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Abstract - Partial recombination is a type of crossover for 

genetic algorithms that focuses on a subset of the 
chromosome. It provides a means of doing crossover were 
only the genes involved in producing the fitness are affected. 
In this paper, we use it to evolve the parameters for a model 
that represents the capabilities of a robot. The values of these 
parameters are evolved as the robot periodically performs an 
action that is also being performed by the model. Each action 
performed by the robot does not include every possible turn 
command so using partial recombination allows the system to 
only change the parameters involved in the action. Tests show 
that partial recombination makes a significant difference in 
the co-evolution of model parameters. 

I.  INTRODUCTION 

One type of learning in evolutionary robotics uses 
evolutionary computation operating on a simulation 
(model) of the robot to learn the control of robot.   In 
some cases, this evolutionary computation takes place in 
an offline learning system.  The model has several 
measured or estimated parameters that are specific to the 
robot being represented.  These parameters are initially 
made to be as accurate as possible, but due to changes in 
the robot and/or environment can be off significantly.  
The inadequacy of the model directly affects the outcome 
of the learning by the evolutionary computation.   The Co-
evolution of model parameters is a type of punctuated 
anytime learning used in evolutionary robotics to assist in 
offline learning.   While the robot control is being 
evolved, the model parameters are also being involved to 
constantly provide the most accurate model.    

A standard genetic algorithm [1] can usually be used to 
evolve the model parameters, but in some cases there is a 
difficulty.  These cases are when not all of the parameters 
are used in any particular case.   Some of the parameters 
may be of importance in this particular case whereas 
others are not used at all.  The difficulty with this is that 
the genetic algorithm will evolve all of the parameters as 
if they all have the same importance.  The parameters that 
should be evolving will be learned correctly, but the 
parameters that should not be evolved, which are referred 
to as hitchhikers, garbage bits, or freeloaders, will attain 
values that restrict them in later evolution.  This is 
because they will no longer have the randomness that they 
had before evolution began.  Another issue with the 
standard genetic algorithm, in this case, has to do with the 
schema within the chromosome.   When two different 

genes within the same schema are separated by a large 
distance on the chromosome, the length of the schema is 
said to be long and the probability that crossover will 
disrupt this schema is high [1].   Often two different 
parameters of a model are closely related in that sense 
they should be within the same schema.  Without prior 
knowledge of which of these parameters are closely 
related it’s difficult to design the standard GA 
chromosome in such a way that these genes are close 
together.    

Messy genetic algorithms [2] can help to take care of 
this linkage issue.  Each gene in the messy genetic 
algorithm chromosome has a location associated with it.  
This allows genes within a single schema to become close 
to each other within the chromosome.   Through this 
method, schema that would be long using a standard 
genetic algorithm can be short because the associated 
genes can be closer together.   Messy genetic algorithms 
can assist in the parameter evolution by keeping 
associated genes close together avoiding disruption 
through crossover.   However, one of their strengths in 
this case, is a weakness.  The location of the genes, in 
addition to the value of the genes, is learned.   This is a 
great benefit if there is no other information as to how the 
genes are related.   In the case of parameters, however, 
there is often some runtime knowledge of how they are 
related.  This is the situation with the parameters learning 
that we present in this paper.  Although their relationship 
is not known before the evolution begins it can be guessed 
as the learning proceeds.    

Partial recombination is a means of ensuring that genes 
related to each other are close together in the 
chromosome.   In addition, it deals with the problem of 
losing the randomness of genes not used in previous 
evolution.   In this paper we describe how partial 
recombination was used to greatly improve the results of 
the co-evolution of model parameters method employed to 
learn robot control in a simulated area coverage problem.  
Partial recombination was used with a standard genetic 
algorithm to evolve the parameters used by the model of a 
hexapod robot.   Tests were done to show the progress of 
learning the desired control program with and without 
partial recombination employed in the genetic algorithm 
used to evolve the model parameters. 



