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Abstract- The evolution of a team of heterogeneous agents 

is challenging. To allow the greatest level of specialization 
team members must be evolved in separate populations, but 
finding acceptable partners for evaluation at trial time is 
difficult. Testing too few partners blinds the GA from 
recognizing fit solutions while testing too many partners 
makes the computation time unmanageable. We developed a 
system based on punctuated anytime learning that 
periodically tests a number of partner combinations to select a 
single individual from each population to be used at trial time. 
We previously tested our method with a two agent box-
pushing task.  In this work, we show the efficiency of our 
method by applying it to the predator-prey scenario. 

I.  INTRODUCTION 

The objective of this work is to extend the range of our 
method of co-evolution by testing it in a problem 
involving four separate populations. The success of our 
method rests upon the GA’s ability to produce a highly 
accurate solution while minimizing computation. We 
choose the predator-prey scenario [1] because it can 
easily accommodate teams of four agents, and it 
represents a simplified problem with respect to its 
possible applications. Additionally, by choosing a new 
task we expand the problems solved by our method. 
Cooperative behavior is an important field in robotics 
because robots that cooperate can often achieve much 
more than the sum of what they could do individually. 
Learning cooperative behavior for robots has been 
approached in several ways. 

Luke and Spector developed a method for evolving a 
team of agents that act cooperatively [2]. As in our 
current research, Luke and Spector used the predator-
prey scenario as the test-bed for their research. In their 
simulation four artificially intelligent agents representing 
“lions” attempt to trap the prey representing a “gazelle”. 
Their method used genetic programming and represented 
the entire team of four lions as a single GP individual. 
Even though this method showed to be a good method for 
evolving heterogeneous behavior, this approach has the 
potential to limit specialization in the evolution. Evolving 
team members in a single chromosome compromises the 
ability of the GA to recognize suitable team members 
because a partner’s score is overly influenced by the 
performance of other members of the team. Evolving 
team members in separate populations will tend toward 
specialization, so the evolutionary power of the GA can 

be concentrated on producing the most specialized 
individual possible. 

Potter and De Jong created a method for evolving team 
members in separate populations with cooperative 
coevolutionary algorithms (CCAs) [3]. This method tests 
an individual’s fitness by pairing it with a single 
individual from the other populations. This single 
individual used at trial time is the fittest individual from 
the last generation of training. Potter, Meeden, and Shultz 
employed this method to co-evolve agents to heard sheep 
into a corral [4]. The agents were then given the added 
challenge by introducing agents  representing wolves 
which tried to attack the sheep. This method proved 
highly effective and the evolved agents moved the sheep 
into the corral while providing protection from the 
wolves. 

While this method proved to be a successful means to 
evolve heterogeneous behavior, the CCA method still 
limits each individual’s fitness calculation to being 
computed with only a single partner. In later work, 
Wiegand, Liles, and De Jong took an in depth look at the 
pertinent issues of co-evolution [5]. They concluded that 
the most influential factor in co-evolution is the 
collaborator pool size, or the number of combinations of 
partners tested at trial time. They also note that as the 
collaborator pool size increases so does the computation 
required to find a solution to any given problem. Taking 
this approach to the extreme, the most accurate method of 
co-evolution would be to test every possible combination 
of partners every generation. For a task requiring N 
partners with I individuals in each population, any round 
of training would require IN evaluations; a method too 
computationally expensive for practical use. 

Parker developed Punctuated Anytime learning (PAL) 
to allow for a learning system to be periodically updated 
throughout a simulated evolution [6]. The computer’s 
internal model in simulation is updated or the GA’s 
fitness evaluation is altered by measuring the robot’s 
actual performance at certain consistently spaced 
numbers of generations called punctuated generations 
and entering those values into the GA.  

Parker and Blumenthal adapted the concept of PAL to 
be applicable to evolving cooperative teams [7]. This 
method used the periodic nature of PAL to minimize the 
number of fitness evaluations required to evolve team 
members in separate populations. As previously stated, 
the most accurate method of fitness evaluation would be 



to get an individual's fitness by pairing it with all possible 
partners at trial time. In order to reduce the number of 
fitness evaluations, at certain punctuated generations this 
method selected a single individual from each population 
as the best representative of the overall nature of their 
own population. This selected individual, referred to as 
an alpha individual, was used as a partner at trial times 
for evaluating the fitness of any individual in the 
opposing population. Employing this method of PAL, 
with G generations between each round of alpha 
selection, the number of fitness evaluations is reduced by 
a factor of G. Although these results showed that this 
method produces a highly accurate solution, it is still too 
computationally intensive to accommodate more than 
two populations. 

