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Abstract- Interactive combat games are useful as test-
beds for learning systems employing evolutionary 
computation.  Of particular value are games that can 
be modified to accommodate differing levels of com-
plexity.  In this paper, we present the use of Xpilot as a 
learning environment that can be used to evolve 
primitive reactive behaviors, yet can be complex 
enough to require combat strategies and team coop-
eration. In addition, we use this environment with a 
genetic algorithm to learn the weights for an artificial 
neural network controller that provides both offensive 
and defensive reactive control for an autonomous 
agent.   

1 Introduction 

The study of learning in autonomous agents is important 
for the development of robots that can operate independ-
ently and have the ability to adapt to changes in their ca-
pabilities, the environment, and mission.  There are many 
practical applications of these types of robots including 
military, search and rescue, and exploration. Computer 
games represent one class of platforms for experimenta-
tion with learning in autonomous agents.  They can offer 
an environment that is complex and challenging, often 
modeling relevant characteristics of the physical world.   

The computer game Xpilot offers such benefits while 
requiring minimal in-game graphics.  Xpilot has several 
levels of complexity that allow researchers to expand their 
work as their systems grow in their learning capabilities. 
It is a simple matter to restrict the area of play and/or 
complexity through the design of maps and restrictions on 
the player’s capabilities and the number of players in-
volved.  In addition, Xpilot is an internet game that can be 
downloaded for free, allowing several groups to interact 
through remote agent competitions. In this paper, we pre-
sent the game Xpilot and discuss a system that we devel-
oped for using evolutionary computation for learning 
agent control.  A genetic algorithm used to evolve 
weights for a fixed neural network is used to control an 
Xpilot bot. The resulting controllers exhibit improved 
combat capabilities over 256 generations of evolution, 
with different runs evolving distinct combat strategies. 

Using evolutionary computation for learning in games 
has been approached in several ways.  The bulk of this 
work has been done on board games such as Go and 
thought games, such as the prisoner’s dilemma problem.  

Examples of this research include the work done by Fogel 
to learn checkers [1]; by Konidaris, Shell, and Oren to 
evolve a neural network to learn to capture in Go [2]; and 
by Hingston and Kendall in using evolution in the iterated 
prisoner's dilemma problem [3].   

Some research has also been done on learning control-
lers for interactive computer games.  In research by Cole, 
Louis, and Miles, parameters for the popular first person 
shooter, Counter-Strike, were evolved to help a computer 
controlled bot determine when to use various weapons 
and perform a variety of behaviors [4].  In work by Yan-
nakakis and Hallam, opponents were evolved for the 
game Pac-Man [5].  Funes and Pollack evolved behavior 
for light-cycles in his online Java Tron applet [6]. 

No published research on the use of evolutionary com-
putation for learning controllers for the agents in Xpilot 
could be found.  However, an online paper written by Fu-
nes [7] describes an attempt to evolve a combat robot in 
Xpilot using programmed heuristic behaviors.   There 
were six possible behaviors, such as firing at the nearest 
enemy and random wandering.  It evolved to constantly 
do one behavior: shoot at the nearest enemy.  In our re-
search, we wanted to use more information about the Xpi-
lot gaming environment (inputs to the controller) than 
was used by Funes and we wanted to avoid predefined 
behaviors by making the output more primitive directions 
such as turn direction/rate, fire or not, and thrust or not. 

We hope the work described in this paper will con-
vince other researchers of the benefits of using Xpilot for 
experimentation in using evolutionary computation for 
learning controllers for autonomous agents.  In addition, 
we present preliminary work using a genetic algorithm to 
learn the connection weights for a fixed artificial neural 
network controlling the agent as it engages in combat 
with a single opponent.  Our research shows that the 
agent learns reactive control allowing both defensive and 
offensive maneuvers while contending with a free space 
environment. 

2 Xpilot 

Xpilot is an open-source 2-dimensional multiplayer space 
combat game (Figure 1), playable over the internet.  A 
player controls a ship using the keyboard or mouse and 
must destroy enemy ships while avoiding being killed by 
the enemy.  There are different maps that vary in size and 
objectives, with team play, capture the flag, or free-for-all 



combat.  There are often ship upgrades made available 
that enhance a ship's abilities with added weapons like la-
sers or triple fire, or with ship upgrades such as cloaking 
or increased fuel.  The game uses a client/server approach 
to support multiple players.  It has realistic physics and 
solid networking code.   