II.  THE  AREA  COVERAGE  PROBLEM 

The area coverage problem has been discussed in 
previous papers [3,4] and since it is not the primary topic 
of this paper it will only receive a cursory explanation. 
Area coverage is a type of path planning that is concerned 
with the coverage of an area.  Some applications are mine 
sweeping, search and rescue, haul inspection, painting, 
and vacuuming.  For the area coverage problem used in 
this research, the robot was to fully search, starting from a 
specific point (Figure 1), an area of specific width (180 
cm).  The simulated search was for mines that would be 
fully contained in the area.  In order to detect a mine, the 
robot had to have the entire width of its body (excluding 
the legs), at its mid point, within the same 60x60 cm 
square as the mine.  For test purposes, every 60x60 block 
had a mine placed in it.  The robot’s task was to find as 
many mines as possible while ensuring that no mines had 
been missed. The robot’s movement was not restrained in 
any way by the environment. There was no physical 
constraint requiring it to stay within the mine area. 
 

Figure 1.  Search area for coverage.  The area is unbounded in 
one direction.  The robot is to execute a pattern of movement 
where it will not miss any squares as it checks each for simulated 
mines.   

A. The Robot’s Turns 

Although this test is simulated, the robot is based on an 
actual robot and its capabilities.  The robot is the 
ServoBot, a small (25x12cm; 25x24cm including legs), 
inexpensive hexapod robot with a BASIC Stamp II 
controller.  The controller is capable of holding the 
program that can produce a cycle of activations required 
for 12 servo motors to move the robot’s legs in a normal 
gait.  In addition, it can hold a sequence of commands that 
result in a sequence of turns and straights performed by 
the robot.   

A gait is produced by the controller sending signals 
(pulses) to the robot's actuators (servo motors).  The 
control program includes a sequence of activations that 

the on-board controller will continually repeat.  Each 
activation controls the instantaneous movement of the 12 
servo actuators.  A repeated sequence of these activations 
can be produced by an evolved neural network [5,6,7], a 
genetic program [8], or an evolved cyclic control 
program.  In this work, we evolved a cyclic control 
program using a cyclic genetic algorithm [9] to produce 
an optimal gait for a specific ServoBot [10]. The gait 
generated for area coverage tests was a tripod gait.  The 
tripod gait is where legs 0, 3, & 4 alternate with legs 1, 2, 
& 5 in providing the thrust for forward movement.  While 
one set of legs is providing thrust, the other set is 
repositioning for its next thrust.  In the case of the 
ServoBot used, the entire cycle (a gait cycle) lasted for 58 
activations with each set providing 29 activations of 
thrust. 

Differing degrees of turn were provided in the gait 
cycles through the use of affecters.  These affecters could 
interrupt activations to the thrust actuators for either the 
left or right side of the robot.  Since the normal gait 
consisted of a sequence of 29 pulses of thrust to move the 
leg from the full front to full back position, anything less 
than 29 would result in some dragging of the legs on that 
side.  For example: a right side affecter of 7 would allow 
only 14 (2 x 7) thrusts on the right side while keeping 29 
on the left.  The result would be that the left side would 
move further than the right resulting in a right turn.  
Affecters from 0 to 15 (4 bits) were possible.  0 meant that 
side would get no thrust producing a maximum turn.  15 
would not affect the normal gait so the result should be a 
straight track.  A one bit indicator specified if the affecter 
was for the right or left.   

Each gait cycle, made up of 58 activations, was 
assigned an affecter, which resulted in a turn throughout 
that cycle. For consistency, each gait cycle started with 
legs 0, 3, & 4 full forward and legs 1, 2, & 5 full back; all 
the legs were on the ground.  As the gait cycle started legs 
0, 3, & 4 would provide the thrust as legs 1, 2, & 5 would 
start to lift and move forward to reposition for their thrust 
after 29 activations.  A single gait cycle was defined as 
being complete when the legs returned to their starting 
positions (in this case, after 58 activations).  

The capabilities of the actual robot were measured and 
stored in a list of 32 gait cycles (Figure 2).  Each element 
of the list could be identified by its gait cycle number 
(five bits).  The high order bit described whether the turn 
would be left (1) or right (0) and the remaining four bits 
indicated the level of turn.  The list (F T ∆H) of three 
numbers after that indicated the resultant turn after 
applying that gait cycle for one cycle.  F was the distance 
in centimeters that the robot moved forward.   T was the 
distance traveled left or right.    Left movement resulted in 
a negative T, right in a positive T.  ∆H was a measurement 
(in degrees) of the change in heading from the start 
heading the heading after execution of the gait cycles.  
Left was negative, right was positive.   