Additional research showed that it is possible to further 
reduce computations during alpha selection by testing 
each individual’s fitness with less than the entirety of the 
opposing population [8]. The chosen group used for alpha 
selection is referred to as the sample and the number of 
individuals in that sample is called the sample size. Upon 
realizing the success of this method, Parker and 
Blumenthal focused research on testing a number of 
differing sample sizes while ensuring that each perform 
an equivalent number of evaluations by changing the 
spacing between alpha selections during an evolution. It 
was found that the sample sizes of 4, 8, and 16 represent 
good candidates for consistent growth throughout an 
evolution. The previous research was tested by evolving 
a team of two robots to push a box to a target corner of 
the simulated area. The success of the PAL sampling 
method in solving this new problem expands the use of 
our method indicating its potential for general 
applicability. In this paper, we show the results of testing 
our sampling method using the predator-prey scenario 
with a team of four agents.  The success of the PAL 
sampling method in solving this new problem expands 
the use of our method indicating its potential for general 
applicability, with an increase in the number of team 
members. 

 

Figure 1. The ServoBot 

II.  ROBOT  SIMULATION 

All five robots simulated are modeled after ServoBots, 
which are inexpensive hexapod robots made of pressed 
wood with twelve hobby servos (Figure 1). The 
movements of the servos are coordinated by a central 
controller, a BASIC Stamp II capable of individually 
addressing each of the twelve servo actuators (two on 
each leg) to produce and sustain forward motion. The 
BASIC Stamp II is capable of storing a sequence of timed 
activations to be repeated. These timed activations if 
sequenced correctly produce a gait cycle defined as the 
timed and coordinated motion of the legs of a robot such 
that the legs return to the positions from which they began 
the motion. Each activation represents the simultaneous 
movement of the twelve servos. The list of controls for the 
twelve servos is represented in the controller as a twelve-
bit number. Each bit represents a single servo with a 0 or a 
1. For the horizontal servos a 1 indicates full back and a 0 
indicates full forward. Likewise, for the vertical servos a 0 
corresponds to full down and a 1 corresponds to full lift. 
Therefore, each pair of bits can represent the motion of 
one leg, each bit controlling one servo, corresponding to 
one of the two degrees of freedom. The pairs of bits are 
ordered to their represented leg as 0 to 5 with legs 0,2,4 
being on the right from front to back and 1,3,5 being on 
the left from front to back (Figure 2). Figure 2 also shows 
the corresponding twelve-bit activation. By this example, 
the number 001000000000 would lift the front left leg up, 
and 000001000000 would pull the second right leg 
backward. 
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Each activation is held by the controller for one pulse 
(approximately 25 msec).  With this method of 
representation, a cyclic genetic algorithm (CGA) which is 
discussed in a later section can be used to evolve an 
optimal gait cycle for a specific ServoBot [9]. The gait 
cycle used in our simulation was a tripod gait, in which 
three legs provide thrust while three legs are repositioning 
to provide thrust on the next set of activations. This near 
optimal gait cycle, which requires a sequence of 29 
pulses, was learned by the CGA four our specific 
ServoBot.  

Different degrees of turns varying from sweeping to 
sharp were then generated for our ServoBot by decreasing 
the total number of pulses sent to one side of the robot. If 
legs 1,3,5 were given all 29 pulses but legs 0,2,4 were 

Figure 2: Diagram numbering the legs of the ServoBot and a sample 
twelve-bit activation.



only given 14 pulses the result would be a right turn due 
to the reduced thrust generated by the left legs (0,2,4) 
throughout the duration of the gait cycle.  The effects of 
each of the 14 left and right turns, plus no turn, were 
measured as they were performed by the ServoBot being 
tested. These turns are unique to the particular ServoBot, 
for example the recorded “no turn” actually drifted left 
due to minor differences in the physical construction. 
These 31 performance values (measured in centimeters 
moved and degrees turned) were recorded and stored in a 
table.  

