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Abstract - The evolution of a heterogeneous team is a 

complex problem. Evolving teams in a single population can 
retard the GA’s ability to specialize emergent behavior, but 
co-evolution requires a system for evaluation at trial time. If 
too few combinations of partners are tested, the GA is unable 
to recognize fit agents; if too many agents are tested, the 
resultant computation time becomes excessive. We created a 
system based on punctuated anytime learning that only 
periodically tests samples of partner combinations to reduce 
computation time and tested a variety of sample sizes.  In this 
paper, we present a successful method of varying the sample 
sizes, dependent on the level of fitness, using a box pushing 
task for comparison. 

I.  INTRODUCTION 

The objective of our work is to define a method for 
evolving a team that simultaneously reduces computation 
time while maximizing accuracy. A powerful method for 
producing cooperative behavior is essential because of its 
potential for application in today’s world. Some 
applications for teams include toxic waste cleanup and 
search and rescue teams. These tasks are often too 
dangerous for humans and therefore fertile ground for the 
employment of teams of robots. We chose a box pushing 
task to test the strength of our method because it 
represents a simplified task related to our method’s 
possible applications. Evolving heterogeneous behavior 
for teams has been approached in several different ways. 

Luke and Spector researched methods for increasing 
specialization and cooperation in team behavior [1]. The 
applied problem in their research was the Predator-Prey 
scenario. The simulated scenario was a terriodal 
(continuous) space where four agents representing “lions” 
chase a randomly moving “gazelle”. Using the success 
rate of capture for comparison, Luke and Spector 
concluded it was advantageous to consider the whole team 
as a single GP individual. Though this method produced 
heterogeneous behavior, we believe evolving team 
members in separate populations will further increase 
specialization because the GA can concentrate on making 
the best individual to do the task. When a team is 
represented by a single GP individual it is hard to obtain 
an individual’s fitness without it being overly influenced 
by the team members to which the agent is bound within 
the same chromosome. This issue highlights the greatest 
challenge of co-evolution using separate populations, how 

to pair teams at trial time. Random selection of teams 
could result in fit members going unrecognized by the GA 
because of a poor member of the team. 

Potter and De Jong developed a method to address the 
co-evolution of separate populations [2]. Their method, 
referred to as cooperative co-evolutionary algorithms 
(CCAs), tests an individual’s fitness by pairing it with a 
single member from each of the opposing populations. 
These chosen members from each of the opposing 
populations are the fittest members within their own 
population from the previous generation of training. Using 
this system Potter, Meeden, and Shultz co-evolved 
artificially intelligent agents to heard sheep into a corral 
[3]. Their results showed this to be a successful method of 
producing heterogeneous behavior. Even though the CCA 
proved to be an efficient system of co-evolution, it still 
limits an individual’s fitness calculation to a single 
partner.  

Wiegand, Liles, and De Jong, investigated which 
factors influenced co-evolution using different 
implementations of the CCA [4]. In their research they 
focused on collaborator selection issues. The first 
implementation tested (CCA-1) used the best individual 
for pairing at trial time, while the second (CCA-2) had 
varying collaborator pool size, the number of individuals 
chosen for comparison at trial time.   They concluded that 
the most prominent factor for co-evolution was the 
collaborator pool size. Wiegand, Liles, and De Jong, also 
point out that as the pool size increases so does the 
computation required for generational training. Taking 
this concept to the extreme, the most accurate solution 
would be to test all members of a population against all 
other possible partners in the opposing populations. Using 
this method a problem involving N populations with I 
members in each population, would require IN 
comparisons for any generation of training. This level of 
computation is unacceptable. 

In this paper, we discuss a method that maximizes 
accuracy while minimizing computation time. This 
method involves a periodic selection of a single individual 
from each population that represents the overall nature of 
its population. These selected individuals are referred to 
as alpha individuals and the generations of selection are 
called punctuated generations. At trial time, it is possible 
to attain the fitness of any individual by constructing a 
team using the alpha individuals from the opposing 



populations. We continue to optimize our algorithm in 
terms of accuracy and reducing computation time by 
varying the spacing between punctuated generations and 
the collaborator pool size used for alpha selection. We 
choose a box-pushing task to show the success of our 
method. 

