
Varying Sample Sizes
for the Co-Evolution of Heterogeneous Agents

Gary B. Parker and H. Joseph Blumenthal
Computer Science

Connecticut College
New London, CT 06320

parker@conncoll.edu and hjblu@conncoll.edu

Abstract - The evolution of a heterogeneous team is a

complex problem. Evolving teams in a single population can
retard the GA’s ability to specialize emergent behavior, but
co-evolution requires a system for evaluation at trial time. If
too few combinations of partners are tested, the GA is unable
to recognize fit agents; if too many agents are tested, the
resultant computation time becomes excessive. We created a
system based on punctuated anytime learning that only
periodically tests samples of partner combinations to reduce
computation time and tested a variety of sample sizes. In this
paper, we present a successful method of varying the sample
sizes, dependent on the level of fitness, using a box pushing
task for comparison.

I. INTRODUCTION

The objective of our work is to define a method for
evolving a team that simultaneously reduces computation
time while maximizing accuracy. A powerful method for
producing cooperative behavior is essential because of its
potential for application in today’s world. Some
applications for teams include toxic waste cleanup and
search and rescue teams. These tasks are often too
dangerous for humans and therefore fertile ground for the
employment of teams of robots. We chose a box pushing
task to test the strength of our method because it
represents a simplified task related to our method’s
possible applications. Evolving heterogeneous behavior
for teams has been approached in several different ways.

Luke and Spector researched methods for increasing
specialization and cooperation in team behavior [1]. The
applied problem in their research was the Predator-Prey
scenario. The simulated scenario was a terriodal
(continuous) space where four agents representing “lions”
chase a randomly moving “gazelle”. Using the success
rate of capture for comparison, Luke and Spector
concluded it was advantageous to consider the whole team
as a single GP individual. Though this method produced
heterogeneous behavior, we believe evolving team
members in separate populations will further increase
specialization because the GA can concentrate on making
the best individual to do the task. When a team is
represented by a single GP individual it is hard to obtain
an individual’s fitness without it being overly influenced
by the team members to which the agent is bound within
the same chromosome. This issue highlights the greatest
challenge of co-evolution using separate populations, how

to pair teams at trial time. Random selection of teams
could result in fit members going unrecognized by the GA
because of a poor member of the team.

Potter and De Jong developed a method to address the
co-evolution of separate populations [2]. Their method,
referred to as cooperative co-evolutionary algorithms
(CCAs), tests an individual’s fitness by pairing it with a
single member from each of the opposing populations.
These chosen members from each of the opposing
populations are the fittest members within their own
population from the previous generation of training. Using
this system Potter, Meeden, and Shultz co-evolved
artificially intelligent agents to heard sheep into a corral
[3]. Their results showed this to be a successful method of
producing heterogeneous behavior. Even though the CCA
proved to be an efficient system of co-evolution, it still
limits an individual’s fitness calculation to a single
partner.

Wiegand, Liles, and De Jong, investigated which
factors influenced co-evolution using different
implementations of the CCA [4]. In their research they
focused on collaborator selection issues. The first
implementation tested (CCA-1) used the best individual
for pairing at trial time, while the second (CCA-2) had
varying collaborator pool size, the number of individuals
chosen for comparison at trial time. They concluded that
the most prominent factor for co-evolution was the
collaborator pool size. Wiegand, Liles, and De Jong, also
point out that as the pool size increases so does the
computation required for generational training. Taking
this concept to the extreme, the most accurate solution
would be to test all members of a population against all
other possible partners in the opposing populations. Using
this method a problem involving N populations with I
members in each population, would require IN
comparisons for any generation of training. This level of
computation is unacceptable.

In this paper, we discuss a method that maximizes
accuracy while minimizing computation time. This
method involves a periodic selection of a single individual
from each population that represents the overall nature of
its population. These selected individuals are referred to
as alpha individuals and the generations of selection are
called punctuated generations. At trial time, it is possible
to attain the fitness of any individual by constructing a
team using the alpha individuals from the opposing

populations. We continue to optimize our algorithm in
terms of accuracy and reducing computation time by
varying the spacing between punctuated generations and
the collaborator pool size used for alpha selection. We
choose a box-pushing task to show the success of our
method.