( 0 (3.7 4.0 24.3))  (16 (5.0 -3.7 -26.7)) 
( 1 (3.7 4.0 22.2))  (17 (5.7 -3.7 -24.7)) 
( 2 (3.8 4.3 20.2))  (18 (6.0 -5.0 -22.2)) 
( 3 (4.8 4.3 18.8))  (19 (6.3 -4.8 -20.3)) 
( 4 (5.3 4.0 16.7))  (20 (7.3 -4.3 -18.8)) 
( 5 (6.5 4.0 14.7))  (21 (8.4 -4.3 -15.8)) 
( 6 (7.3 3.8 13.2))  (22 (9.6 -3.8 -13.5)) 
( 7 (8.1 3.5 12.2))  (23 (10.4 -2.8 -10.3)) 
( 8 (8.4 3.5 11.0))  (24 (11.1 -2.3 -7.0)) 
( 9 (9.4 2.8 8.3))   (25 (11.9 -1.5 -5.0)) 
(10 (10.1 2.3 6.2))  (26 (12.1 -1.5 -3.7)) 
(11 (11.4 0.8 2.7))  (27 (12.1 -1.0 -2.7)) 
(12 (12.1 -0.1 0.0)) (28 (12.4 -1.0 -2.3)) 
(13 (12.1 -0.5 -1.3))(29 (12.1 -1.0 -2.7)) 
(14 (12.4 -0.5 -1.8))(30 (12.1 -1.3 -2.3)) 
(15 (11.6 -0.8 -1.3))(31 (11.6 -0.8 -1.3)) 

Figure 2.  The robot’s capabilities stored in 32 gait cycles.  The 
first number in each element of this list is the gait cycle number.  
When looked at as a five bit number, the first bit designates 
whether the turn is left or right and the remaining four bits 
designate the strength of turn.  A strength of 0 is a maximum turn; 
a strength of 15 is no turn.  The left column shows the right turn 
gait cycles and the right column shows the left turn gait cycles.  
The three numbers listed after each gait cycle number represent 
the robot’s capabilities.  They are the measured results of running 
that gait for one cycle. 

B.  Simulated Environment 

The test area (Figure 1) was simulated by an xy grid 
where point (0,0) was the lower left corner.  The lower 
right corner of the area was the point (180,0).  The lower 
boundary was at y = 0, the left boundary was at x = 0, the 
right boundary was at x = 180, and there was no upper 
boundary.  Mines were considered to be in 60×60 square 
blocks.  The first row had centers at (30,30), (90,30), and 
(150,30).  The second row started at (90,30), etc.  The 
robot’s start position was placed at (45,30) with an initial 
heading of 090 (Figure 2).  This location assured 
acquisition of the first mine and put it in a good starting 
place to acquire the first row of mines.  Motion was 
determined by applying each gait cycle from the 
chromosome one at a time.  Using the current xy position 
and heading of the robot, a new position was calculated by 
applying the forward (F) and left/right (T) movements 
stored for that gait cycle as described in the previous 
section.  The new heading was an addition of the current 
heading and the gait cycle heading change (∆H).   

C.  The Complication in the Problem 

The cyclic genetic algorithm (CGA) was developed to 
allow for the learning of a single loop control program for 
robot control [9]. They differ from the standard GA in that 
the genes of the chromosome are tasks that are to be 
completed in a set amount of time as opposed to traits of 
the solution.  A CGA is capable of learning cycle of gait 
cycles needed for the controller of a simulated robot to 
produce a pattern of movement that will cover the area, 
but its answer is only as good as the model used for 

training.  Although the model was produced through 
accurate measurements of the actual robot, natural 
changes in the robot's capabilities will quickly render this 
model ineffective.  Only through continual adjustments to 
the model's parameters can the CGA continue to find an 
optimal solution.  To simulate this complication and force 
the use of adaptive learning, the CGA was to learn the 
controller for a robot to do area coverage with an 
inaccurate model.  A “correct” gait cycle list that differed 
from the one created through capability measurements 
was generated.  It had each turn rate shifted to be off by 
one so that each turn strength was changed to be less than 
expected.  Gait cycle n of the new list would be equivalent 
to gait cycle n + 1 of the old list.  The max turns (strength 
0 for both left and right) were thrown out.  This new gait 
cycle list was used to simulate the actual robot.  This 
simulated actual robot did not turn as sharply as the 
training model indicated so all the path planning solutions 
generated using the measured model would be slightly off.  
This was to simulate an actual situation where the robot 
lost some of its turn capability in all turns. 