II.   BOX-PUSHING TASK 

The task is designed to require the cooperative 
behavior of two hexapod robots.  The robots, which start 
from one corner of an enclosed square area, are to walk to 
and push a box that is in the middle of the area to the 
opposite corner.    

 
 

Figure 1. The ServoBot 

 
The robots are modeled after an actual robot, which is a 

ServoBot.  ServoBots are inexpensive hexapod robots 
constructed from masonite (a hard pressed wood). Each 
leg has two motorized servos, one oriented in a vertical 
capacity and the other oriented in a horizontal capacity, 
giving two degrees of freedom per leg (Figure 1). In order 
to control the motion of the robot, a BASIC Stamp II is 
mounted on the top of the ServoBot. The BASIC Stamp II 
is capable of individually addressing each of the twelve 
servo actuators to produce and sustain a gait cycle. A gait 
cycle is a timed and coordinated motion of the legs of a 
robot, such that the legs return to the positions from which 
they began. The BASIC Stamp is capable of storing a 
sequence of timed activations, which represent the 
simultaneous movement of all twelve servos.  

Using a cyclic genetic algorithm (discussed in a later 
section), a gait cycle for a specific ServoBot can be 
evolved [5]. The optimal gait cycle found for the 
ServoBot modeled in our simulation was a tripod gait. A 
tripod gait maintains static stability while maximizing the 
walking speed for a hexapod robot. The right front and 
back and the left middle legs are down and moving back 
while the other three legs are lifting up as they move 
forward.   Different degrees of turns were generated for 

the ServoBot by decreasing thrust of the legs on one side 
of the robot. If the left legs have less thrust than the right 
legs, result would be a left turn due to the drag created by 
the left legs throughout the duration of the gait cycle. The 
resultant turns were measured by tests on the actual robot 
giving 14 left and right turns, plus a no turn. These turns 
were measured in centimeters moved and degrees turned. 
These values were recorded and stored in a table with the 
addition of a “zero” value that corresponds to the robot 
not moving at all, giving a total of 32 total turns. 

The scenario from which the task has been abstracted is 
a colony space in the Connecticut College Robotics Lab. 
The colony space is approximately an 8x8 ft area.  In the 
colony space, the two ServoBot robots and a square 
cardboard box can be placed. The problem is designed for 
the pair to act cooperatively to force the box into the 
opposing corner from which the robots started.  The tests 
done in simulation use agents that model actual robots 
present in the lab. 

 
 

 

Figure 2. Simulation of the colony area with everything in its 
starting positions 

 
The simulated environment used for evolving the 

agents was an abstraction of the colony space in the lab 
measuring 250x250 units. Both robots were represented as 
circles with a diameter of 6 units but the robots were 
treated as single points for the rules of contact with the 
box. The box was represented as a square measuring 
18x18 units. In every trial the agents and the box were 
placed in consistent starting positions. In the simulated 
environment the point (0,0) is in the upper left hand 
corner of the area. The first robot was placed in the 



location (10,5) and faced parallel to the x-axis, while the 
second robot started in the mirrored position (5,10). The 
box started in the center of the space at the point 
(125,125). In Figure 2 we see the starting position of the 
simulation where the first robot at (10,5) is shaded in dark 
grey, and the second robot at (5,10) is shaded in light 
grey.  

Each robot’s ability to move the box on its own 
(without aid from its partner) was affected by an 
endurance factor. This endurance factor is initially set to 
zero and increases by one with each consecutive non-
aided push of the box. If F represents the would be full 
force of the robot’s push acting singly, and E representing 
the endurance factor, the force the robot may apply to the 
box is given by the quotient F/2E. This endurance factor 
reduces the distance the agent can push the box by a 
factor of two every gait cycle without its partner. When 
both robots push the box simultaneously their endurance 
factors are both reset to zero. Both robots move 
simultaneously and the simulation stops when either the 
robots have taken 100 steps or any one of the three (two 
robots or the box) moves out of the simulated area. 

III.  EVOLUTIONARY METHODS 

The agents were evolved in two separate stages using 
incremental evolution. The first stage of evolution defined 
the robot’s behavior before they first touched the box, 
while the second stage determined their actions 
subsequently. The learning was split into two increments 
because the first stage required no cooperation while the 
second stage did. In the first stage, each agent’s behavior 
was evolved without its partner’s presence in the 
simulation, each population evolved separately. For 
population A, the starting point was (10,5) facing down 
the x-axis; the fitness of an individual was either the value 
of the box’s y coordinate position after the trail ended or 
zero if the individual failed to move the box positively in 
the y direction. For population B, starting at the mirrored 
position (5,10) facing down the y-axis, the individual’s 
score was computed similarly except the agent was 
charged with moving the box positively in the x direction 
to receive a non-zero score. 

