
Punctuated Anytime Learning for Evolving
Multi-Agent Capture Strategies

H. Joseph Blumenthal and Gary B. Parker
Computer Science

Connecticut College
New London, CT 06320 USA

hjblu@conncoll.edu and parker@conncoll.edu

Abstract- The evolution of a team of heterogeneous agents

is challenging. To allow the greatest level of specialization
team members must be evolved in separate populations, but
finding acceptable partners for evaluation at trial time is
difficult. Testing too few partners blinds the GA from
recognizing fit solutions while testing too many partners
makes the computation time unmanageable. We developed a
system based on punctuated anytime learning that
periodically tests a number of partner combinations to select a
single individual from each population to be used at trial time.
We previously tested our method with a two agent box-
pushing task. In this work, we show the efficiency of our
method by applying it to the predator-prey scenario.

I. INTRODUCTION

The objective of this work is to extend the range of our
method of co-evolution by testing it in a problem
involving four separate populations. The success of our
method rests upon the GA’s ability to produce a highly
accurate solution while minimizing computation. We
choose the predator-prey scenario [1] because it can
easily accommodate teams of four agents, and it
represents a simplified problem with respect to its
possible applications. Additionally, by choosing a new
task we expand the problems solved by our method.
Cooperative behavior is an important field in robotics
because robots that cooperate can often achieve much
more than the sum of what they could do individually.
Learning cooperative behavior for robots has been
approached in several ways.

Luke and Spector developed a method for evolving a
team of agents that act cooperatively [2]. As in our
current research, Luke and Spector used the predator-
prey scenario as the test-bed for their research. In their
simulation four artificially intelligent agents representing
“lions” attempt to trap the prey representing a “gazelle”.
Their method used genetic programming and represented
the entire team of four lions as a single GP individual.
Even though this method showed to be a good method for
evolving heterogeneous behavior, this approach has the
potential to limit specialization in the evolution. Evolving
team members in a single chromosome compromises the
ability of the GA to recognize suitable team members
because a partner’s score is overly influenced by the
performance of other members of the team. Evolving
team members in separate populations will tend toward
specialization, so the evolutionary power of the GA can

be concentrated on producing the most specialized
individual possible.

Potter and De Jong created a method for evolving team
members in separate populations with cooperative
coevolutionary algorithms (CCAs) [3]. This method tests
an individual’s fitness by pairing it with a single
individual from the other populations. This single
individual used at trial time is the fittest individual from
the last generation of training. Potter, Meeden, and Shultz
employed this method to co-evolve agents to heard sheep
into a corral [4]. The agents were then given the added
challenge by introducing agents representing wolves
which tried to attack the sheep. This method proved
highly effective and the evolved agents moved the sheep
into the corral while providing protection from the
wolves.

While this method proved to be a successful means to
evolve heterogeneous behavior, the CCA method still
limits each individual’s fitness calculation to being
computed with only a single partner. In later work,
Wiegand, Liles, and De Jong took an in depth look at the
pertinent issues of co-evolution [5]. They concluded that
the most influential factor in co-evolution is the
collaborator pool size, or the number of combinations of
partners tested at trial time. They also note that as the
collaborator pool size increases so does the computation
required to find a solution to any given problem. Taking
this approach to the extreme, the most accurate method of
co-evolution would be to test every possible combination
of partners every generation. For a task requiring N
partners with I individuals in each population, any round
of training would require IN evaluations; a method too
computationally expensive for practical use.

Parker developed Punctuated Anytime learning (PAL)
to allow for a learning system to be periodically updated
throughout a simulated evolution [6]. The computer’s
internal model in simulation is updated or the GA’s
fitness evaluation is altered by measuring the robot’s
actual performance at certain consistently spaced
numbers of generations called punctuated generations
and entering those values into the GA.

Parker and Blumenthal adapted the concept of PAL to
be applicable to evolving cooperative teams [7]. This
method used the periodic nature of PAL to minimize the
number of fitness evaluations required to evolve team
members in separate populations. As previously stated,
the most accurate method of fitness evaluation would be

to get an individual's fitness by pairing it with all possible
partners at trial time. In order to reduce the number of
fitness evaluations, at certain punctuated generations this
method selected a single individual from each population
as the best representative of the overall nature of their
own population. This selected individual, referred to as
an alpha individual, was used as a partner at trial times
for evaluating the fitness of any individual in the
opposing population. Employing this method of PAL,
with G generations between each round of alpha
selection, the number of fitness evaluations is reduced by
a factor of G. Although these results showed that this
method produces a highly accurate solution, it is still too
computationally intensive to accommodate more than
two populations.

