
Partial Recombination
for the Co-Evolution of Model Parameters

Gary B. Parker
Computer Science

Connecticut College
New London, CT 06320 USA

Email: parker@conncoll.edu

Abstract - Partial recombination is a type of crossover for

genetic algorithms that focuses on a subset of the
chromosome. It provides a means of doing crossover were
only the genes involved in producing the fitness are affected.
In this paper, we use it to evolve the parameters for a model
that represents the capabilities of a robot. The values of these
parameters are evolved as the robot periodically performs an
action that is also being performed by the model. Each action
performed by the robot does not include every possible turn
command so using partial recombination allows the system to
only change the parameters involved in the action. Tests show
that partial recombination makes a significant difference in
the co-evolution of model parameters.

I. INTRODUCTION

One type of learning in evolutionary robotics uses
evolutionary computation operating on a simulation
(model) of the robot to learn the control of robot. In
some cases, this evolutionary computation takes place in
an offline learning system. The model has several
measured or estimated parameters that are specific to the
robot being represented. These parameters are initially
made to be as accurate as possible, but due to changes in
the robot and/or environment can be off significantly.
The inadequacy of the model directly affects the outcome
of the learning by the evolutionary computation. The Co-
evolution of model parameters is a type of punctuated
anytime learning used in evolutionary robotics to assist in
offline learning. While the robot control is being
evolved, the model parameters are also being involved to
constantly provide the most accurate model.

A standard genetic algorithm [1] can usually be used to
evolve the model parameters, but in some cases there is a
difficulty. These cases are when not all of the parameters
are used in any particular case. Some of the parameters
may be of importance in this particular case whereas
others are not used at all. The difficulty with this is that
the genetic algorithm will evolve all of the parameters as
if they all have the same importance. The parameters that
should be evolving will be learned correctly, but the
parameters that should not be evolved, which are referred
to as hitchhikers, garbage bits, or freeloaders, will attain
values that restrict them in later evolution. This is
because they will no longer have the randomness that they
had before evolution began. Another issue with the
standard genetic algorithm, in this case, has to do with the
schema within the chromosome. When two different

genes within the same schema are separated by a large
distance on the chromosome, the length of the schema is
said to be long and the probability that crossover will
disrupt this schema is high [1]. Often two different
parameters of a model are closely related in that sense
they should be within the same schema. Without prior
knowledge of which of these parameters are closely
related it’s difficult to design the standard GA
chromosome in such a way that these genes are close
together.

Messy genetic algorithms [2] can help to take care of
this linkage issue. Each gene in the messy genetic
algorithm chromosome has a location associated with it.
This allows genes within a single schema to become close
to each other within the chromosome. Through this
method, schema that would be long using a standard
genetic algorithm can be short because the associated
genes can be closer together. Messy genetic algorithms
can assist in the parameter evolution by keeping
associated genes close together avoiding disruption
through crossover. However, one of their strengths in
this case, is a weakness. The location of the genes, in
addition to the value of the genes, is learned. This is a
great benefit if there is no other information as to how the
genes are related. In the case of parameters, however,
there is often some runtime knowledge of how they are
related. This is the situation with the parameters learning
that we present in this paper. Although their relationship
is not known before the evolution begins it can be guessed
as the learning proceeds.

Partial recombination is a means of ensuring that genes
related to each other are close together in the
chromosome. In addition, it deals with the problem of
losing the randomness of genes not used in previous
evolution. In this paper we describe how partial
recombination was used to greatly improve the results of
the co-evolution of model parameters method employed to
learn robot control in a simulated area coverage problem.
Partial recombination was used with a standard genetic
algorithm to evolve the parameters used by the model of a
hexapod robot. Tests were done to show the progress of
learning the desired control program with and without
partial recombination employed in the genetic algorithm
used to evolve the model parameters.

II. THE AREA COVERAGE PROBLEM

The area coverage problem has been discussed in
previous papers [3,4] and since it is not the primary topic
of this paper it will only receive a cursory explanation.
Area coverage is a type of path planning that is concerned
with the coverage of an area. Some applications are mine
sweeping, search and rescue, haul inspection, painting,
and vacuuming. For the area coverage problem used in
this research, the robot was to fully search, starting from a
specific point (Figure 1), an area of specific width (180
cm). The simulated search was for mines that would be
fully contained in the area. In order to detect a mine, the
robot had to have the entire width of its body (excluding
the legs), at its mid point, within the same 60x60 cm
square as the mine. For test purposes, every 60x60 block
had a mine placed in it. The robot’s task was to find as
many mines as possible while ensuring that no mines had
been missed. The robot’s movement was not restrained in
any way by the environment. There was no physical
constraint requiring it to stay within the mine area.