II. BOX-PUSHING TASK

The task is designed to require the cooperative
behavior of two hexapod robots. The robots, which start
from one corner of an enclosed square area, are to walk to
and push a box that is in the middle of the area to the
opposite corner.

Figure 1. The ServoBot

The robots are modeled after an actual robot, which is a

ServoBot. ServoBots are inexpensive hexapod robots
constructed from masonite (a hard pressed wood). Each
leg has two motorized servos, one oriented in a vertical
capacity and the other oriented in a horizontal capacity,
giving two degrees of freedom per leg (Figure 1). In order
to control the motion of the robot, a BASIC Stamp II is
mounted on the top of the ServoBot. The BASIC Stamp II
is capable of individually addressing each of the twelve
servo actuators to produce and sustain a gait cycle. A gait
cycle is a timed and coordinated motion of the legs of a
robot, such that the legs return to the positions from which
they began. The BASIC Stamp is capable of storing a
sequence of timed activations, which represent the
simultaneous movement of all twelve servos.

Using a cyclic genetic algorithm (discussed in a later
section), a gait cycle for a specific ServoBot can be
evolved [5]. The optimal gait cycle found for the
ServoBot modeled in our simulation was a tripod gait. A
tripod gait maintains static stability while maximizing the
walking speed for a hexapod robot. The right front and
back and the left middle legs are down and moving back
while the other three legs are lifting up as they move
forward. Different degrees of turns were generated for

the ServoBot by decreasing thrust of the legs on one side
of the robot. If the left legs have less thrust than the right
legs, result would be a left turn due to the drag created by
the left legs throughout the duration of the gait cycle. The
resultant turns were measured by tests on the actual robot
giving 14 left and right turns, plus a no turn. These turns
were measured in centimeters moved and degrees turned.
These values were recorded and stored in a table with the
addition of a “zero” value that corresponds to the robot
not moving at all, giving a total of 32 total turns.

The scenario from which the task has been abstracted is
a colony space in the Connecticut College Robotics Lab.
The colony space is approximately an 8x8 ft area. In the
colony space, the two ServoBot robots and a square
cardboard box can be placed. The problem is designed for
the pair to act cooperatively to force the box into the
opposing corner from which the robots started. The tests
done in simulation use agents that model actual robots
present in the lab.

Figure 2. Simulation of the colony area with everything in its
starting positions

The simulated environment used for evolving the

agents was an abstraction of the colony space in the lab
measuring 250x250 units. Both robots were represented as
circles with a diameter of 6 units but the robots were
treated as single points for the rules of contact with the
box. The box was represented as a square measuring
18x18 units. In every trial the agents and the box were
placed in consistent starting positions. In the simulated
environment the point (0,0) is in the upper left hand
corner of the area. The first robot was placed in the

location (10,5) and faced parallel to the x-axis, while the
second robot started in the mirrored position (5,10). The
box started in the center of the space at the point
(125,125). In Figure 2 we see the starting position of the
simulation where the first robot at (10,5) is shaded in dark
grey, and the second robot at (5,10) is shaded in light
grey.

Each robot’s ability to move the box on its own
(without aid from its partner) was affected by an
endurance factor. This endurance factor is initially set to
zero and increases by one with each consecutive non-
aided push of the box. If F represents the would be full
force of the robot’s push acting singly, and E representing
the endurance factor, the force the robot may apply to the
box is given by the quotient F/2E. This endurance factor
reduces the distance the agent can push the box by a
factor of two every gait cycle without its partner. When
both robots push the box simultaneously their endurance
factors are both reset to zero. Both robots move
simultaneously and the simulation stops when either the
robots have taken 100 steps or any one of the three (two
robots or the box) moves out of the simulated area.