Additional research showed that it is possible to further
reduce computations during alpha selection by testing
each individual’s fitness with less than the entirety of the
opposing population [8]. The chosen group used for alpha
selection is referred to as the sample and the number of
individuals in that sample is called the sample size. Upon
realizing the success of this method, Parker and
Blumenthal focused research on testing a number of
differing sample sizes while ensuring that each perform
an equivalent number of evaluations by changing the
spacing between alpha selections during an evolution. It
was found that the sample sizes of 4, 8, and 16 represent
good candidates for consistent growth throughout an
evolution. The previous research was tested by evolving
a team of two robots to push a box to a target corner of
the simulated area. The success of the PAL sampling
method in solving this new problem expands the use of
our method indicating its potential for general
applicability. In this paper, we show the results of testing
our sampling method using the predator-prey scenario
with a team of four agents. The success of the PAL
sampling method in solving this new problem expands
the use of our method indicating its potential for general
applicability, with an increase in the number of team
members.

Figure 1. The ServoBot

II. ROBOT SIMULATION

All five robots simulated are modeled after ServoBots,
which are inexpensive hexapod robots made of pressed
wood with twelve hobby servos (Figure 1). The
movements of the servos are coordinated by a central
controller, a BASIC Stamp II capable of individually
addressing each of the twelve servo actuators (two on
each leg) to produce and sustain forward motion. The
BASIC Stamp II is capable of storing a sequence of timed
activations to be repeated. These timed activations if
sequenced correctly produce a gait cycle defined as the
timed and coordinated motion of the legs of a robot such
that the legs return to the positions from which they began
the motion. Each activation represents the simultaneous
movement of the twelve servos. The list of controls for the
twelve servos is represented in the controller as a twelve-
bit number. Each bit represents a single servo with a 0 or a
1. For the horizontal servos a 1 indicates full back and a 0
indicates full forward. Likewise, for the vertical servos a 0
corresponds to full down and a 1 corresponds to full lift.
Therefore, each pair of bits can represent the motion of
one leg, each bit controlling one servo, corresponding to
one of the two degrees of freedom. The pairs of bits are
ordered to their represented leg as 0 to 5 with legs 0,2,4
being on the right from front to back and 1,3,5 being on
the left from front to back (Figure 2). Figure 2 also shows
the corresponding twelve-bit activation. By this example,
the number 001000000000 would lift the front left leg up,
and 000001000000 would pull the second right leg
backward.

01
23
45

Activation: 100101101001

 10 01 01 10 10 01

Each activation is held by the controller for one pulse
(approximately 25 msec). With this method of
representation, a cyclic genetic algorithm (CGA) which is
discussed in a later section can be used to evolve an
optimal gait cycle for a specific ServoBot [9]. The gait
cycle used in our simulation was a tripod gait, in which
three legs provide thrust while three legs are repositioning
to provide thrust on the next set of activations. This near
optimal gait cycle, which requires a sequence of 29
pulses, was learned by the CGA four our specific
ServoBot.

Different degrees of turns varying from sweeping to
sharp were then generated for our ServoBot by decreasing
the total number of pulses sent to one side of the robot. If
legs 1,3,5 were given all 29 pulses but legs 0,2,4 were

Figure 2: Diagram numbering the legs of the ServoBot and a sample
twelve-bit activation.

only given 14 pulses the result would be a right turn due
to the reduced thrust generated by the left legs (0,2,4)
throughout the duration of the gait cycle. The effects of
each of the 14 left and right turns, plus no turn, were
measured as they were performed by the ServoBot being
tested. These turns are unique to the particular ServoBot,
for example the recorded “no turn” actually drifted left
due to minor differences in the physical construction.
These 31 performance values (measured in centimeters
moved and degrees turned) were recorded and stored in a
table.