Figure 1. Search area for coverage. The area is unbounded in
one direction. The robot is to execute a pattern of movement
where it will not miss any squares as it checks each for simulated
mines.

A. The Robot’s Turns

Although this test is simulated, the robot is based on an
actual robot and its capabilities. The robot is the
ServoBot, a small (25x12cm; 25x24cm including legs),
inexpensive hexapod robot with a BASIC Stamp II
controller. The controller is capable of holding the
program that can produce a cycle of activations required
for 12 servo motors to move the robot’s legs in a normal
gait. In addition, it can hold a sequence of commands that
result in a sequence of turns and straights performed by
the robot.

A gait is produced by the controller sending signals
(pulses) to the robot's actuators (servo motors). The
control program includes a sequence of activations that

the on-board controller will continually repeat. Each
activation controls the instantaneous movement of the 12
servo actuators. A repeated sequence of these activations
can be produced by an evolved neural network [5,6,7], a
genetic program [8], or an evolved cyclic control
program. In this work, we evolved a cyclic control
program using a cyclic genetic algorithm [9] to produce
an optimal gait for a specific ServoBot [10]. The gait
generated for area coverage tests was a tripod gait. The
tripod gait is where legs 0, 3, & 4 alternate with legs 1, 2,
& 5 in providing the thrust for forward movement. While
one set of legs is providing thrust, the other set is
repositioning for its next thrust. In the case of the
ServoBot used, the entire cycle (a gait cycle) lasted for 58
activations with each set providing 29 activations of
thrust.

Differing degrees of turn were provided in the gait
cycles through the use of affecters. These affecters could
interrupt activations to the thrust actuators for either the
left or right side of the robot. Since the normal gait
consisted of a sequence of 29 pulses of thrust to move the
leg from the full front to full back position, anything less
than 29 would result in some dragging of the legs on that
side. For example: a right side affecter of 7 would allow
only 14 (2 x 7) thrusts on the right side while keeping 29
on the left. The result would be that the left side would
move further than the right resulting in a right turn.
Affecters from 0 to 15 (4 bits) were possible. 0 meant that
side would get no thrust producing a maximum turn. 15
would not affect the normal gait so the result should be a
straight track. A one bit indicator specified if the affecter
was for the right or left.

Each gait cycle, made up of 58 activations, was
assigned an affecter, which resulted in a turn throughout
that cycle. For consistency, each gait cycle started with
legs 0, 3, & 4 full forward and legs 1, 2, & 5 full back; all
the legs were on the ground. As the gait cycle started legs
0, 3, & 4 would provide the thrust as legs 1, 2, & 5 would
start to lift and move forward to reposition for their thrust
after 29 activations. A single gait cycle was defined as
being complete when the legs returned to their starting
positions (in this case, after 58 activations).

The capabilities of the actual robot were measured and
stored in a list of 32 gait cycles (Figure 2). Each element
of the list could be identified by its gait cycle number
(five bits). The high order bit described whether the turn
would be left (1) or right (0) and the remaining four bits
indicated the level of turn. The list (F T ∆H) of three
numbers after that indicated the resultant turn after
applying that gait cycle for one cycle. F was the distance
in centimeters that the robot moved forward. T was the
distance traveled left or right. Left movement resulted in
a negative T, right in a positive T. ∆H was a measurement
(in degrees) of the change in heading from the start
heading the heading after execution of the gait cycles.
Left was negative, right was positive.