III. EVOLUTIONARY METHODS

The agents were evolved in two separate stages using
incremental evolution. The first stage of evolution defined
the robot’s behavior before they first touched the box,
while the second stage determined their actions
subsequently. The learning was split into two increments
because the first stage required no cooperation while the
second stage did. In the first stage, each agent’s behavior
was evolved without its partner’s presence in the
simulation, each population evolved separately. For
population A, the starting point was (10,5) facing down
the x-axis; the fitness of an individual was either the value
of the box’s y coordinate position after the trail ended or
zero if the individual failed to move the box positively in
the y direction. For population B, starting at the mirrored
position (5,10) facing down the y-axis, the individual’s
score was computed similarly except the agent was
charged with moving the box positively in the x direction
to receive a non-zero score.

In the second increment of evolution, both agents are
placed in their respective starting positions for team
evaluation. The fitness score of a team of agents is the
product of the positive distances the box is moved in the x
and y directions. Where Xfinal and Yfinal represent the box’s
final coordinates and Xstart and Ystart represent its starting
position, the fitness of any given evaluation would be
((Xfinal- Xstart) * ((Yfinal – Ystart)). The team is awarded a
score of zero if the product of the coordinates is negative
because they failed to advance the box towards target
corner of the area in the x or y direction. Since Xstart=
125, Ystart=125 and the largest that Xfinal and Yfinal can be
is 250, the maximum attainable fitness is 1252 or 15625.

A. Cyclic Genetic Algorithms

Evolutionary methods using a cyclic genetic algorithm
were used both for optimal gait generation and to
coordinate the partners’ behavior. The CGA is a variation
of a traditional GA, where the genes of the chromosome
represent tasks to be completed [6]. The tasks can be
anything from a single action to a sub-cycle of actions.
Using this method of representation, it is possible to break
up a chromosome into multiple genes with each gene
acting as a cycle. Each gene or sub-cycle can contain two
parts, one part representing an action or set of actions, and
the second part representing the number of times that
action is to be executed. The genes can be arranged into
repeated sequences and a chromosome can be arranged
with single or multiple cycles or even the entire
chromosome can become a cycle. In the case of multiple
cycles, it is possible to switch from one to the other at any
point. As in the case of the gait generation, the principle
cycle of the CGA can have a head and a tail. These
provide the CGA with pre- and post-cycle procedures, as
a set of instructions to be executed directly before or after
entering the cycle. These appended instructions allow for
the legs to get in position to start a gait cycle or prepare
for the next set of instructions following one. The CGA
was perfectly fit for the incremental evolution of
heterogeneous behavior. Each increment in the learning
process was given its own cycle, forming a two-part
chromosome. The switch from the first cycle to the
second occurred when the robot touches the box, after the
completion of the gait cycle’s current execution. Each of
the two cycles of the CGA chromosome has nine genes.
Every gene contains two 5-bit numbers, one representing
a gait cycle with 32 possible turns and the other
representing the possible repetitions of that gait cycle. See
figure 3 for a scheme representation of a two-part
chromosome.

(((T1 R1) (T2 R2)…(T9 R9)) ((T1 R1) (T2 R2)…(T9 R9)))

Figure 3. Scheme representation of the CGA chromosome where
T is a specific turn and R is the number of repetitions of that turn.
The genes that appear in bold represent the second cycle
controlling the movement of an agent after it first touches the
box.

The first increment of learning produced two

populations with sixty-four individuals each capable of
reaching the box, one population evolved for the robot
starting at (10,5) and the other starting at the mirrored
position. For the second increment of learning the
population was seeded with the first cycle evolved and
random second cycles were appended for evolution.
Individuals were selected stochastically for breeding
based on their fitness score and standard operators were
used for the CGAs.