III. THE PREDATOR-PREY SIMULATION

The task is to have four hexapod robots (the predators),
starting in randomly placed positions, to capture a single
hexapod robot (the prey), which starts in the middle. All
five hexapod robots are placed in a colony space
(simulated area measuring 500x500 units). The predators
must capture the prey before it reaches the edge of the
colony space. All of the tests done in simulation use
agents that model existing robots in the lab. All five
agents in the simulation were represented as circles and
could see for 125 units in any direction. Both the
predators and prey move simultaneously and have the
exact same capabilities for motion. The prey attempts to
evade the predators using the nearest predator first
algorithm (NPF), which simply moves the prey in the
opposite direction of the nearest predator. If the prey does
not see any predators, three out of four times a random
number from 0 to 31 is generated to determine its next
gait cycle and the other one fourth of the time the prey
remains stationary to simulate a feeding behavior. At the
beginning of any GA run, the prey is placed in the center
of the simulated area at the point (250,250) with a random
heading from 0 to 360 degrees. The four predators are
assigned random starting headings and coordinates except
that no predator can start within sight of the prey. These
assigned random starting positions are held throughout
every generation of training. The simulation is a non-
bounded-box environment, meaning that any of the
predators or the prey can step out of the simulation at
anytime. In the event that a predator steps out of bounds,
it is automatically removed from the round. The
simulation ends if the prey moves out of bounds, is
captured, or either the prey or any of the predators have
taken 200 steps. To have a successful capture a predator
must move within 12 units of the prey, a distance
equivalent to approximately twice the size of the agents
themselves.

IV. EVOLUTIONARY METHODS

A. Cyclic Genetic Algorithms

A variation on the standard GA called a cyclic genetic
algorithm (CGA) was used to develop our four

heterogeneous cooperative agents [10]. A CGA differs
from a regular GA in that the genes of the chromosome
represent tasks to be completed. The tasks can be
anything from a single action to a sub-cycle of actions.
Using this method of representation, it is possible to
break up a chromosome into multiple genes with each
gene acting as a cycle. Each gene or sub-cycle can
contain two parts, one part representing an action or set
of actions, and the second part representing the number
of times that action is to be executed. The genes can be
arranged into repeated sequences and a chromosome can
be arranged with single or multiple cycles or even the
entire chromosome can be a cycle. In the case of multiple
cycles, it is possible to switch from one to the other at
any point. The evolved chromosome had two separate
cycles. The first cycle determines the predator’s actions
before it first sees the prey, while the second determines
its actions subsequently. Every gene contained two 5-bit
numbers, one representing a gait cycle with 31 possible
turns or a 0 which indicated that it was to stand still and
the other representing the repetitions of that gait cycle.
The scheme representation of the chromosome is shown
in Figure 3.

(((T1 R1) (T2 R2) … T9 R9)) ((T1 R1) (T2 R2) … (T9 R9)))

Figure 3. Scheme representation of the CGA chromosome where
T is a specific turn and R is the number of repetitions of that
turn. The genes which appear in bold represent the second cycle,
which controls the agent’s movement after it first sees the prey.

B. Fitness Evaluation

The fitness score of a team of predators which fails to
capture the prey is the number of steps taken in the
round. Because it is possible for the prey to all together
escape the environment, the predators are rewarded for
keeping the prey within the simulation for as long as
possible. In the event of a capture, the fitness of a team is
the number of steps in the round plus a bonus for the
capture, which is derived from the distance of the
capturing predator to the prey. Equation 1 shows the
score awarded for a successful capture. With an equal
number of rows and columns in the simulation this
number is represented by NUM-COL-ROW, the
maximum distance that can be between a predator and a
prey for it to be considered a capture is MAX-CAPT-
DIST, and the distance of the capturing predator to the
prey is capt-dist. If a member of the team of predators
captures the prey at the minimum allowable capture
distance, the team is given a score of NUM-COL-ROW
because the denominator turns to 1. However, if the
distance of the capture is less than the minimum, the
fraction (capt-dist / MAX-CAPT-DIST) becomes
increasingly smaller forcing the score to elevate
drastically. We decided to focus our fitness function on
the distance of the capture because in order to achieve a

consistently small capture distance a team is forced to
immobilize the prey.