In the second increment of evolution, both agents are 
placed in their respective starting positions for team 
evaluation. The fitness score of a team of agents is the 
product of the positive distances the box is moved in the x 
and y directions. Where Xfinal and Yfinal represent the box’s 
final coordinates and Xstart and Ystart represent its starting 
position, the fitness of any given evaluation would be 
((Xfinal- Xstart) * ((Yfinal – Ystart)).  The team is awarded a 
score of zero if the product of the coordinates is negative 
because they failed to advance the box towards target 
corner of the area in the x or y direction. Since  Xstart= 
125, Ystart=125 and the largest that Xfinal and Yfinal can be 
is 250,  the maximum attainable fitness is 1252 or 15625.  

A.  Cyclic Genetic Algorithms 

Evolutionary methods using a cyclic genetic algorithm 
were used both for optimal gait generation and to 
coordinate the partners’ behavior. The CGA is a variation 
of a traditional GA, where the genes of the chromosome 
represent tasks to be completed [6]. The tasks can be 
anything from a single action to a sub-cycle of actions. 
Using this method of representation, it is possible to break 
up a chromosome into multiple genes with each gene 
acting as a cycle. Each gene or sub-cycle can contain two 
parts, one part representing an action or set of actions, and 
the second part representing the number of times that 
action is to be executed. The genes can be arranged into 
repeated sequences and a chromosome can be arranged 
with single or multiple cycles or even the entire 
chromosome can become a cycle. In the case of multiple 
cycles, it is possible to switch from one to the other at any 
point. As in the case of the gait generation, the principle 
cycle of the CGA can have a head and a tail. These 
provide the CGA with pre- and post-cycle procedures, as 
a set of instructions to be executed directly before or after 
entering the cycle. These appended instructions allow for 
the legs to get in position to start a gait cycle or prepare 
for the next set of instructions following one.  The CGA 
was perfectly fit for the incremental evolution of 
heterogeneous behavior. Each increment in the learning 
process was given its own cycle, forming a two-part 
chromosome. The switch from the first cycle to the 
second occurred when the robot touches the box, after the 
completion of the gait cycle’s current execution. Each of 
the two cycles of the CGA chromosome has nine genes.  
Every gene contains two 5-bit numbers, one representing 
a gait cycle with 32 possible turns and the other 
representing the possible repetitions of that gait cycle. See 
figure 3 for a scheme representation of a two-part 
chromosome. 
 
(((T1 R1) (T2 R2)…(T9 R9))    ((T1 R1) (T2 R2)…(T9 R9))) 

Figure 3. Scheme representation of the CGA chromosome where 
T is a specific turn and R is the number of repetitions of that turn. 
The genes that appear in bold represent the second cycle 
controlling the movement of an agent after it first touches the 
box. 

 
The first increment of learning produced two 

populations with sixty-four individuals each capable of 
reaching the box, one population evolved for the robot 
starting at (10,5) and the other starting at the mirrored 
position. For the second increment of learning the 
population was seeded with the first cycle evolved and 
random second cycles were appended for evolution. 
Individuals were selected stochastically for breeding 
based on their fitness score and standard operators were 
used for the CGAs. 



B. Punctuated Anytime Learning for Evolving A Team 

The idea of anytime learning was originally introduced 
by Grefenstette and Ramsey [7] to allow for the 
continuous updating of a robot’s internal model. A system 
of Punctuated Anytime Learning (PAL) was developed by 
Parker [8] to strengthen offline genetic algorithms by 
capitalizing on the dynamic nature of the anytime learning 
approach. Although PAL cannot provide continuous 
updates of the computer’s models, it updates its model 
every G generations, resulting in a period of accelerated 
learning. The generations in which the model is updated 
are referred to as “punctuated” generations. When applied 
to a single GA, PAL updates the computer’s model every 
G generations by running tests on the actual robot and 
uses these results for fitness biasing in the GA [9] or in the 
co-evolution of model parameters [10].  