III.  THE PREDATOR-PREY SIMULATION 

The task is to have four hexapod robots (the predators), 
starting in randomly placed positions, to capture a single 
hexapod robot (the prey), which starts in the middle. All 
five hexapod robots are placed in a colony space 
(simulated area measuring 500x500 units). The predators 
must capture the prey before it reaches the edge of the 
colony space. All of the tests done in simulation use 
agents that model existing robots in the lab. All five 
agents in the simulation were represented as circles and 
could see for 125 units in any direction. Both the 
predators and prey move simultaneously and have the 
exact same capabilities for motion. The prey attempts to 
evade the predators using the nearest predator first 
algorithm (NPF), which simply moves the prey in the 
opposite direction of the nearest predator. If the prey does 
not see any predators, three out of four times a random 
number from 0 to 31 is generated to determine its next 
gait cycle and the other one fourth of the time the prey 
remains stationary to simulate a feeding behavior. At the 
beginning of any GA run, the prey is placed in the center 
of the simulated area at the point (250,250) with a random 
heading from 0 to 360 degrees. The four predators are 
assigned random starting headings and coordinates except 
that no predator can start within sight of the prey. These 
assigned random starting positions are held throughout 
every generation of training. The simulation is a non-
bounded-box environment, meaning that any of the 
predators or the prey can step out of the simulation at 
anytime. In the event that a predator steps out of bounds, 
it is automatically removed from the round. The 
simulation ends if the prey moves out of bounds, is 
captured, or either the prey or any of the predators have 
taken 200 steps. To have a successful capture a predator 
must move within 12 units of the prey, a distance 
equivalent to approximately twice the size of the agents 
themselves.  

IV.  EVOLUTIONARY METHODS 

A. Cyclic Genetic Algorithms 

A variation on the standard GA called a cyclic genetic 
algorithm (CGA) was used to develop our four 

heterogeneous cooperative agents [10]. A CGA differs 
from a regular GA in that the genes of the chromosome 
represent tasks to be completed. The tasks can be 
anything from a single action to a sub-cycle of actions. 
Using this method of representation, it is possible to 
break up a chromosome into multiple genes with each 
gene acting as a cycle. Each gene or sub-cycle can 
contain two parts, one part representing an action or set 
of actions, and the second part representing the number 
of times that action is to be executed. The genes can be 
arranged into repeated sequences and a chromosome can 
be arranged with single or multiple cycles or even the 
entire chromosome can be a cycle. In the case of multiple 
cycles, it is possible to switch from one to the other at 
any point. The evolved chromosome had two separate 
cycles. The first cycle determines the predator’s actions 
before it first sees the prey, while the second determines 
its actions subsequently. Every gene contained two 5-bit 
numbers, one representing a gait cycle with 31 possible 
turns or a 0 which indicated that it was to stand still and 
the other representing the repetitions of that gait cycle.  
The scheme representation of the chromosome is shown 
in Figure 3. 
 
(((T1 R1) (T2 R2) … T9 R9))  ((T1 R1) (T2 R2) … (T9 R9))) 

Figure 3. Scheme representation of the CGA chromosome where 
T is a specific turn and R is the number of repetitions of that 
turn. The genes which appear in bold represent the second cycle, 
which controls the agent’s movement after it first sees the prey. 

B. Fitness Evaluation 

The fitness score of a team of predators which fails to 
capture the prey is the number of steps taken in the 
round. Because it is possible for the prey to all together 
escape the environment, the predators are rewarded for 
keeping the prey within the simulation for as long as 
possible. In the event of a capture, the fitness of a team is 
the number of steps in the round plus a bonus for the 
capture, which is derived from the distance of the 
capturing predator to the prey.  Equation 1 shows the 
score awarded for a successful capture.   With an equal 
number of rows and columns in the simulation this 
number is represented by NUM-COL-ROW, the 
maximum distance that can be between a predator and a 
prey for it to be considered a capture is MAX-CAPT-
DIST, and the distance of the capturing predator to the 
prey is capt-dist. If a member of the team of predators 
captures the prey at the minimum allowable capture 
distance, the team is given a score of NUM-COL-ROW 
because the denominator turns to 1. However, if the 
distance of the capture is less than the minimum, the 
fraction (capt-dist / MAX-CAPT-DIST) becomes 
increasingly smaller forcing the score to elevate 
drastically. We decided to focus our fitness function on 
the distance of the capture because in order to achieve a 



consistently small capture distance a team is forced to 
immobilize the prey. 
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C. PAL  For  Evolving  a Team 

Punctuated anytime learning (PAL) was developed to 
strengthen offline genetic algorithms by capitalizing on 
Greffenstette and Ramsey’s [11] dynamic anytime 
learning approach. Although PAL cannot allow for 
continuous updates of the computer’s models, it updates 
its model every G generations, resulting in periods of 
accelerated learning. The generations in which the model 
is updated are referred to as punctuated generations. 
When applied to a single GA, PAL updates the 
computer’s model every G generations by running tests 
on the actual robot and uses these results for fitness 
biasing in the GA [12] or in the co-evolution of model 
parameters [13].  