DISTCAPTMAX
distcapt

ROWCOLNUM

−−
−
−− (1)

C. PAL For Evolving a Team

Punctuated anytime learning (PAL) was developed to
strengthen offline genetic algorithms by capitalizing on
Greffenstette and Ramsey’s [11] dynamic anytime
learning approach. Although PAL cannot allow for
continuous updates of the computer’s models, it updates
its model every G generations, resulting in periods of
accelerated learning. The generations in which the model
is updated are referred to as punctuated generations.
When applied to a single GA, PAL updates the
computer’s model every G generations by running tests
on the actual robot and uses these results for fitness
biasing in the GA [12] or in the co-evolution of model
parameters [13].

Punctuated anytime learning is a fairly different
concept when applied to co-evolving separate
populations to form members of a team. The updated
information that each population in the learning system
receives is a more accurate representation of the overall
nature of the other population. For ease of explanation,
assume that the experiment has two populations,
population A and population B. In this case, every G
generations the individuals in population A are tested
against all individuals in population B. The purpose of
this process is to find the fittest individual from each
population to evolve with the other population. The
chosen most fit individual from each population will be
referred to as the alpha individual. The generations in
which the computer finds new alphas are called
punctuated generations. In non-punctuated generations,
the alpha individuals selected from the last punctuated
generation are paired with possible team members in the
other population for fitness evaluation. This method not
only ensures consistency within a generation of training,
it also decreases the total number of evaluations required
to find an accurate solution.

D. Sampling Populations

The original adaptation of PAL was to perform alpha
selection at punctuated generations by testing all
members of one population with all members of the other
populations. This method proved to be a powerful system
for evolving teams. Although it was effective, this
method remains too computationally expensive to

accommodate more than two populations. In order to
further reduce computation time, we tested the possibility
of selecting alphas using less than the entire population, a
sample of the population [8]. Assuming that the
experiment has two populations, population A and
population B, every G generations, some chosen number
of individuals in population A are randomly selected and
tested against all individuals in population B to find an
alpha individual to represent population B. The selected
individuals from population A are referred to as the
sample, and the number of chosen individuals is called
the sample size.

In further research we tested a variety of sample sizes
to investigate their merits [14]. The sample sizes tested
were 1, 2, 4, 8, 16, 32, and 64. In order to fully examine
the behavior of the different sample sizes, it was essential
to ensure that each sample size performed an equivalent
number of alpha evaluations during a test run of the co-
evolution. To accomplish this, we staggered the
punctuated generations such that the sample 1 performed
alpha selection every generation, the sample 2 performed
alpha selection every other generation, and so on, such
that a sample 64 performed alpha selection every sixty-
fourth generation. The results of the box-pushing tests are
shown in Figure 4. Each curve is the average of five
separate runs of the GA and the fitness of the best pair of
agents were recorded after 0, 64, 128, 256, 512, 1024,
2048, 5120, and 10240 alpha evaluations.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 2000 4000 6000 8000 10000

Alpha Evaluations

F
it

n
e
ss

 Figure 4. Results of a box pushing, shown through 10,240 alpha
evaluations for sampling sizes 1, 2, 4, 8, 16, 32, and 64. Each
curve is an average of five separate runs of the GA. Sample 8 is
shown in hold and all higher sampling sizes are shown as a
dashed line.

It can be seen from Figure 4 that the sample sizes of 8,
16, 32, and 64 on average reach a fitness of over 15000
out of a maximum possible fitness of 15625. When
inspecting the earlier generations of training produced by
testing the sample sizes, it became clear that the smaller

sample sizes performed better in the earlier generations
while the higher sample sizes performed better in the later
generations. This behavior of the sample sizes is intuitive
because the smaller sample sizes select alpha more
frequently causing initial accelerated growth and a larger
sample size is needed for more accurate alpha selection to
sustain growth for the later generations of training.
Therefore, the sample sizes in the middle such as a sample
4, 8, or 16 represent good candidates for consistent growth
throughout a single evolution.

To express mathematically how the system was refined
to allow co-evolution of more than two populations we let
G represent the number of generations between alpha
selections, I represent the number of individuals in a
single population, and N represent the number of
populations. The most accurate method of testing would
be to compare all individuals in a population against all
others in the opposing population for alpha selection
every generation. A single generation of training would

therefore require IN evaluations. To reduce this level of
computation, alphas are only selected at punctuated
generations. If alpha selections occur every G generations,
this reduces the evaluations by that factor of G. This
solution cuts computation time to IN/G. In order to further
reduce computations, sampling is used. Using the
previous parameters and adding the term S representing
the sampling size, any given alpha selection requires only
N * (I * SN-1)/G trials. As previously stated, the most
versatile sample sizes are those that sample frequently
enough to provide an initial boost in fitness during the
early generations, while getting a large enough sample for
accuracy in the later generations. For these reasons we
evolved the four predators using a sample 8 with alpha
selection every 64th generation. Assuming there are four
populations with sixty four individuals each, a GA run
with these parameters reduces computation by a factor of
128 compared to our previous method which tests all
possible combinations of partners.