B. Punctuated Anytime Learning for Evolving A Team

The idea of anytime learning was originally introduced
by Grefenstette and Ramsey [7] to allow for the
continuous updating of a robot’s internal model. A system
of Punctuated Anytime Learning (PAL) was developed by
Parker [8] to strengthen offline genetic algorithms by
capitalizing on the dynamic nature of the anytime learning
approach. Although PAL cannot provide continuous
updates of the computer’s models, it updates its model
every G generations, resulting in a period of accelerated
learning. The generations in which the model is updated
are referred to as “punctuated” generations. When applied
to a single GA, PAL updates the computer’s model every
G generations by running tests on the actual robot and
uses these results for fitness biasing in the GA [9] or in the
co-evolution of model parameters [10].

The concept of punctuated anytime learning was
applied to co-evolving populations to form members of a
team [11]. In this case, the updated information that each
population receives is a more accurate representation of
the overall nature of the other populations. For ease of
explanation, assume that an experiment has two
populations, population A and population B. At every Gth
generation all individuals in population A are tested
against all individuals in population B. The purpose of
this process is to find the most-fit individual from each
population to evolve with members of the other
population during normal learning. The chosen most fit
individual from each population will be referred to as the
alpha individual. Although the best method of evolution
would be to select new alpha individuals for each
generation, the process of alpha selection requires
significant computation. Assuming there exists I
individuals in each population and N populations,
computer must perform IN trials for each generation at trial
time. In order to avoid this level of computation, new
alpha individuals are selected only at certain consistently
spaced periods of time, every G generations. In non-
punctuated generations, the alpha individuals selected
from the last punctuated generations are paired with
perspective team members in the other population for
fitness evaluation. This method not only ensures
consistency within a generation of training but it also
decreases the total number of evaluations required to find
an accurate solution. To test this method we ran five
separate tests each for five thousand generations of
training. All but one of the five tests reached a fitness of
over 14,000 out of the possible 15625.The results showed
that this method was successful in evolving heterogeneous
agents.

C. Sampling the Nature of Populations

After the initial success with the PAL method of co-
evolution, it was concluded that a further reduction of
computation time is required to extend the method to

teams of three or more agents. We realized that it was
possible to select an alpha individual while testing a
sample of the entire population [12]. The number of
individuals used for comparison to select an alpha
individual is called the sample size. Assuming there exists
I individuals in each of the N populations with a sample
size of S, the computer must perform N * (I * SN-1) trials
for any given round of alpha selections which requires
significantly less computation than our previous method
requiring IN comparisons to select alphas.

We decided to test the sample sizes of 1, 2, 4, 8, 16, 32,
and 64 to determine the relative strength of the different
sample sizes for co-evolution [13]. To ensure that each
sample size performed an equivalent number of fitness
comparisons, we staggered the spacing of the punctuated
generations such that sample 1 performed alpha selection
every generation, sample 2 performed alpha selection
every second generation, …, sample 64 performed alpha
selection every sixty-fourth generation. In addition to
these alpha evaluations, each generation also incurs 128
normal evaluations (evaluations during non-punctuated
generations), one extra for each of the sixty-four members
of each population.

The performance of the fittest combination of partners
for each of the seven different sampling rates were
recorded through 10240 alpha evaluations. Fitnessses
were recorded at 0, 64, 128, 256, 512, 1024, 2048, 5120,
and 10240 alpha evaluations. The tests showed that all
seven sample sizes reached reasonably accurate solutions
and the sample 64 ultimately reached the highest average
fitness of any sample size by the 10240th alpha evaluation.
The lower sample sizes showed relatively superior
performance in the earlier generations of training, but
inferior performance in later generations. The opposite
was true for the higher the sampling sizes where they
were inferior to lower sizes in the earlier generations, but
better in the later generations of training.

Although the lower sample sizes did not produce the
best end result, they were better in the initial stages of
learning. This quality of the smaller sample sizes shows
their application for optimizing the method. They exhibit
their accelerated growth up to the 128th alpha evaluation.
This is rather intuitive because by the sixty-fourth
generation, the sample one has evolved with sixty-four
different pairs of alpha individuals while the sample sixty-
four has evolved with only one pair of alphas. The sample
4 continues its accelerated growth past the sample sizes of
1 and 2, because these sample sizes lack the ability to
represent the true nature of a population with so few
comparisons for alpha selection.