Figure 1:  A player’s ship in combat with another ship.  This is 
from the player’s perspective, so only the other ships (in this 
case Sel) are labeled.   The grid lines at the top of are parts of a 
wall.  The faint dots behind the ships show thrust and the dot to 
the right of the player’s ship is a bullet. 

2.1 Modifications to Accommodate Learning 
Because of its predetermined networking protocol and 

simplicity, Xpilot makes a good platform for developing 
Artificial Intelligence (AI).  The Xpilot server and client 
are synchronized frame by frame.  For each frame, the 
server sends packets to the client with information about 
what to display.  The client receives this information, 
parses it, and displays it graphically on the screen.  The 
client sends back to the server information about mouse 
movement and what keys the player is pressing on the 
keyboard.  Making Xpilot usable for AI is just a matter of 
parsing the information received by the client and storing 
it in easily accessible variables.  We have created our own 
module of Xpilot with structures containing useful infor-
mation about the player's ship, the enemy ships, the bul-
lets, the radar, and the map.  The structures contain in-
formation like X and Y coordinates, velocities, accelera-
tions, distances, etc.  The AI module also includes com-
monly used functions for aiming, calculating distances, 
finding barriers, and so forth.  

The AI module controls the ship by simulating key-
board key presses and mouse movement.  To turn the 
ship, it sends a packet to the server saying the mouse has 
moved a certain amount.  To thrust, shoot, and do other 
controls it sends a packet saying a particular key has been 
pressed on the keyboard.   Between the sending and re-

ceiving, an AI function can be inserted that takes as inputs 
environment information and outputs the control for every 
frame.  Because all this is done in the client, any number 
of AI controlled clients may be connected to play against 
one another or against real people. 

2.2 Issues for this Research  
There is a large variety of AI behaviors that can be 
learned using Xpilot, from team combat to hunting and 
path-finding.  For this project we chose to have an AI de-
velop effective combat skills for a simple one-on-one 
combat environment.  We wanted the AI to learn to avoid 
flying into walls, to dodge an opponent's bullets, and to 
effectively attack the enemy.  The normal AI module that 
we built had all variables and coordinates relative to the 
origin, the bottom left corner of the map.  The angles 
(heading, bearing, etc.) were relative to a compass rose 
that had 0 as pointing right, parallel to the top of the 
screen (this is how it is defined in Xpilot).   

For the controller, inputs relative to the origin cause 
problems in learning.  The ship may learn only to do cer-
tain things in certain spots on a map, or learn to attack the 
enemy when the enemy is directly south of it, and it may 
somehow become familiar with the map on which it is 
learning, not learning to really avoid walls, but only learn-
ing to stay in particular coordinates on that particular 
map.  Because of these problems, we decided to make a 
new module for this research that normalizes coordinates 
relative to the AI controlled ship (self ship).  The angles 
are all recalculated with 0 degrees as the direction of ve-
locity of the self ship.  In this way we were able to not 
only greatly simplify the input to the AI, but also allow 
for the AI to learn behavior that is effective in universal 
positions on various maps with various enemy locations. 

The next step was to design the environment in which 
the AI would learn.  We decided to use a simple square 
map enclosed by walls.  So that the AI would learn to 
avoid walls, wall contact at any but a very small velocity 
is lethal. Though it is possible to have a wide variety of 
weapons and ship upgrades, for this research we chose to 
have no upgrades and to limit the firing rate to approxi-
mately one second between shots.  This results in fewer 
bullets to contend with and makes aiming more important.  

The opponent of the AI controlled ship is a rule-based 
bot named “Sel” that we programmed using our AI mod-
ule on another client.  It is programmed to have a very 
good aiming function and the ability to avoid walls and 
bullets.  Because Sel is the opponent for each in the popu-
lation of AI controlled ships, it is important that Sel per-
forms no random behavior and that it plays exactly the 
same from one individual to the next.   

