which corre-
sponds to a turn of -15 and 15.

4 The Learning System

The learning task to evolve weights for the NN is done
with a Genetic Algorithm [8]. Each weight is represented
by a six bit binary number in the chromosome. The value
for the weight is derived by Equation (2).

⎟
⎠
⎞

⎜
⎝
⎛ −×= 5.0

0.64
0.2 geneweight (2)

The weight is a value in the range [-1.0, 1.0]. There
are 22 inputs and 3 outputs (Figure 2), with a unique
weight between each input and output, so that there are 66
total weights yielding a 396-bit chromosome (Figure 3).

We use a standard GA where each individual of the
population is tested, assigned a fitness, and selected using
the roulette wheel method [8]. Two point crossover is
used after two unique individuals are selected. Bit by bit
mutation is used with a 1/600 chance of flipping for each
bit. We use a large population of 512 individuals because
smaller populations sometimes suffer from premature
convergence.

Figure 3: The chromosomes used to represent neural network
weights during evolutionary computation.

Many attempts were made to find a near-optimal fit-

ness function.
• First we chose to judge the fitness by how many

frames the bot survived, giving no bonus points for
killing the enemy bot. This evolved pacifist bots who
became quite good at dodging the enemy's bullets and
avoiding walls, but made little attempt at aggression.

• We tried giving a large bonus to the individuals who
killed the enemy. This evolved a population that did
not bother to move or respond to enemy bullets, but
rather shot as desperately as possible at the enemy bot,
so that they could gain the precious bonus.

• In the end we settled on giving a small bonus of 20
points to the fitness for every kill. This is not much,
considering a typical span of life for an individual can
be over 200 frames. To help differentiate between
fitnesses of individuals, we also squared the fitness for
selection.

5 Tests and Results

We ran five tests on separate populations of 512 individu-
als, for 256 generations each. After each generation, the
starting location was switched to a different location on
the map (one of 10 starting positions defined to be dis-
tributed throughout the map). This appeared to provide
sufficient variety in the starting distances and relative
bearings of the enemy ship and surrounding walls. Be-
cause some starting locations are closer to the enemy's
starting location, or closer to the walls, and some are in
safer locations, there is variation in the average fitness of
the population from generation to generation. The diffi-
culty of the starting location of a particular generation
significantly influences the performance of all individu-
als. However, the starting locations are recorded for
every generation so that the change in fitness over time
can be determined.

Even in the early generations, due to the numerous fac-
tors influencing survival time, there was a good chance
for at least one individual out of the 512 to be “lucky” and
survive for a long period despite having no useful combat
skills. The genes of such lucky but unskillful individuals
are eventually weeded out by having such a large popula-
tion and changing starting positions every generation, but
because they did often exist in a brief moment of pro-
longed glory, graphing the best fitness for each generation
yields a random looking data plot with no discernable
trend lines. Therefore, we use the average fitness of the
populations in successive generations to gauge the overall
change in health and fitness of the populations. The
graph (Figure 4) of the average fitnesses of the five popu-
lations still has a random appearance, but it shows an
overall trend in increasing fitness.

40

50

60

70

80

90

100

110

120

130

140

0 32 64 96 128 160 192 224 256

Generations

A
ve

ra
ge

 F
itn

es
s

Figure 4: Graph showing average fitness of the five populations over the generations, with a trendline (least squares) showing statisti-
cal improvement.

Figure 5: Average fitness (Y axis) of Jenni, Jimjon, John, Linda, and Mogin at the same starting position over the 256
generations (X axis).

To clearly see how the GA affects the fitness of the
NN controllers we look at graphs of the average fitness
over one particular starting position (Figure 5). These
graphs show the average fitnesses of trials at the [717,
402] starting location for each of the 5 test runs. There
are still many dips and rises in the fitness for individual
locations. This is because between one generation at a
particular starting location and the next generation at that
same starting location there are on average 9 generations
that have had trial runs at different starting locations.
During these between generations, the population may
adopt strategies that improve survival at intermediate
starting locations, but lead to an early death at the original
starting position. Consequently, the average fitness may
decrease when the generation is run from that same start-
ing location again.

If the populations are developing general combat skill,
they should display a trend in increasing average fitness
from the majority of starting locations. In the graphs of
starting location [717, 402], seen in Figure 5, all popula-
tions have a clear trend in increasing average fitness. Al-
though Linda's learning trend is somewhat questionable
from this location, she does show increasing fitness trends
from other starting locations. This trade-off tendency is
common among all individuals. In other words, each bot
clearly improved in average fitness over the 256 genera-
tions, both in comparison of fitnesses and also as seen by
visual observance of their behavior.