(0 (3.7 4.0 24.3)) (16 (5.0 -3.7 -26.7))
(1 (3.7 4.0 22.2)) (17 (5.7 -3.7 -24.7))
(2 (3.8 4.3 20.2)) (18 (6.0 -5.0 -22.2))
(3 (4.8 4.3 18.8)) (19 (6.3 -4.8 -20.3))
(4 (5.3 4.0 16.7)) (20 (7.3 -4.3 -18.8))
(5 (6.5 4.0 14.7)) (21 (8.4 -4.3 -15.8))
(6 (7.3 3.8 13.2)) (22 (9.6 -3.8 -13.5))
(7 (8.1 3.5 12.2)) (23 (10.4 -2.8 -10.3))
(8 (8.4 3.5 11.0)) (24 (11.1 -2.3 -7.0))
(9 (9.4 2.8 8.3)) (25 (11.9 -1.5 -5.0))
(10 (10.1 2.3 6.2)) (26 (12.1 -1.5 -3.7))
(11 (11.4 0.8 2.7)) (27 (12.1 -1.0 -2.7))
(12 (12.1 -0.1 0.0)) (28 (12.4 -1.0 -2.3))
(13 (12.1 -0.5 -1.3))(29 (12.1 -1.0 -2.7))
(14 (12.4 -0.5 -1.8))(30 (12.1 -1.3 -2.3))
(15 (11.6 -0.8 -1.3))(31 (11.6 -0.8 -1.3))

Figure 2. The robot’s capabilities stored in 32 gait cycles. The
first number in each element of this list is the gait cycle number.
When looked at as a five bit number, the first bit designates
whether the turn is left or right and the remaining four bits
designate the strength of turn. A strength of 0 is a maximum turn;
a strength of 15 is no turn. The left column shows the right turn
gait cycles and the right column shows the left turn gait cycles.
The three numbers listed after each gait cycle number represent
the robot’s capabilities. They are the measured results of running
that gait for one cycle.

B. Simulated Environment

The test area (Figure 1) was simulated by an xy grid
where point (0,0) was the lower left corner. The lower
right corner of the area was the point (180,0). The lower
boundary was at y = 0, the left boundary was at x = 0, the
right boundary was at x = 180, and there was no upper
boundary. Mines were considered to be in 60×60 square
blocks. The first row had centers at (30,30), (90,30), and
(150,30). The second row started at (90,30), etc. The
robot’s start position was placed at (45,30) with an initial
heading of 090 (Figure 2). This location assured
acquisition of the first mine and put it in a good starting
place to acquire the first row of mines. Motion was
determined by applying each gait cycle from the
chromosome one at a time. Using the current xy position
and heading of the robot, a new position was calculated by
applying the forward (F) and left/right (T) movements
stored for that gait cycle as described in the previous
section. The new heading was an addition of the current
heading and the gait cycle heading change (∆H).

C. The Complication in the Problem

The cyclic genetic algorithm (CGA) was developed to
allow for the learning of a single loop control program for
robot control [9]. They differ from the standard GA in that
the genes of the chromosome are tasks that are to be
completed in a set amount of time as opposed to traits of
the solution. A CGA is capable of learning cycle of gait
cycles needed for the controller of a simulated robot to
produce a pattern of movement that will cover the area,
but its answer is only as good as the model used for

training. Although the model was produced through
accurate measurements of the actual robot, natural
changes in the robot's capabilities will quickly render this
model ineffective. Only through continual adjustments to
the model's parameters can the CGA continue to find an
optimal solution. To simulate this complication and force
the use of adaptive learning, the CGA was to learn the
controller for a robot to do area coverage with an
inaccurate model. A “correct” gait cycle list that differed
from the one created through capability measurements
was generated. It had each turn rate shifted to be off by
one so that each turn strength was changed to be less than
expected. Gait cycle n of the new list would be equivalent
to gait cycle n + 1 of the old list. The max turns (strength
0 for both left and right) were thrown out. This new gait
cycle list was used to simulate the actual robot. This
simulated actual robot did not turn as sharply as the
training model indicated so all the path planning solutions
generated using the measured model would be slightly off.
This was to simulate an actual situation where the robot
lost some of its turn capability in all turns.

III. THE CO-EVOLUTION OF MODEL PARAMETERS

The co-evolution of model parameters [11] (a type of
punctuated anytime learning [12]) dynamically links the
model to the actual robot for the accurate use of
evolutionary computation in learning robot control. It
involves doing periodic tests of evolved solutions on the
actual robot to co-evolve the accuracy of the robot’s
model being used by the CGA. This type of anytime
learning allows for an adaptive real-time learning system
that needs only global observation to make corrections in
the robot model.