Fitness tests of the AI bot runs until it dies.  If it kills 
Sel, both bots are reset to run again from the same loca-
tion.  The behavior of both Sel and the AI controlled bots 
lack enough randomness that endless repetitive behavioral 
loops became a problem. The same AI individual would 
kill Sel over and over again, simply because they were 
each flying exactly the same path every time.  To fix this, 
we have Sel turn and thrust at the start of each run at an 
angle determined by the number of times in a row that he 



has been killed by that individual.  In this way, with every 
individual Sel starts out the same, but varies as he is killed 
by that same individual, so that the evolving individual 
never enters an endless loop of killing, except by great 
skill. 

Another problem, particularly with the graphics-driven 
Xpilot, is the preprogrammed limit to game speed.   A 
normal Xpilot server runs at 16 frames per second (FPS), 
which accommodates human vision and reaction times.  
The AI controlled clients can play at a speed faster than 
humans can play, but are still limited by the server to 100 
FPS.  The Xpilot clients also load the graphics for the 
game, which can make the game sluggish.  On our Sun-
blade 100s, the clients can only run consistently at 32 
FPS, only about double the speed of normal play. This 
means that the evolution process takes many days.  In the 
future we plan to make an option to disable the client 
graphics and to remove the 100 FPS limit on the server. 

3 The Controller 

The AI ship uses a single layer feedforward neural net-
work to control its movements (Figure 2).  There are 
twenty-two inputs and three outputs.  The inputs are: 
 
• Self Heading: degrees from velocity direction. 
• Self Velocity 
• Self Reload Time: frames left until self can fire a shot. 
• 8 Wall Sensor Inputs: the AI ship has 8 sensors to 

check the distance to the nearest wall at the angle of 
the sensor.  Each is sensing at evenly spaced angles, 
with the ship's velocity direction being North, and 
from that there is NW, NE, W, E, SW, SE, and S. 

• Enemy Distance from Self 
• Enemy Direction from Self 
• Enemy Heading: direction enemy ship is pointing.  
• Enemy Change in Distance from Self 
• Enemy Change in Direction from Self 
• Enemy Reload Time 
• MDB (Most Dangerous Bullet) Distance from Self 
• MDB Direction from Self 
• MDB Change in Distance from Self 
• MDB Change in Direction from Self 
• Threshold: Inputs always fully enabled 
 

All inputs are between -1 and 1.  In the case of an an-
gular input, 0 degrees is represented as 0.0, 179 degrees 
as 1.0, and 181 degrees as -1.0, with all other angles fal-
ling between -1.0 and 1.0, proportionately.  The distance, 
time, velocity, and change values are calculated by divid-
ing the actual input by the maximum possible value.  For 
instance, a wall sensor input is divided by the maximum 
distance the sensor can check for walls, so that distant 
wall input is almost 1.0, but closer is near 0.0.  The 
threshold node always has an input of 1. 

Between these twenty two inputs and each of the out-
puts is an evolved floating point weight, valued between 
or equal to -1.0 and 1.0.  The sum of each input multiplied 

by the weight is used to determine the output of three out-
put control nodes: 
• Thrust: either true or false.  If the input to this node is 

above 0, true, otherwise, false. 
• Shoot: either true or false, just like Thrust. 
• Turn: for the sake of realism, we decided to limit 

turning to 15 degrees or below per frame.  To 
determine the turn rate between -15 and 15, the input 
sum is translated to a floating point value between -1.0 
and 1.0, which is then multiplied by 15.  The equation 
to determine the floating value from the sum of inputs 
is shown in Equation (1).  If output is greater than 1.0, 
it is set to 1.0, and if less than -1.0, to -1.0. 

                      suminputoutput _4
1 ×=                    (1) 

This function reduces the input sum by ¼ so that a 
broad domain of input_sum values, between -4.0 and 4.0, 
will turn the ship less than maximum, yielding output be-
tween -1.0 and 1.0, allowing for finer precision in turning. 

Figure 2: Artificial Neural Network with 22 inputs discussed in 
Section 5 and three outputs.  Thrust and Shoot are either on or 
off, while turn can have a value between -1 and 1, which corre-
sponds to a turn of -15 and 15. 