TABLE 1. RESULTS OF THE PREDATOR-PREY SCENARIO. THE VALUES SHOWN REPRESENT THE SCORE ACHIEVED BY THE TEAM OF FOUR
ALPHA INDIVIDUALS SELECTED AT THAT PUNCTUATED GENERATION.

 0 64 128 256 512 1024 2048 5120 10240 20480

test1 43 49 58 62 70 73 71 447 479 416
test2 66 168 234 279 328 319 317 441 420 517
test3 57 113 292 257 473 483 482 513 498 528
test4 60 66 61 54 56 54 65 324 525 404
test5 54 77 50 230 120 349 460 547 483 448
test6 47 52 55 53 52 68 91 146 149 304
test7 47 54 52 82 101 133 455 516 688 653
test8 62 81 85 75 124 111 195 244 406 374
test9 48 134 256 173 234 169 190 331 338 359
test10 47 55 57 76 106 365 307 501 463 878
Avg. 53 85 120 134 166 212 263 401 445 488

V. RESULTS

To test our method we ran 10 different tests for 20480
alpha evaluations each. Table 1 shows the fitnesses of the
alpha individuals selected at that punctuated generation.
These scores were calculated by averaging 100
evaluations of the team of alpha individuals. Fitnesses
were recorded after 0, 64, 128, 256, 512, 1024, 2048,
5120, 10240, and 20480 alpha evaluations. From looking
at Table 1 we can see that our method was effective in
learning the task. A fitness benchmark for an excellent
solution in the simulation performance is to average a
score of 500, the dimensions of the board or NUM-COL-

ROW, because this correlates roughly to a capture at the
maximum capture distance every round. In the predator-
prey scenario it is often hard to gauge the evolved
behavior simply considering fitness. Figure 5 shows a
graph of the percentage of simulations during which the
team of predators successfully capture the prey. The
capture percentages for the 10 test runs of the GA shown
in Table 1 are shown in Figure 5. The best team of
predators capture the prey roughly 80% of the time,
while the average capture rate of all 10 runs is
approximately 65%.

0

10

20

30

40

50

60

70

80

90

100

0 5000 10000 15000 20000

Alpha Evaluations

C
a
p

tu
re

 %

Figure 5. Results of the selected alpha individuals after 0, 64, 128, 256, 512, 1024, 2048, 5120, 10240, and 20480, alpha evaluations.
The lines represent the number of successful captures of the team out of 100 chances. The average is shown in bold.

It is also important to examine the level of cooperation
in the capture strategies. From studying the final solutions
from the ten test runs of the GA we discovered that the
most influential factor in deciding the capture strategy
was the starting positions of the predators. We reasoned
that this was because the prey can escape the non-
bounded-box environment in only 22 gait cycles, forcing
the predators to formulate a capture strategy highly
dependent upon their initial placement. All of the evolved
strategies employed at least three of the four predators to
direct the motion of the prey. Figure 6 shows two different
simulated runs of the GA. Each of the four predators are
labeled with different letter ranging A-D and the prey is
labeled with a P. The starting positions of all the agents
are enclosed in a square and a solid line is drawn through
predators when they first see the prey; the same is done
for the prey when it first sees any of the four predators.
The four predators show a white dot when they can see
the prey. Each of the simulations was stopped a few gait
cycles before the actual capture to clearly illustrate the
coordinated strategy. Figure 6a is an example of a capture
involving only three of the four predators. All four of the

predators start on the same side of the prey and the prey
has been randomly assigned to start moving away from
their starting positions. Predator B chases the prey such
that the other predators A and D can trap it from either
side. The simulation shown in Figure 6b shows a four
predator capture strategy. In this evolution the predators
were assigned favorable starting positions and they all
converge on the prey. The capture strategy shown is
particularly interesting because after the prey is initially
chased toward the bottom of the simulation, predator D
halts its motion to slow the prey and direct it toward
position where it is completely surrounded by all four of
the predators. Though the capture strategies of the team
vary greatly depending upon the starting positions of the
simulation, the punctuated anytime learning method was
able to adapt accordingly.