The form of evolutionary computation used to co-
evolve the model parameters in past experimentation [11]
is usually the standard genetic algorithm. A population of
individuals is generated before training begins. This
population can start out either as randomly generated
individuals or as a combination of perturbations (to
varying degrees) of the original model parameters. Each
individual is made up of a set number of genes. Each
gene represents a corresponding field in the robot’s
model. These genes evolve to produce models that
correspond in performance to the actual robot. After each
n generations the best and two other area coverage
solutions are tested on the actual robot. These
measurements are used to judge the accuracy of a
population of model parameters by comparing the
performance of the area coverage solutions on the actual
robot with their performance on each model. The most
accurate individual in the population of model parameters
is used for continued controller evolution. Fitnesses for
each individual in the population of model parameters are
used as they co-evolve with the controller solutions. The
population of model parameters will continue to evolve

until interrupted by updated actual test information. This
solution requires three actual tests every n generations.

To solve the problem described in Section 2.3, the co-
evolution of model parameters was employed. The cyclic
genetic algorithm (CGA) was used to learn the cycle of
gait cycles needed by the controller to move the robot in a
pattern that would result in successful area coverage while
a standard GA with partial recombination was used to
evolve the model parameters.

IV. PARTIAL RECOMBINATION

Partial recombination is a type of recombination that
focuses on a part of the chromosome. It is a means of
doing crossover were only the genes involved in
producing the fitness are affected. In addition, genes that
have some fitness relationship to each other (of the same
schema) tend to have more probability of being adjacent
to each other. Partial recombination is not proposed as a
new means of general recombination, but it is presented as
a means of doing recombination in problems where all the
genes of the chromosome are not used in the solution of
every variance of the problem. In this paper, we use it to
evolve the parameters of a model that represents the
capabilities of a robot. The parameters help define the
results of several possible turn commands. The values of
these parameters are tested and altered as the robot
performs an action performed by the model. Each action
performed by the robot does not include every possible
turn command so using partial recombination allows the
system to only change the parameters involved in the
action.

To describe how partial recombination works, we will
use a simple example (Figure 3). The figure shows two
chromosomes that each have 8 genes (each represented by
a variable). We can assume that each gene is a number
that is helping to define a part of the solution (such as a
parameter) and is made up of some set number of bits.
Although these chromosomes will be used in the solution
of a problem, not all the genes of the chromosomes will be
required to help define the solution for each particular
instance of the problem. Let us assume that an instance of
the problem is being used at this time to determine the
fitness of the chromosome. Assume that only the genes
represented by variables a, b, d, and g are required in the
solution of this instance of the problem. In order to
perform partial recombination, the chromosomes are
reduced to contain only the needed genes. These new
chromosomes are shown in Figure 3. All of the
individuals (chromosomes) in the population will be
reduced in this way. Any one of a variety of normal
crossover methods can be performed at this point. In our
example we show a one-point crossover that is restricted
to be done between the genes. After the offspring are
produced, the chromosomes are reformed back to their
original makeup except for the changes from crossover.

 (a1 b1 c1 d1 e1 f1 g1 h1) (a2 b2 c2 d2 e2 f2 g2 h2)

Chromosomes Reduced

 (a1 b1 d1 g1) (a2 b2 d2 g2)

One-Point Crossover

 (a1 b1 d1 g2) (a2 b2 d2 g1)

Chromosomes Reformed

 (a1 b1 c1 d1 e1 f1 g2 h1) (a2 b2 c2 d2 e2 f2 g1 h2)

Figure 3: Sample chromosome for discussion of partial
recombination.

A. Benefits of Partial Recombination

There are three benefits to partial recombination: the
shortening of chromosome lengths reduces the
complexity, genes belonging to the same schema are more
likely to be adjacent during crossover, and genes not
involved in the current solution to the problem will not be
affected by crossover.

1) Chromosome Length: Chromosome length is one of
many parameters that affect the computation time that is
required for a genetic algorithm to solve a problem.
Although the actual length of the chromosome is not
reduced by partial recombination, the length of the
chromosome involved in crossover is. This factor should
help reduce complexity and reduce the over all
computation time required for the genetic algorithm to
solve the problem.