The significance of the results can be seen as helping to
determine whether it is more important to have a more
accurately selected or a more current alpha individual for
training. For the box pushing task overall, the best
sampling sizes are those which allow for sufficient tests in
the early generations, yet enough of a sample to get the
nature of the population in later generations.

0

2 00 0

4 00 0

6 00 0

8 00 0

10 00 0

12 00 0

14 00 0

16 00 0

0 2 00 0 4 00 0 6 00 0 8 00 0 10 00 0

A lpha Evaluations

F
it

n
e
ss

sam ple2

sam ple4

sam ple1 6

sam ple6 4

var-sam ple

Figure 4. Comparison of the varying sample sizes method with the sample sizes 2, 4, 16, and 64. Each curve is an average of five separate
runs of the GA. The variation sampling curve is shown in bold.

D. Varying Sample Sizes

Based on these results, we concluded that it was
feasible to optimize our method by varying the sample
size throughout evolution. This would allow us to
capitalize on the accelerated growth of the lower sample
sizes in the early generations, while taking advantage of
the sustained growth of the higher sample sizes in the later
generations. We started the evolution with a sample 2
because of its initial accelerated growth and then
increased the sample size based on the fitness achieved by
the best combination of partners. By studying the fitness
graphs produced through the tests discussed in Section
3.3, we determined that it was appropriate to switch the
sample size to 4 when the best team achieved a fitness
score of 4,000, 16 when the team achieved a fitness score
of 8,000 and then to 64 when the team achieved a score of
12,000. This method of increasing the sample size based
on the current fitness can be extended to any finite fitness
landscape. We chose to separate the fitness ascensions
into four steps because our maximum fitness was around
16,000 which is easily divisible by 4. The graph in Figure
4 compares the performance of an average of five test runs

for the varying sample sizes method and each of the
sample sizes used as part of the evolutionary method. The
data points represent the fitness achieved by the best
combination of partners. By looking at the graph in
Figure 5 it is clear that the varying sample sizes method
produces an accurate solution with fewer alpha
evaluations than any single sample size. This method
reaches a fitness greater than 14,422 by the 512th alpha
evaluation which corresponds to moving the box within
approximately 4 units of the target corner in the
simulation. A look at the data used to create Figure 4 can
be seen in Table 1. When examining the average fitness
scores it is evident that the varying sample sizes method
not only produces an accurate solution with few alpha
comparisons but its final solution after the 10240th alpha
evaluation is highly accurate. Though the sample 64
reaches a greater fitness by the 10240th alpha evaluation,
the discrepancy between these average fitnesses is less
than 100 points. It is important to note that these results
are specific to the box pushing task. The design of
increasing the sample sizes based on fitnesses was derived
from observing the behavior of all the sample sizes.

TABLE 1: TABLE OF AVERAGE FITNESS SCORES WHICH ARE PLOTTED IN FIGURE 5.

 0 64 128 256 512 1024 2048 5120 10240
sample2 1075.87 8592.07 9248.61 8893.13 10457.67 11572.11 12544.2 13726.38 13339.81
sample4 1075.87 9149.9 9931.98 13175.6 12876.34 14164.44 14676.55 14314.95 14847.15
sample16 1075.87 3830.9 7975.32 13656.04 13931.37 14003.6 14936.59 15464.85 15356.91
sample64 1075.87 914.58 3849.58 7843.88 9274.53 15428.84 15423.68 15554.57 15556.31
var-sample 1075.87 7754.68 11200.67 13436.36 14422.97 14546.82 15182.41 15364.77 15457.45

IV. CONCLUSIONS

Our results show that it is possible to increase the
sample size for alpha selection throughout the learning
based on the fitness achieved by the best combination of
partners. An advantage of the varying sample sizes
method is that it gives a highly accurate solution at any
point in the learning. The limitation of using a single
sample size is that it does not always maintain consistent
growth. If it a GA is evolving with a sample 64 the
solutions in the early generations of training would be
inferior even though it ultimately reaches the highest
fitness. Conversely, if the GA is evolving with a sample
2, yet it may provide good solutions in the early
generations, finding an accurate solution in the final
generations of training is unlikely. No single sample size
is capable of producing consistently accurate solutions
throughout training.