Punctuated anytime learning is a fairly different 
concept when applied to co-evolving separate 
populations to form members of a team. The updated 
information that each population in the learning system 
receives is a more accurate representation of the overall 
nature of the other population. For ease of explanation, 
assume that the experiment has two populations, 
population A and population B.  In this case, every G 
generations the individuals in population A are tested 
against all individuals in population B. The purpose of 
this process is to find the fittest individual from each 
population to evolve with the other population. The 
chosen most fit individual from each population will be 
referred to as the alpha individual. The generations in 
which the computer finds new alphas are called 
punctuated generations. In non-punctuated generations, 
the alpha individuals selected from the last punctuated 
generation are paired with possible team members in the 
other population for fitness evaluation. This method not 
only ensures consistency within a generation of training, 
it also decreases the total number of evaluations required 
to find an accurate solution. 

D. Sampling  Populations 

The original adaptation of PAL was to perform alpha 
selection at punctuated generations by testing all 
members of one population with all members of the other 
populations. This method proved to be a powerful system 
for evolving teams. Although it was effective, this 
method remains too computationally expensive to 

accommodate more than two populations. In order to 
further reduce computation time, we tested the possibility 
of selecting alphas using less than the entire population, a 
sample of the population [8]. Assuming that the 
experiment has two populations, population A and 
population B, every G generations, some chosen number 
of individuals in population A are randomly selected and 
tested against all individuals in population B to find an 
alpha individual to represent population B. The selected 
individuals from population A are referred to as the 
sample, and the number of chosen individuals is called 
the sample size.  

In further research we tested a variety of sample sizes 
to investigate their merits [14]. The sample sizes tested 
were 1, 2, 4, 8, 16, 32, and 64. In order to fully examine 
the behavior of the different sample sizes, it was essential 
to ensure that each sample size performed an equivalent 
number of alpha evaluations during a test run of the co-
evolution. To accomplish this, we staggered the 
punctuated generations such that the sample 1 performed 
alpha selection every generation, the sample 2 performed 
alpha selection every other generation, and so on, such 
that a sample 64 performed alpha selection every sixty-
fourth generation. The results of the box-pushing tests are 
shown in Figure 4. Each curve is the average of five 
separate runs of the GA and the fitness of the best pair of 
agents were recorded after 0, 64, 128, 256, 512, 1024, 
2048, 5120, and 10240 alpha evaluations.  
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 Figure 4. Results of a box pushing, shown through 10,240 alpha 
evaluations for sampling sizes 1, 2, 4, 8, 16, 32, and 64. Each 
curve is an average of five separate runs of the GA. Sample 8 is 
shown in hold and all higher sampling sizes are shown as a 
dashed line. 
 
 

It can be seen from Figure 4 that the sample sizes of 8, 
16, 32, and 64 on average reach a fitness of over 15000 
out of a maximum possible fitness of 15625. When 
inspecting the earlier generations of training produced by 
testing the sample sizes, it became clear that the smaller 



sample sizes performed better in the earlier generations 
while the higher sample sizes performed better in the later 
generations. This behavior of the sample sizes is intuitive 
because the smaller sample sizes select alpha more 
frequently causing initial accelerated growth and a larger 
sample size is needed for more accurate alpha selection to 
sustain growth for the later generations of training. 
Therefore, the sample sizes in the middle such as a sample 
4, 8, or 16 represent good candidates for consistent growth 
throughout a single evolution. 

To express mathematically how the system was refined 
to allow co-evolution of more than two populations we let 
G represent the number of generations between alpha 
selections, I represent the number of individuals in a 
single population, and N represent the number of 
populations. The most accurate method of testing would 
be to compare all individuals in a population against all 
others in the opposing population for alpha selection 
every generation. A single generation of training would 

therefore require IN evaluations. To reduce this level of 
computation, alphas are only selected at punctuated 
generations. If alpha selections occur every G generations, 
this reduces the evaluations by that factor of G. This 
solution cuts computation time to IN/G. In order to further 
reduce computations, sampling is used. Using the 
previous parameters and adding the term S representing 
the sampling size, any given alpha selection requires only 
N * (I * SN-1)/G trials. As previously stated, the most 
versatile sample sizes are those that sample frequently 
enough to provide an initial boost in fitness during the 
early generations, while getting a large enough sample for 
accuracy in the later generations. For these reasons we 
evolved the four predators using a sample 8 with alpha 
selection every 64th generation. Assuming there are four 
populations with sixty four individuals each, a GA run 
with these parameters reduces computation by a factor of 
128 compared to our previous method which tests all 
possible combinations of partners. 

 

TABLE 1.  RESULTS OF THE  PREDATOR-PREY SCENARIO.  THE VALUES SHOWN REPRESENT THE SCORE ACHIEVED BY THE TEAM OF FOUR 
ALPHA INDIVIDUALS SELECTED AT THAT PUNCTUATED GENERATION.   