4 The Learning System 

The learning task to evolve weights for the NN is done 
with a Genetic Algorithm [8].  Each weight is represented 
by a six bit binary number in the chromosome.  The value 
for the weight is derived by Equation (2). 

⎟
⎠
⎞

⎜
⎝
⎛ −×= 5.0

0.64
0.2 geneweight             (2) 

The weight is a value in the range [-1.0, 1.0].  There 
are 22 inputs and 3 outputs (Figure 2), with a unique 
weight between each input and output, so that there are 66 
total weights yielding a 396-bit chromosome (Figure 3). 

We use a standard GA where each individual of the 
population is tested, assigned a fitness, and selected using 
the roulette wheel method [8].  Two point crossover is 
used after two unique individuals are selected.  Bit by bit 
mutation is used with a 1/600 chance of flipping for each 
bit.  We use a large population of 512 individuals because 
smaller populations sometimes suffer from premature 
convergence. 



Figure 3: The chromosomes used to represent neural network 
weights during evolutionary computation. 

 
Many attempts were made to find a near-optimal fit-

ness function.   
• First we chose to judge the fitness by how many 

frames the bot survived, giving no bonus points for 
killing the enemy bot.  This evolved pacifist bots who 
became quite good at dodging the enemy's bullets and 
avoiding walls, but made little attempt at aggression. 

• We tried giving a large bonus to the individuals who 
killed the enemy.  This evolved a population that did 
not bother to move or respond to enemy bullets, but 
rather shot as desperately as possible at the enemy bot, 
so that they could gain the precious bonus.   

• In the end we settled on giving a small bonus of 20 
points to the fitness for every kill.  This is not much, 
considering a typical span of life for an individual can 
be over 200 frames.  To help differentiate between 
fitnesses of individuals, we also squared the fitness for 
selection.  

5 Tests and Results 

We ran five tests on separate populations of 512 individu-
als, for 256 generations each.  After each generation, the 
starting location was switched to a different location on 
the map (one of 10 starting positions defined to be dis-
tributed throughout the map).  This appeared to provide 
sufficient variety in the starting distances and relative 
bearings of the enemy ship and surrounding walls.  Be-
cause some starting locations are closer to the enemy's 
starting location, or closer to the walls, and some are in 
safer locations, there is variation in the average fitness of 
the population from generation to generation.  The diffi-
culty of the starting location of a particular generation 
significantly influences the performance of all individu-
als.  However, the starting locations are recorded for 
every generation so that the change in fitness over time 
can be determined. 

Even in the early generations, due to the numerous fac-
tors influencing survival time, there was a good chance 
for at least one individual out of the 512 to be “lucky” and 
survive for a long period despite having no useful combat 
skills.  The genes of such lucky but unskillful individuals 
are eventually weeded out by having such a large popula-
tion and changing starting positions every generation, but 
because they did often exist in a brief moment of pro-
longed glory, graphing the best fitness for each generation 
yields a random looking data plot with no discernable 
trend lines.  Therefore, we use the average fitness of the 
populations in successive generations to gauge the overall 
change in health and fitness of the populations.  The 
graph (Figure 4) of the average fitnesses of the five popu-
lations still has a random appearance, but it shows an 
overall trend in increasing fitness. 
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Figure 4:  Graph showing average fitness of the five populations over the generations, with a trendline (least squares) showing statisti-
cal improvement. 



 
 
 
 
 
 
 
 
 
 
 
 
                                                                  

                                                                                                
Figure 5: Average fitness (Y axis) of Jenni, Jimjon, John, Linda, and Mogin at the same starting position over the 256 
generations (X axis).   

To clearly see how the GA affects the fitness of the 
NN controllers we look at graphs of the average fitness 
over one particular starting position (Figure 5).  These 
graphs show the average fitnesses of trials at the [717, 
402] starting location for each of the 5 test runs.  There 
are still many dips and rises in the fitness for individual 
locations. This is because between one generation at a 
particular starting location and the next generation at that 
same starting location there are on average 9 generations 
that have had trial runs at different starting locations.  
During these between generations, the population may 
adopt strategies that improve survival at intermediate 
starting locations, but lead to an early death at the original 
starting position.  Consequently, the average fitness may 
decrease when the generation is run from that same start-
ing location again. 