The concept of punctuated anytime learning was 
applied to co-evolving populations to form members of a 
team [11]. In this case, the updated information that each 
population receives is a more accurate representation of 
the overall nature of the other populations. For ease of 
explanation, assume that an experiment has two 
populations, population A and population B. At every Gth 
generation all individuals in population A are tested 
against all individuals in population B. The purpose of 
this process is to find the most-fit individual from each 
population to evolve with members of the other 
population during normal learning. The chosen most fit 
individual from each population will be referred to as the 
alpha individual. Although the best method of evolution 
would be to select new alpha individuals for each 
generation, the process of alpha selection requires 
significant computation. Assuming there exists I 
individuals in each population and N populations, 
computer must perform IN trials for each generation at trial 
time. In order to avoid this level of computation, new 
alpha individuals are selected only at certain consistently 
spaced periods of time, every G generations. In non-
punctuated generations, the alpha individuals selected 
from the last punctuated generations are paired with 
perspective team members in the other population for 
fitness evaluation. This method not only ensures 
consistency within a generation of training but it also 
decreases the total number of evaluations required to find 
an accurate solution. To test this method we ran five 
separate tests each for five thousand generations of 
training. All but one of the five tests reached a fitness of 
over 14,000 out of the possible 15625.The results showed 
that this method was successful in evolving heterogeneous 
agents. 

C.  Sampling the Nature of Populations 

After the initial success with the PAL method of co-
evolution, it was concluded that a further reduction of 
computation time is required to extend the method to 

teams of three or more agents. We realized that it was 
possible to select an alpha individual while testing a 
sample of the entire population [12]. The number of 
individuals used for comparison to select an alpha 
individual is called the sample size. Assuming there exists 
I individuals in each of the N populations with a sample 
size of S, the computer must perform N * (I * SN-1) trials 
for any given round of alpha selections which requires 
significantly less computation than our previous method 
requiring IN comparisons to select alphas.  

We decided to test the sample sizes of 1, 2, 4, 8, 16, 32, 
and 64 to determine the relative strength of the different 
sample sizes for co-evolution [13]. To ensure that each 
sample size performed an equivalent number of fitness 
comparisons, we staggered the spacing of the punctuated 
generations such that sample 1 performed alpha selection 
every generation, sample 2 performed alpha selection 
every second generation, …, sample 64 performed alpha 
selection every sixty-fourth generation. In addition to 
these alpha evaluations, each generation also incurs 128 
normal evaluations (evaluations during non-punctuated 
generations), one extra for each of the sixty-four members 
of each population.  

The performance of the fittest combination of partners 
for each of the seven different sampling rates were 
recorded through 10240 alpha evaluations. Fitnessses 
were recorded at 0, 64, 128, 256, 512, 1024, 2048, 5120, 
and 10240 alpha evaluations. The tests showed that all 
seven sample sizes reached  reasonably accurate solutions 
and the sample 64 ultimately reached the highest average 
fitness of any sample size by the 10240th alpha evaluation. 
The lower sample sizes showed relatively superior 
performance in the earlier generations of training, but 
inferior performance in later generations. The opposite 
was true for the higher the sampling sizes where they 
were inferior to lower sizes in the earlier generations, but 
better in the later generations of training.  

Although the lower sample sizes did not produce the 
best end result, they were better in the initial stages of 
learning. This quality of the smaller sample sizes shows 
their application for optimizing the method. They exhibit 
their accelerated growth up to the 128th alpha evaluation. 
This is rather intuitive because by the sixty-fourth 
generation, the sample one has evolved with sixty-four 
different pairs of alpha individuals while the sample sixty-
four has evolved with only one pair of alphas. The sample 
4 continues its accelerated growth past the sample sizes of 
1 and 2, because these sample sizes lack the ability to 
represent the true nature of a population with so few 
comparisons for alpha selection.  

The significance of the results can be seen as helping to 
determine whether it is more important to have a more 
accurately selected or a more current alpha individual for 
training. For the box pushing task overall, the best 
sampling sizes are those which allow for sufficient tests in 
the early generations, yet enough of a sample to get the 
nature of the population in later generations.  