VI. CONCLUSIONS

The intent of our research is to show that the punctuated
anytime learning method can evolve solutions for
problems involving three or more populations and that it
is applicable to the general class of learning

heterogeneous behavior. The method of sampling
populations with a sample size of eight reduces the
computation required by a factor of 128 and produces a
highly accurate solution. The sampling method was very
successful in evolving teams of predators that cohesively
capture the prey. In future work we hope to observe
these emergent behaviors on the ServoBots in a colony
space at Connecticut College. We also hope to evolve
coordination strategies using robots with different
capabilities to test the level of specialization of
behaviors.

REFERENCES

[1] M. Benda, V. Jagannathan, and R. Dodhiawalla. “On
optimal cooperation of knowledge sources,” Technical
Report BCS-G2010-28, Boeing AI Center, Boeing

Computer Services, Bellevue, WA, August 1985.
[2] Luke, S. and Spector, L., “Evolving Teamwork and

Coordination with Genetic Programming,” Proceedings of
First Genetic Programming Conference. (1996), 150-156.

[3] Potter M. A. and De Jong K. A., “A Cooperative
Coevolutionary Approach to Function Optimization,”
Proceedings of the Third Conference on Parallel Problem
Solving from Nature. (1994), 249-257.

[4] Potter, M. A., Meeden L. A., and Schultz A. C.,
“Heterogeneity in the Coevolved Behaviors of Mobile
Robots: The Emergence of Specialists,” Proceedings of the
Seventeenth International Conference on Artificial
Intelligence. (2001).

[5] Wiegand R. P., Liles W. C., and De Jong K. A., “An
Empirical Analysis of Collaboration Methods in
Cooperative Coevolutionary Algorithms,” Proceedings of
the Genetic and Evolutionary Computation Conference
(GECCO). (2001), 1235-1245.

Figure 6a. A capture involving three predators

Figure 6b. A capture involving all four predators that surround the prey.

[6] Parker, Gary B., “Punctuated Anytime Learning for

Hexapod Gait Generation,” Proceedings of the 2002
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2002). (2002), 2664-2671.

[7] Parker, Gary B. and Blumenthal, J., “Punctuated Anytime
Learning for Evolving a Team,” Proceedings of the World
Automation Congress (WAC2002), Vol. 14, Robotics,
Manufacturing, Automation and Control. (2002), 559-566.

[8] Parker, Gary B. and Blumenthal, J., “Sampling the Nature of
A Population: Punctuated Anytime Learning For Co-
Evolving A Team,” Intelligent Engineering Systems
Through Artificial Neural Networks (ANNIE2002, Vol. 12)
(2002), 207-212.

[9] Parker, Gary B., “Evolving Cyclic Control for a Hexapod
Robot Performing Area Coverage,” Proceedings of 2001
IEEE International Symposium on Computational
Intelligence in Robotics and Automation (CIRA 2001).
(2001), 561-566.

[10] Parker, Gary B. and Rawlins, Gregory J.E., “Cyclic Genetic
Algorithms for the Locomotion of Hexapod Robots”

Proceedings of the World Automation Congress (WAC '96),
Volume 3, Robotic and Manufacturing Systems. (1996),
617-622.

 [11] Grefenstette, J. J. and Ramsey, C. L., “An Approach to
Anytime Learning. Proceeding of the Ninth International
Conference on Machine Learning, (1992), 189-195.

 [12] Parker, Gary B. and Mills, Jonathan W., “Adaptive
Hexapod Gait Control Using Anytime Learning with Fitness
Biasing,” Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO'99). (1999), 519-524.

[13] Parker, Gary B., “Co-Evolving Model Parameters for
Anytime Learning in Evolutionary Robotics,” Robotics and
Autonomous Systems, Vol. 33, Issue 1, (2000) 13-30.

[14] Parker, Gary B. and Blumenthal J., “Comparison of
Sampling Sizes for the Co-Evolution of Cooperative
Agents,” Proceedings of the 2003 Congress on
Evolutionary Computation (CEC 2003). (2003),
536-543.