2) Linkage Problem: Holland defined schemata to
provide a basis for associating combinations of attributes
with potential for improving current performance [1]. He
said that schema with short length (defining positions
being close together) have less likelihood of disruption
during crossover (this is sometimes referred to as the
linkage problem). His discussion was pertinent to one-
point crossover. De Jong [13] went on to discuss the
effects of schema length in relationship to n-point
crossover and noted that two-point (even-point) crossover
was less likely to cause a disruption than one-point (odd-
point) crossover. Goldberg, Deb, and Korb introduced
messy genetic algorithms [2] that, among other things,
deal with the linkage problem. In messy GAs, each bit
has associated with it a location in the chromosome. We
could have used a derivation of messy GAs by assigning
each gene a location indicator. However, it was

determined that partial recombination would be a less
complicated solution. In addition, although the related
building blocks in the model parameter learning problem
cannot be predetermined, they become better known
during runtime. There is no need for the power of the
messy GA which learns the best building block positions;
they can be assigned by partial recombination during
learning. They do change, however, so re-assignments
must be possible.

Partial recombination applied to the parameter learning
problem offers two benefits in regards to the linkage
problem. One is that the genes that represent the
parameters are natural schema. They are a set of bits that
define one specific parameter and in that way are
associated with each other in affecting the fitness of a
chromosome. The other way that partial recombination
can help contribute to a solution to the linkage problem is
though gene adjacency. Genes needed in the solution to
the problem are identified in the order that they are
needed. In the case of parameter evolution, where the
parameters represent the effects of turns, the robot control
solution uses which ever turns are specified in the solution
currently being tested. This control solution requires a
sequence of turns that will produce the desired pattern
over the ground. Each turn is related to the adjacent turn
in the sequence in respect to the resultant pattern of
movement. Since the parameters for the turns are put
into the reduced chromosome in the order that they are
required by the control program, there will be a greater
chance that the adjacent turns will be adjacent in the
chromosome. For example, if the control program called
for turns that were being represented by parameters in the
following order: d, h, a, e, h, d, h, a, e, h …, the reduced
chromosome would look like: (d h a e). Each gene is a
schema with the gene that is adjacent to it. This ordering,
which assists with the linkage problem, comes naturally
through knowledge of what the control program requires.

3) Hitchhiker Genes: Genes that are part of the
chromosome, but not involved in the determination of
fitness, are referred to as hitchhiker genes. If hitchhiker
genes were always hitchhikers this would not be a
problem, but in our parameter evolution problem the
hitchhiker genes of one control solution may be the most
important genes of another control solution. Since the
parameters represent the effects of turns in control
solutions which will not use all the turns for every attempt
at a solution, it is important to preserve the value of the
parameters that represent turns not currently being used.

Figure 4 will help to explain the problem. Assume that
this is a population of parameter solutions made up of 8
individuals with it each individual having 8 genes. The
genes are each made up of 3 bits. We will not be
concerned with the genes represented by b, d, f, g, or h.
The a and c genes will be parameters used by our problem
and will therefore affect the fitness. The e gene, at this
point, is a hitchhiker. As can be seen, the values of a, c,
and e are distributed evenly throughout the possible

values. Now assume that genes a, b, c, and d are used for
fitness evaluation and a relatively high fitness is attained
when both a and c have 1 as the value of their first bit.
Individuals 4 and 5 will have relatively high fitness and
dominate as parents. We can expect that the distribution
will not be as equal as it is now and that in the next
generation individuals with both of their a and c genes
beginning with 1 will have a greater representation. This
is desirable since these will produce better solutions.
Unfortunately, the e gene will also lose its even
distribution. We can expect that there will be a
predominance of e genes that are either 101 or 100. These
may not be the best values for e. In fact, without the even
distribution, it may be difficult for the genetic algorithm
to attain the optimal value for the e gene. This is
especially true and compounded when the evolution is
repeated several times without the e gene involved in the
calculation of fitness. The partial recombination solves
this problem by leaving the values of the e genes in tact
while evolving the a, b, c, and d genes.

0: (000 b0 011 d0 111 f0 g0 h0)
1: (001 b1 110 d1 010 f1 g1 h1)
2: (010 b2 101 d2 000 f2 g2 h2)
3: (011 b3 000 d3 011 f3 g3 h3)
4: (100 b4 100 d4 101 f4 g4 h4)
5: (101 b5 111 d5 100 f5 g5 h5)
6: (110 b6 001 d6 110 f6 g6 h6)
7: (111 b7 010 d7 001 f7 g7 h7)

Figure 4: Sample population of individuals for the explanation of
the preservation of hitchhiker genes.