III.   THE  CO-EVOLUTION  OF  MODEL  PARAMETERS 

The co-evolution of model parameters [11] (a type of 
punctuated anytime learning [12]) dynamically links the 
model to the actual robot for the accurate use of 
evolutionary computation in learning robot control.  It 
involves doing periodic tests of evolved solutions on the 
actual robot to co-evolve the accuracy of the robot’s 
model being used by the CGA.  This type of anytime 
learning allows for an adaptive real-time learning system 
that needs only global observation to make corrections in 
the robot model. 

The form of evolutionary computation used to co-
evolve the model parameters in past experimentation [11] 
is usually the standard genetic algorithm.  A population of 
individuals is generated before training begins.   This 
population can start out either as randomly generated 
individuals or as a combination of perturbations (to 
varying degrees) of the original model parameters.   Each 
individual is made up of a set number of genes.  Each 
gene represents a corresponding field in the robot’s 
model. These genes evolve to produce models that 
correspond in performance to the actual robot.  After each 
n generations the best and two other area coverage 
solutions are tested on the actual robot.   These 
measurements are used to judge the accuracy of a 
population of model parameters by comparing the 
performance of the area coverage solutions on the actual 
robot with their performance on each model.   The most 
accurate individual in the population of model parameters 
is used for continued controller evolution.  Fitnesses for 
each individual in the population of model parameters are 
used as they co-evolve with the controller solutions.  The 
population of model parameters will continue to evolve 



until interrupted by updated actual test information.   This 
solution requires three actual tests every n generations.  

To solve the problem described in Section 2.3, the co-
evolution of model parameters was employed.  The cyclic 
genetic algorithm (CGA) was used to learn the cycle of 
gait cycles needed by the controller to move the robot in a 
pattern that would result in successful area coverage while 
a standard GA with partial recombination was used to 
evolve the model parameters.    

IV.  PARTIAL  RECOMBINATION  

Partial recombination is a type of recombination that 
focuses on a part of the chromosome.  It is a means of 
doing crossover were only the genes involved in 
producing the fitness are affected.  In addition, genes that 
have some fitness relationship to each other (of the same 
schema) tend to have more probability of being adjacent 
to each other.  Partial recombination is not proposed as a 
new means of general recombination, but it is presented as 
a means of doing recombination in problems where all the 
genes of the chromosome are not used in the solution of 
every variance of the problem.  In this paper, we use it to 
evolve the parameters of a model that represents the 
capabilities of a robot.  The parameters help define the 
results of several possible turn commands.  The values of 
these parameters are tested and altered as the robot 
performs an action performed by the model.  Each action 
performed by the robot does not include every possible 
turn command so using partial recombination allows the 
system to only change the parameters involved in the 
action. 

To describe how partial recombination works, we will 
use a simple example (Figure 3).  The figure shows two 
chromosomes that each have 8 genes (each represented by 
a variable).   We can assume that each gene is a number 
that is helping to define a part of the solution (such as a 
parameter) and is made up of some set number of bits.   
Although these chromosomes will be used in the solution 
of a problem, not all the genes of the chromosomes will be 
required to help define the solution for each particular 
instance of the problem.  Let us assume that an instance of 
the problem is being used at this time to determine the 
fitness of the chromosome.   Assume that only the genes 
represented by variables a, b, d, and g are required in the 
solution of this instance of the problem.   In order to 
perform partial recombination, the chromosomes are 
reduced to contain only the needed genes.  These new 
chromosomes are shown in Figure 3.  All of the 
individuals (chromosomes) in the population will be 
reduced in this way.   Any one of a variety of normal 
crossover methods can be performed at this point.   In our 
example we show a one-point crossover that is restricted 
to be done between the genes.  After the offspring are 
produced, the chromosomes are reformed back to their 
original makeup except for the changes from crossover. 