 

0

2 00 0

4 00 0

6 00 0

8 00 0

10 00 0

12 00 0

14 00 0

16 00 0

0 2 00 0 4 00 0 6 00 0 8 00 0 10 00 0

A lpha  Evaluations

F
it

n
e
ss

sam ple2

sam ple4

sam ple1 6

sam ple6 4

var-sam ple

Figure 4. Comparison of the varying sample sizes method with the sample sizes 2, 4, 16, and 64. Each curve is an average of five separate 
runs of the GA. The variation sampling curve is shown in bold. 
 

 
D. Varying Sample Sizes 

Based on these results, we concluded that it was 
feasible to optimize our method by varying the sample 
size throughout evolution. This would allow us to 
capitalize on the accelerated growth of the lower sample 
sizes in the early generations, while taking advantage of 
the sustained growth of the higher sample sizes in the later 
generations. We started the evolution with a sample 2 
because of its initial accelerated growth and then 
increased the sample size based on the fitness achieved by 
the best combination of partners. By studying the fitness 
graphs produced through the tests discussed in Section 
3.3, we determined that it was appropriate to switch the 
sample size to 4 when the best team achieved a fitness 
score of 4,000, 16 when the team achieved a fitness score 
of 8,000 and then to 64 when the team achieved a score of 
12,000. This method of increasing the sample size based 
on the current fitness can be extended to any finite fitness 
landscape. We chose to separate the fitness ascensions 
into four steps because our maximum fitness was around 
16,000 which is easily divisible by 4. The graph in Figure 
4 compares the performance of an average of five test runs 

for the varying sample sizes method and each of the 
sample sizes used as part of the evolutionary method. The 
data points represent the fitness achieved by the best 
combination of partners.  By looking at the graph in 
Figure 5 it is clear that the varying sample sizes method 
produces an accurate solution with fewer alpha 
evaluations than any single sample size. This method 
reaches a fitness greater than 14,422 by the 512th alpha 
evaluation which corresponds to moving the box within 
approximately 4 units of the target corner in the 
simulation. A look at the data used to create Figure 4 can 
be seen in Table 1. When examining the average fitness 
scores it is evident that the varying sample sizes method 
not only produces an accurate solution with few alpha 
comparisons but its final solution after the 10240th alpha 
evaluation is highly accurate. Though the sample 64 
reaches a greater fitness by the 10240th alpha evaluation, 
the discrepancy between these average fitnesses is less 
than 100 points. It is important to note that these results 
are specific to the box pushing task. The design of 
increasing the sample sizes based on fitnesses was derived 
from observing the behavior of all the sample sizes.  



 
 

TABLE 1: TABLE OF AVERAGE FITNESS SCORES WHICH ARE PLOTTED IN FIGURE 5.  

 0 64 128 256 512 1024 2048 5120 10240
sample2 1075.87 8592.07 9248.61 8893.13 10457.67 11572.11 12544.2 13726.38 13339.81
sample4 1075.87 9149.9 9931.98 13175.6 12876.34 14164.44 14676.55 14314.95 14847.15
sample16 1075.87 3830.9 7975.32 13656.04 13931.37 14003.6 14936.59 15464.85 15356.91
sample64 1075.87 914.58 3849.58 7843.88 9274.53 15428.84 15423.68 15554.57 15556.31
var-sample 1075.87 7754.68 11200.67 13436.36 14422.97 14546.82 15182.41 15364.77 15457.45
 
 

IV.  CONCLUSIONS 

Our results show that it is possible to increase the 
sample size for alpha selection throughout the learning 
based on the fitness achieved by the best combination of 
partners. An advantage of the varying sample sizes 
method is that it gives a highly accurate solution at any 
point in the learning. The limitation of using a single 
sample size is that it does not always maintain consistent 
growth.  If it a GA is evolving with a sample 64 the 
solutions in the early generations of training would be 
inferior even though it ultimately reaches the highest 
fitness.  Conversely, if the GA is evolving with a sample 
2, yet it may provide good solutions in the early 
generations, finding an accurate solution in the final 
generations of training is unlikely.  No single sample size 
is capable of producing consistently accurate solutions 
throughout training. 

This method also reduces computation time by 
producing an accurate solution with fewer generations of 
training.  While our method of switching based on fitness 
has proved effective, it is only applicable to problems 
with a similar maximum fitness. In future research we will 
develop a more general method to determine the best time 
to change sample sizes during the evolution without any 
prior knowledge of the problem. 
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