B. Partial Recombination Applied to the Area Coverage
Problem

Partial recombination was originated to deal with the
co-evolution of model parameters for the area coverage
problem. Although the standard GA with normal
recombination worked well in co-evolving the model
parameters for hexapod gait generation [11], it was
deemed inappropriate for evolving the model parameters
for area coverage. Since a turn cycle used up to nine gait
cycles, 23 of the 32 gait cycles would have no bearing on
the fitness. They would be altered as a side effect while
the nine or less being evolved tended toward an optimal.
This could result in the loss of vital building blocks
required to evolve the gait cycles destined for future use.

Partial recombination solved this problem by extracting
the needed gait cycles for application of the genetic
operators. These gait cycles (each of which could be
considered a building block) were used to build a new
chromosome by placing them in the order they were
needed in the CGA generated turn cycle, which was
probably the best guess for related order. Genetic
operators were applied to this partial list of all the gait
cycles for the designated number of generations. Upon

completion of training, they were re-inserted into the main
model parameter population. This allowed for training on
the appropriate gait cycles (building blocks) arranged in
the proper order without disturbing the rest of the building
blocks.

For the area coverage problem, the model parameters
that were needed to be co-evolved were the components
of the gait cycle table shown in Figure 2. The F, T, ∆H
for each affecter needed to be learned. The chromosome
for co-evolution is shown in Figure 5. Each gene was
made up of affecter number (including the one bit
indicating the turn direction) and a set of three numbers
representing the robot's distance moved and change in
orientation as described in Section 2.1.

((0 (F T ∆H)) (1 (F T ∆H)) (2 (F T ∆H)) . . . (31 (F T ∆H)))

Figure 5: Model parameter chromosome.

C. Partial Recombination as Part of the Co-Evolution of
Model Parameters

Co-evolution starts when a best control solution is sent
by the turn cycle (area coverage path) generating CGA to
the Model parameter GA. Two more turn cycles are
generated using this best solution. One is a perturbation
of up to 1± on each of the non-zero repetitions in the
turn cycle. The other uses a .25 probability starting from
the first gene to find a gene that it sets the repetitions to
50. The partial recombination GA chromosome is built
by extracting the needed gait cycles from each individual
of the model parameter population. The three turn cycle
solutions (the best found by the CGA, plus two
perturbations) are each run on the actual robot and on the
64 partial robot models. The fitness of each is judged by
comparing (finding absolute difference) its performance to
the actual robot’s performance. Two figures are
compared for each gait cycle solution—the number of
blocks covered and the number covered only once. This
is done on the three turn cycle solutions and results in six
total differences that are added together to get the fitness.
This fitness is used to perform the standard GA operators
of selection, crossover, and mutation. After 40
generations of evolution by the partial recombination GA,
the partial chromosomes are re-inserted into the main
chromosome with the best designated as the current model
for further evolution of a control solution by the CGA.

V. RESULTS

To test the usefulness of partial recombination two tests
were run. One test was done using a standard GA with
normal recombination while the other test used a standard
GA with partial recombination. In each test the same
crossover and mutation operators were used and the

starting populations were the same. A population of 64
gait cycle lists (the model parameters) was generated by
perturbing the original gait cycle list used for CGA
training. The final (5000 generation) population of area
coverage path plans generated by a CGA working on an
accurate model was used as the initial population for the
control programs. The punctuated anytime learning
system tested all these solutions using the original gait
cycle list (the best known model at the time). The best
solution plus two perturbations, as described in Section
4.2, were used to find a fitness for each gait cycle list (the
model parameters) in the population of models. The
genetic algorithm, either with or without partial
recombination (depending on which test is being run), was
run for 40 generations. At the completion of this training,
the best model was used to replace the original model.
The CGA was run again for 40 generations using this new
model to evolve a new best path planning solution. This
process was continually repeated for a total of 1000 CGA
generations. The best area coverage path planning
solution (judged by its performance on the best know
model at each 40 generation mark) replaced the simulated
robot’s operational solution if its performance was better
on the actual robot.

The results are shown for 5 independent tests in Figures
6 and 7. Figure 6 shows the results without partial
recombination, Figure 7 shows it with. Both tests used the
same simulated robot, which was the “corrected” model,
and both used the same 5 distinct sets of starting
populations. The results show the number of blocks
covered while using each method for model parameter
evolution. As can be observed, the co-evolution of model
parameters made improvements in all cases, but the
improvements were faster and more consistent when using
partial recombination. Only one out of the five
populations reached an optimal solution without partial
combination. All of the five populations reached an
optimal solution with partial recombination.