This method also reduces computation time by
producing an accurate solution with fewer generations of
training. While our method of switching based on fitness
has proved effective, it is only applicable to problems
with a similar maximum fitness. In future research we will
develop a more general method to determine the best time
to change sample sizes during the evolution without any
prior knowledge of the problem.

REFERENCES

[1] Luke, S. and Spector, L., “Evolving Teamwork and
Coordination with Genetic Programming,” Proceedings of
First Genetic Programming Conference. (1996), 150-156.

[2] Potter M. A. and De Jong K. A., “A Cooperative
Coevolutionary Approach to Function Optimization,”
Proceedings of the Third Conference on Parallel Problem
Solving from Nature. (1994), 249-257.

[3] Potter, M. A., Meeden L. A., and Schultz A. C.,
“Heterogeneity in the Coevolved Behaviors of Mobile
Robots: The Emergence of Specialists,” Proceedings of the
Seventeenth International Conference on Artificial
Intelligence. (2001).

[4] Wiegand R. P., Liles W. C., and De Jong K. A., “An
Empirical Analysis of Collaboration Methods in
Cooperative Coevolutionary Algorithms,” Proceedings of

the Genetic and Evolutionary Computation Conference
(GECCO). (2001), 1235-1245.

[5] Parker, Gary B., “Evolving Cyclic Control for a Hexapod
Robot Performing Area Coverage,” Proceedings of 2001
IEEE International Symposium on Computational
Intelligence in Robotics and Automation (CIRA 2001).
(2001), 561-566.

 [6] Parker, Gary B. and Rawlins, Gregory J.E., “Cyclic Genetic
Algorithms for the Locomotion of Hexapod Robots”
Proceedings of the World Automation Congress (WAC '96),
Volume 3, Robotic and Manufacturing Systems. (1996),
617-622.

[7] Grefenstette, J. J. and Ramsey, C. L., “An Approach to
Anytime Learning. Proceeding of the Ninth International
Conference on Machine Learning, (1992), 189-195.

[8] Parker, Gary B., “Punctuated Anytime Learning for
Hexapod Gait Generation,” Proceedings of the 2002
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2002). (2002), 2664-2671.

[9] Parker, Gary B. and Mills, Jonathan W., “Adaptive
Hexapod Gait Control Using Anytime Learning with Fitness
Biasing,” Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO'99). (1999), 519-524.

[10] Parker, Gary B., “Co-Evolving Model Parameters for
Anytime Learning in Evolutionary Robotics,” Robotics and
Autonomous Systems, Vol. 33, Issue 1, (2000) 13-30.

[11] Parker, Gary B. and Blumenthal, J., “Punctuated Anytime
Learning for Evolving a Team,” Proceedings of the World
Automation Congress (WAC2002), Vol. 14, Robotics,
Manufacturing, Automation and Control. (2002), 559-566.

[12] Parker, Gary B. and Blumenthal, J., “Sampling the Nature of
A Population: Punctuated Anytime Learning For Co-
Evolving A Team,” Intelligent Engineering Systems
Through Artificial Neural Networks (ANNIE2002, Vol. 12)
(2002), 207-212.

[13] Parker, Gary B. and Blumenthal J., “Comparison of
Sampling Sizes for the Co-Evolution of Cooperative
Agents,” Proceedings of the 2003 Congress on
Evolutionary Computation (CEC 2003). (2003), 536-543.