If the populations are developing general combat skill, 
they should display a trend in increasing average fitness 
from the majority of starting locations.  In the graphs of 
starting location [717, 402], seen in Figure 5, all popula-
tions have a clear trend in increasing average fitness.  Al-
though Linda's learning trend is somewhat questionable 
from this location, she does show increasing fitness trends 
from other starting locations. This trade-off tendency is 
common among all individuals.  In other words, each bot 
clearly improved in average fitness over the 256 genera-
tions, both in comparison of fitnesses and also as seen by 
visual observance of their behavior. 

Each of the five tests evolved unique strategies and 
behavior.  For convenience, we named each bot.  Here are 

descriptions of the observed behavior developed by each 
of the five tests: 
Mogin developed a very optimal solution for survival.  
He immediately begins turning to the right and thrusting, 
so that he flies around in small circular loops.  By turning 
faster or slower at certain parts of the loops he is able to 
move toward or away from things, mainly away from the 
deadly walls, and either towards or away from the enemy 
bot, and away from bullets.  By thrusting constantly in a 
circle, it is very difficult for the enemy bot to aim a shot 
to hit him.  Mogin appears to just shoot as often as possi-
ble, as if not aiming, but his ability to survive longer and 
kill the enemy bot more often increased to the last genera-
tion, so it appears likely that he did acquire some skill in 
aiming. 
John, Linda, and Jimjon all learned similar strategies.  
They spin nearly constantly, slowing down their turn 
speed occasionally and rarely thrusting, but shooting 
nearly as often as possible.  They appear to have some 
ability to dodge bullets, thrusting sometimes to move out 
of a bullet's path.  They each seem to have gained some 
ability to aim. 
Jenni developed an interesting swooping attack behavior.  
She will often swoop around the back of the charging en-
emy bot and shoot at it.  On her best runs, she will fly 
loops around the enemy bot in wide circles shooting in-
wardly at it.  Figure 6 shows two images displaying her 
swooping behavior. 



 

 

 

 

Figure 6:  Two frames of an attack by the bot Jenni.   The first frame shows the enemy (filled) charging her as she ma-
neuvers to avoid being shot.  In the second frame, she completes the loop and fires a deadly shot at the enemy. 

6 Conclusions 

Xpilot has proven to be an excellent platform for de-
veloping an AI system in this experiment.  It can be con-
figured so that there are minimal control choices with a 
surrounding environment that is not complex, yet compe-
tent play requires intelligent behavior.  Its frame-
synchronized client/server multiplayer design is ideal for 
allowing a great variety of experiments in artificial intel-
ligence.  Although our current implementation is limited 
to 100 FPS by the server and limited by the client’s in-
game graphics, future development plans include elimi-
nating these limits. 

Through the use of a simple neural network controller 
and a genetic algorithm to evolve the connection weights, 
we were able to develop a successful learning system for 
autonomous agents engaged in combat.  This was not a 
system designed for learning the best behavior for a spe-
cific starting position, but one that learned general strate-
gies for offense and defense.  To this end, we changed 
starting locations for each generation.  This method was 
successful, but made plotting the change in fitness diffi-
cult because of the large variance in the difficulty of start-
ing locations.   However, the increase in overall fitness is 
clearly seen by looking at the trend in the graphs of aver-
age fitness of all five populations and at the graphs of fit-
ness changes related to a specific starting location, plus 
can be observed by simple visual observation of each 
bot’s behavior. 

There are many possibilities for future research in us-
ing Xpilot for autonomous agent learning.  Other learning 
paradigms and/or control systems can be investigated in 
this environment.  An extension of our current system 
through incremental learning can be used to solve prob-
lems of increased complexity.  Once we are able to run 
evolution without the game speed limitations, we can use 
punctuated anytime learning, where the learning is done 
on a simulator with periodic tests on the actual system, to 
improve learning for changing enemies and environments.  
This could lead to using the internet to allow our bots to 
learn against human opponents.  We have started research 
using competitive co-evolution, where one GA learner 

evolves against another GA learner, but much more needs 
to be done in this area.  Finally, we hope to use methods 
developed in previous research to evolve cooperative be-
havior for a team of Xpilot bots to learn strategies in de-
feating an opponent team.    
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