    

  (a1 b1 c1 d1 e1 f1 g1 h1)     (a2 b2 c2 d2 e2 f2 g2 h2) 
 

Chromosomes Reduced 
                       
 
 
      (a1 b1 d1 g1)   (a2 b2 d2 g2) 
 

One-Point Crossover 
 
 
 
        (a1 b1 d1 g2)   (a2 b2 d2 g1) 
 

Chromosomes Reformed 
                       
 
 
 

 (a1 b1 c1 d1 e1 f1 g2 h1)   (a2 b2 c2 d2 e2 f2 g1 h2) 

 
Figure 3: Sample chromosome for discussion of partial 
recombination. 

A.  Benefits of Partial Recombination 

There are three benefits to partial recombination: the 
shortening of chromosome lengths reduces the 
complexity, genes belonging to the same schema are more 
likely to be adjacent during crossover, and genes not 
involved in the current solution to the problem will not be 
affected by crossover.    

1) Chromosome Length: Chromosome length is one of 
many parameters that affect the computation time that is 
required for a genetic algorithm to solve a problem.  
Although the actual length of the chromosome is not 
reduced by partial recombination, the length of the 
chromosome involved in crossover is.  This factor should 
help reduce complexity and reduce the over all 
computation time required for the genetic algorithm to 
solve the problem. 

2) Linkage Problem: Holland defined schemata to 
provide a basis for associating combinations of attributes 
with potential for improving current performance [1].  He 
said that schema with short length (defining positions 
being close together) have less likelihood of disruption 
during crossover (this is sometimes referred to as the 
linkage problem).   His discussion was pertinent to one-
point crossover.  De Jong [13] went on to discuss the 
effects of schema length in relationship to n-point 
crossover and noted that two-point (even-point) crossover 
was less likely to cause a disruption than one-point (odd-
point) crossover.   Goldberg, Deb, and Korb introduced 
messy genetic algorithms [2] that, among other things, 
deal with the linkage problem.  In messy GAs, each bit 
has associated with it a location in the chromosome.  We 
could have used a derivation of messy GAs by assigning 
each gene a location indicator.  However, it was 



determined that partial recombination would be a less 
complicated solution.   In addition, although the related 
building blocks in the model parameter learning problem 
cannot be predetermined, they become better known 
during runtime.  There is no need for the power of the 
messy GA which learns the best building block positions; 
they can be assigned by partial recombination during 
learning.  They do change, however, so re-assignments 
must be possible.   

Partial recombination applied to the parameter learning 
problem offers two benefits in regards to the linkage 
problem. One is that the genes that represent the 
parameters are natural schema.   They are a set of bits that 
define one specific parameter and in that way are 
associated with each other in affecting the fitness of a 
chromosome.   The other way that partial recombination 
can help contribute to a solution to the linkage problem is 
though gene adjacency.  Genes needed in the solution to 
the problem are identified in the order that they are 
needed.  In the case of parameter evolution, where the 
parameters represent the effects of turns, the robot control 
solution uses which ever turns are specified in the solution 
currently being tested.  This control solution requires a 
sequence of turns that will produce the desired pattern 
over the ground.  Each turn is related to the adjacent turn 
in the sequence in respect to the resultant pattern of 
movement.   Since the parameters for the turns are put 
into the reduced chromosome in the order that they are 
required by the control program, there will be a greater 
chance that the adjacent turns will be adjacent in the 
chromosome.  For example, if the control program called 
for turns that were being represented by parameters in the 
following order:  d, h, a, e, h, d, h, a, e, h …, the reduced 
chromosome would look like: (d h a e).   Each gene is a 
schema with the gene that is adjacent to it.   This ordering, 
which assists with the linkage problem, comes naturally 
through knowledge of what the control program requires. 

3) Hitchhiker Genes:  Genes that are part of the 
chromosome, but not involved in the determination of 
fitness, are referred to as hitchhiker genes.  If hitchhiker 
genes were always hitchhikers this would not be a 
problem, but in our parameter evolution problem the 
hitchhiker genes of one control solution may be the most 
important genes of another control solution.  Since the 
parameters represent the effects of turns in control 
solutions which will not use all the turns for every attempt 
at a solution, it is important to preserve the value of the 
parameters that represent turns not currently being used.   