Figures 8 shows the average of the five runs done
without partial recombination compared to the average of
the five runs down with partial recombination. It is clear
that the use of partial recombination in the evolution of
the model parameters significantly improved the outcome.

VI. CONCLUSIONS

Partial recombination significantly improves the
outcome of robot learning during the co-evolution of
model parameters. We believe that this is due to three
factors. It shortens the length of chromosomes during
crossover, which reduces the over all computation time
required for the genetic algorithm to solve the problem.
It allows genes belonging to the same schema to be
adjacent to each other during crossover, reducing the

Figure 6: Result of area coverage learning without partial recombination.

Figure 7: Result of area coverage learning with partial recombination.

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Iterations of Training

B
lo

ck
s

C
ov

er
ed Pop1

Pop2
Pop3
Pop4
Pop5
Average

0

2

4

6

8

1 0

1 2

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8

I te ra t io n s o f T ra in in g

B
lo

ck
s

C
ov

er
ed P o p 1

P o p 2
P o p 3
P o p 4
P o p 5
A v e ra g e

Figure 8: A comparison of area coverage learning using standard crossover verses partial recombination.

probability of schema disruption. It uses only the genes
involved in the computation of the fitness for crossover,
protecting the genes not involved in the current solution
from being adversely affected. Although partial
recombination was presented as a means of improving the
co-evolution of model parameters for in the area coverage
problem, it has general applicability to evolutionary
computation problems where not all of the genes of the
chromosome are involved in the solution for every
instance of the problem.

REFERENCES

[1] J. H. Holland, Adaption in Natural and Artificial Systems,
Ann Arbor, Mi: The University of Michigan Press, 1975.

[2] D. E. Goldberg, K. Deb, and B. Korb, “Don't Worry, Be
Messy,” Proceedings of the Fourth International
Conference on Genetic Algorithms, pp. 24-30, 1991.

[3] G. B. Parker, “Evolving Cyclic Control for a Hexapod
Robot Performing Area Coverage,” Proceedings of 2001
IEEE International Symposium on Computational
Intelligence in Robotics and Automation (CIRA 2001), pp.
561-566, 2001.

[4] G. B. Parker, “Learning Area Coverage Using the Co-
Evolution of Model Parameters,” Proceedings of the
Genetic and Evolutionary Computation Conference
(GECCO 2002), pp. 1286-1293, 2002.

[5] R. D. Beer and J. C. Gallagher, “Evolving Dynamical
Neural Networks for Adaptive Behavior.” Adaptive
Behavior, 1, pp. 91-122, 1992.

[6] J. C. Gallagher and R. D. Beer, “Application of Evolved
Locomotion Controllers to a Hexapod Robot.” Technical
Report CES-94-7, Department of Computer Engineering
and Science, Case Western Reserve University, 1994.

[7] A. Lewis, A. Fagg, and G. Bekey, “Genetic Algorithms for
Gait Synthesis in a Hexapod Robot.” Recent Trends in
Mobile Robots. pp 317-331, 1994.

[8] G. Spencer, “Automatic Generation of Programs for
Crawling and Walking.” Advances in Genetic
Programming. pp. 335-353, 1994.

[9] G. Parker and G. Rawlins, “Cyclic Genetic Algorithms for
the Locomotion of Hexapod Robots,” Proceedings of the
World Automation Congress (WAC'96), Volume 3, Robotic
and Manufacturing Systems, pp. 617-622, 1996.

[10] G. Parker, D. Braun, and I. Cyliax, “Evolving Hexapod
Gaits Using a Cyclic Genetic Algorithm.” Proceedings of
the IASTED International Conference on Artificial
Intelligence and Soft Computing. pp. 141-144, 1997.

[11] G. Parker, “Co-Evolving Model Parameters for Anytime
Learning in Evolutionary Robotics,” Robotics and
Autonomous Systems, Volume 33, Issue 1, 31 October 2000,
pp. 13-30, 2000.

[12] G. Parker, "Punctuated Anytime Learning for Hexapod Gait
Generation," Proceedings of the 2002 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS 2002). pp. 2664-2671, 2002.

[13] K. DeJong, An Analysis of the Behavior of at Class of
Genetic Adaptive Systems. Doctoral dissertation,
Department of Computer and Communication Sciences,
University of Michigan, Ann Arbor. 1975.

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Iterations of training

B
lo

ck
s

C
ov

er
ed

PR
standard