Each of the five tests evolved unique strategies and
behavior. For convenience, we named each bot. Here are

descriptions of the observed behavior developed by each
of the five tests:
Mogin developed a very optimal solution for survival.
He immediately begins turning to the right and thrusting,
so that he flies around in small circular loops. By turning
faster or slower at certain parts of the loops he is able to
move toward or away from things, mainly away from the
deadly walls, and either towards or away from the enemy
bot, and away from bullets. By thrusting constantly in a
circle, it is very difficult for the enemy bot to aim a shot
to hit him. Mogin appears to just shoot as often as possi-
ble, as if not aiming, but his ability to survive longer and
kill the enemy bot more often increased to the last genera-
tion, so it appears likely that he did acquire some skill in
aiming.
John, Linda, and Jimjon all learned similar strategies.
They spin nearly constantly, slowing down their turn
speed occasionally and rarely thrusting, but shooting
nearly as often as possible. They appear to have some
ability to dodge bullets, thrusting sometimes to move out
of a bullet's path. They each seem to have gained some
ability to aim.
Jenni developed an interesting swooping attack behavior.
She will often swoop around the back of the charging en-
emy bot and shoot at it. On her best runs, she will fly
loops around the enemy bot in wide circles shooting in-
wardly at it. Figure 6 shows two images displaying her
swooping behavior.

Figure 6: Two frames of an attack by the bot Jenni. The first frame shows the enemy (filled) charging her as she ma-
neuvers to avoid being shot. In the second frame, she completes the loop and fires a deadly shot at the enemy.

6 Conclusions

Xpilot has proven to be an excellent platform for de-
veloping an AI system in this experiment. It can be con-
figured so that there are minimal control choices with a
surrounding environment that is not complex, yet compe-
tent play requires intelligent behavior. Its frame-
synchronized client/server multiplayer design is ideal for
allowing a great variety of experiments in artificial intel-
ligence. Although our current implementation is limited
to 100 FPS by the server and limited by the client’s in-
game graphics, future development plans include elimi-
nating these limits.

Through the use of a simple neural network controller
and a genetic algorithm to evolve the connection weights,
we were able to develop a successful learning system for
autonomous agents engaged in combat. This was not a
system designed for learning the best behavior for a spe-
cific starting position, but one that learned general strate-
gies for offense and defense. To this end, we changed
starting locations for each generation. This method was
successful, but made plotting the change in fitness diffi-
cult because of the large variance in the difficulty of start-
ing locations. However, the increase in overall fitness is
clearly seen by looking at the trend in the graphs of aver-
age fitness of all five populations and at the graphs of fit-
ness changes related to a specific starting location, plus
can be observed by simple visual observation of each
bot’s behavior.

There are many possibilities for future research in us-
ing Xpilot for autonomous agent learning. Other learning
paradigms and/or control systems can be investigated in
this environment. An extension of our current system
through incremental learning can be used to solve prob-
lems of increased complexity. Once we are able to run
evolution without the game speed limitations, we can use
punctuated anytime learning, where the learning is done
on a simulator with periodic tests on the actual system, to
improve learning for changing enemies and environments.
This could lead to using the internet to allow our bots to
learn against human opponents. We have started research
using competitive co-evolution, where one GA learner

evolves against another GA learner, but much more needs
to be done in this area. Finally, we hope to use methods
developed in previous research to evolve cooperative be-
havior for a team of Xpilot bots to learn strategies in de-
feating an opponent team.

Bibliography

[1] D. Fogel, (2002). Blondie24: Playing at the Edge of
AI, Morgan Kaufmann Publishers, Inc., San Francisco,
CA.
[2] G. Konidaris, D. Shell, and N. Oren, (2002). “Evolv-
ing Neural Networks for the Capture Game,” Proceed-
ings of the SAICSIT Postgraduate Symposium, Port Eliza-
beth, South Africa, September 2002.
[3] P. Hingston and G. Kendall, (2004). “Learning versus
Evolution in Iterated Prisoner's Dilemma,” Proceedings
of the International Congress on Evolutionary Computa-
tion 2004 (CEC'04), Portland, Oregon, 20-23 June 2004,
pp 364-372.
[4] N. Cole, S. Louis, and C. Miles, (2004). “Using a
Genetic Algorithm to Tune First-Person Shooter Bots,”
Proceedings of the International Congress on Evolution-
ary Computation 2004 (CEC’04), Portland, Oregon, pp
139–145.
[5] G. Yannakakis and J. Hallam, (2004). "Evolving
Opponents for Interesting Interactive Computer Games,''
Proceedings of the 8th International Conference on the
Simulation of Adaptive Behavior (SAB'04); From Animals
to Animats 8, pp 499-508.
[6] P. Funes and J. Pollack, (2000). “Measuring Progress
in Coevolutionary Competition,” From Animals to Ani-
mats 6: Proceedings of the Sixth International Conference
on Simulation of Adaptive Behavior. pp 450-459.
[7] P. Funes. “XPILOT, A Differential Game and a
Learning Game Bot.”
http://www.cs.brandeis.edu/~pablo/xpilot2.ps
[8] D. Goldberg (1989). Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-Wesley,
Reading, Ma.