Figure 4 will help to explain the problem.  Assume that 
this is a population of parameter solutions made up of 8 
individuals with it each individual having 8 genes.  The 
genes are each made up of 3 bits.   We will not be 
concerned with the genes represented by b, d, f, g, or h.   
The a and c genes will be parameters used by our problem 
and will therefore affect the fitness.  The e gene, at this 
point, is a hitchhiker.  As can be seen, the values of a, c,  
and e are distributed evenly throughout the possible 

values.   Now assume that genes a, b, c, and d are used for 
fitness evaluation and a relatively high fitness is attained 
when both a and c have 1 as the value of their first bit.   
Individuals 4 and 5 will have relatively high fitness and 
dominate as parents.  We can expect that the distribution 
will not be as equal as it is now and that in the next 
generation individuals with both of their a and c genes 
beginning with 1 will have a greater representation. This 
is desirable since these will produce better solutions.  
Unfortunately, the e gene will also lose its even 
distribution.  We can expect that there will be a 
predominance of e genes that are either 101 or 100.  These 
may not be the best values for e.  In fact, without the even 
distribution, it may be difficult for the genetic algorithm 
to attain the optimal value for the e gene.  This is 
especially true and compounded when the evolution is 
repeated several times without the e gene involved in the 
calculation of fitness.  The partial recombination solves 
this problem by leaving the values of the e genes in tact 
while evolving the a, b, c, and d genes. 

 
0: (000 b0 011 d0 111 f0 g0 h0) 
1: (001 b1 110 d1 010 f1 g1 h1) 
2: (010 b2 101 d2 000 f2 g2 h2) 
3: (011 b3 000 d3 011 f3 g3 h3) 
4: (100 b4 100 d4 101 f4 g4 h4) 
5: (101 b5 111 d5 100 f5 g5 h5) 
6: (110 b6 001 d6 110 f6 g6 h6) 
7: (111 b7 010 d7 001 f7 g7 h7) 

Figure 4: Sample population of individuals for the explanation of 
the preservation of hitchhiker genes. 

B. Partial Recombination Applied to the Area Coverage 
Problem 

Partial recombination was originated to deal with the 
co-evolution of model parameters for the area coverage 
problem.  Although the standard GA with normal 
recombination worked well in co-evolving the model 
parameters for hexapod gait generation [11], it was 
deemed inappropriate for evolving the model parameters 
for area coverage.  Since a turn cycle used up to nine gait 
cycles, 23 of the 32 gait cycles would have no bearing on 
the fitness.  They would be altered as a side effect while 
the nine or less being evolved tended toward an optimal.  
This could result in the loss of vital building blocks 
required to evolve the gait cycles destined for future use.   

Partial recombination solved this problem by extracting 
the needed gait cycles for application of the genetic 
operators.  These gait cycles (each of which could be 
considered a building block) were used to build a new 
chromosome by placing them in the order they were 
needed in the CGA generated turn cycle, which was 
probably the best guess for related order.  Genetic 
operators were applied to this partial list of all the gait 
cycles for the designated number of generations.  Upon 



completion of training, they were re-inserted into the main 
model parameter population.  This allowed for training on 
the appropriate gait cycles (building blocks) arranged in 
the proper order without disturbing the rest of the building 
blocks. 

For the area coverage problem, the model parameters 
that were needed to be co-evolved were the components 
of the gait cycle table shown in Figure 2.  The F, T, ∆H 
for each affecter needed to be learned.  The chromosome 
for co-evolution is shown in Figure 5.  Each gene was 
made up of affecter number (including the one bit 
indicating the turn direction) and a set of three numbers 
representing the robot's distance moved and change in 
orientation as described in Section 2.1.   

 
 

((0 (F T ∆H)) (1 (F T ∆H)) (2 (F T ∆H)) . . .  (31 (F T ∆H))) 

Figure 5: Model parameter chromosome. 