 

 0 64 128 256 512 1024 2048 5120 10240 20480

test1 43 49 58 62 70 73 71 447 479 416
test2 66 168 234 279 328 319 317 441 420 517
test3 57 113 292 257 473 483 482 513 498 528
test4 60 66 61 54 56 54 65 324 525 404
test5 54 77 50 230 120 349 460 547 483 448
test6 47 52 55 53 52 68 91 146 149 304
test7 47 54 52 82 101 133 455 516 688 653
test8 62 81 85 75 124 111 195 244 406 374
test9 48 134 256 173 234 169 190 331 338 359
test10 47 55 57 76 106 365 307 501 463 878
Avg. 53 85 120 134 166 212 263 401 445 488

 
 
 

V.  RESULTS 

To test our method we ran 10 different tests for 20480 
alpha evaluations each. Table 1 shows the fitnesses of the 
alpha individuals selected at that punctuated generation. 
These scores were calculated by averaging 100 
evaluations of the team of alpha individuals. Fitnesses 
were recorded after 0, 64, 128, 256, 512, 1024, 2048, 
5120, 10240, and 20480 alpha evaluations. From looking 
at Table 1 we can see that our method was effective in 
learning the task. A fitness benchmark for an excellent 
solution in the simulation performance is to average a 
score of 500, the dimensions of the board or NUM-COL-

ROW, because this correlates roughly to a capture at the 
maximum capture distance every round. In the predator-
prey scenario it is often hard to gauge the evolved 
behavior simply considering fitness. Figure 5 shows a 
graph of the percentage of simulations during which the 
team of predators successfully capture the prey. The 
capture percentages for the 10 test runs of the GA shown 
in Table 1 are shown in Figure 5. The best team of 
predators capture the prey roughly 80% of the time, 
while the average capture rate of all 10 runs is 
approximately 65%. 
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Figure 5. Results of the selected alpha individuals after 0, 64, 128, 256, 512, 1024, 2048, 5120, 10240, and 20480, alpha evaluations. 
The lines represent the number of successful captures of the team out of 100 chances. The average is shown in bold. 

 
 

It is also important to examine the level of cooperation 
in the capture strategies. From studying the final solutions 
from the ten test runs of the GA we discovered that the 
most influential factor in deciding the capture strategy 
was the starting positions of the predators. We reasoned 
that this was because the prey can escape the non-
bounded-box environment in only 22 gait cycles, forcing 
the predators to formulate a capture strategy highly 
dependent upon their initial placement. All of the evolved 
strategies employed at least three of the four predators to 
direct the motion of the prey. Figure 6 shows two different 
simulated runs of the GA. Each of the four predators are 
labeled with different letter ranging A-D and the prey is 
labeled with a P. The starting positions of all the agents 
are enclosed in a square and a solid line is drawn through 
predators when they first see the prey; the same is done 
for the prey when it first sees any of the four predators. 
The four predators show a white dot when they can see 
the prey.  Each of the simulations was stopped a few gait 
cycles before the actual capture to clearly illustrate the 
coordinated strategy. Figure 6a is an example of a capture 
involving only three of the four predators. All four of the 

predators start on the same side of the prey and the prey 
has been randomly assigned to start moving away from 
their starting positions.  Predator B chases the prey such 
that the other predators A and D can trap it from either 
side. The simulation shown in Figure 6b shows a four 
predator capture strategy. In this evolution the predators 
were assigned favorable starting positions and they all 
converge on the prey. The capture strategy shown is 
particularly interesting because after the prey is initially 
chased toward the bottom of the simulation, predator D 
halts its motion to slow the prey and direct it toward 
position where it is completely surrounded by all four of 
the predators. Though the capture strategies of the team 
vary greatly depending upon the starting positions of the 
simulation, the punctuated anytime learning method was 
able to adapt accordingly. 

VI.  CONCLUSIONS 

The intent of our research is to show that the punctuated 
anytime learning method can evolve solutions for 
problems involving three or more populations and that it 
is applicable to the general class of learning 



heterogeneous behavior. The method of sampling 
populations with a sample size of eight reduces the 
computation required by a factor of 128 and produces a 
highly accurate solution. The sampling method was very 
successful in evolving teams of predators that cohesively 
capture the prey.  In future work we hope to observe 
these emergent behaviors on the ServoBots in a colony 
space at Connecticut College. We also hope to evolve 
coordination strategies using robots with different 
capabilities to test the level of specialization of 
behaviors. 
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Figure 6a. A capture involving three predators 



 
 
Figure 6b. A capture involving all four predators that surround the prey. 
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