C. Partial Recombination as Part of the Co-Evolution of 
Model Parameters 

Co-evolution starts when a best control solution is sent 
by the turn cycle (area coverage path) generating CGA to 
the Model parameter GA.  Two more turn cycles are 
generated using this best solution.  One is a perturbation 
of up to 1±  on each of the non-zero repetitions in the 
turn cycle.  The other uses a .25 probability starting from 
the first gene to find a gene that it sets the repetitions to 
50.  The partial recombination GA chromosome is built 
by extracting the needed gait cycles from each individual 
of the model parameter population.  The three turn cycle 
solutions (the best found by the CGA, plus two 
perturbations) are each run on the actual robot and on the 
64 partial robot models.  The fitness of each is judged by 
comparing (finding absolute difference) its performance to 
the actual robot’s performance.  Two figures are 
compared for each gait cycle solution—the number of 
blocks covered and the number covered only once.  This 
is done on the three turn cycle solutions and results in six 
total differences that are added together to get the fitness.  
This fitness is used to perform the standard GA operators 
of selection, crossover, and mutation.  After 40 
generations of evolution by the partial recombination GA, 
the partial chromosomes are re-inserted into the main 
chromosome with the best designated as the current model 
for further evolution of a control solution by the CGA. 

V.   RESULTS 

To test the usefulness of partial recombination two tests 
were run.  One test was done using a standard GA with 
normal recombination while the other test used a standard 
GA with partial recombination.  In each test the same 
crossover and mutation operators were used and the 

starting populations were the same.  A population of 64 
gait cycle lists (the model parameters) was generated by 
perturbing the original gait cycle list used for CGA 
training.  The final (5000 generation) population of area 
coverage path plans generated by a CGA working on an 
accurate model was used as the initial population for the 
control programs.  The punctuated anytime learning 
system tested all these solutions using the original gait 
cycle list (the best known model at the time).  The best 
solution plus two perturbations, as described in Section 
4.2, were used to find a fitness for each gait cycle list (the 
model parameters) in the population of models.  The 
genetic algorithm, either with or without partial 
recombination (depending on which test is being run), was 
run for 40 generations.  At the completion of this training, 
the best model was used to replace the original model.  
The CGA was run again for 40 generations using this new 
model to evolve a new best path planning solution.  This 
process was continually repeated for a total of 1000 CGA 
generations.  The best area coverage path planning 
solution (judged by its performance on the best know 
model at each 40 generation mark) replaced the simulated 
robot’s operational solution if its performance was better 
on the actual robot.   

The results are shown for 5 independent tests in Figures 
6 and 7.  Figure 6 shows the results without partial 
recombination, Figure 7 shows it with.  Both tests used the 
same simulated robot, which was the “corrected” model, 
and both used the same 5 distinct sets of starting 
populations. The results show the number of blocks 
covered while using each method for model parameter 
evolution.  As can be observed, the co-evolution of model 
parameters made improvements in all cases, but the 
improvements were faster and more consistent when using 
partial recombination.   Only one out of the five 
populations reached an optimal solution without partial 
combination.  All of the five populations reached an 
optimal solution with partial recombination. 

Figures 8 shows the average of the five runs done 
without partial recombination compared to the average of 
the five runs down with partial recombination.  It is clear 
that the use of partial recombination in the evolution of 
the model parameters significantly improved the outcome.   

VI.  CONCLUSIONS 

Partial recombination significantly improves the 
outcome of robot learning during the co-evolution of 
model parameters.  We believe that this is due to three 
factors.  It shortens the length of chromosomes during 
crossover, which reduces the over all computation time 
required for the genetic algorithm to solve the problem.   
It allows genes belonging to the same schema to be 
adjacent  to  each  other  during  crossover,   reducing   the  



Figure 6: Result of area coverage learning without partial recombination. 

 
 

Figure 7: Result of area coverage learning with partial recombination. 
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Figure 8: A comparison of area coverage learning using standard crossover verses partial recombination. 
 

 
probability of schema disruption.  It uses only the genes 
involved in the computation of the fitness for crossover, 
protecting the genes not involved in the current solution 
from being adversely affected.  Although partial 
recombination was presented as a means of improving the 
co-evolution of model parameters for in the area coverage 
problem, it has general applicability to evolutionary 
computation problems where not all of the genes of the 
chromosome are involved in the solution for every 
instance of the problem. 
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