

Evolving Towers in a 3-Dimensional Simulated Environment

Gary B. Parker , Andrey S. Anev, and Dejan Duzevik
Computer Science

Connecticut College
New London, CT 06320

{ parker, asane, dduz} @conncoll.edu

Abstract -- This paper descr ibes a system that uses
evolutionary computation to evolve tower-like struc-
tures. The construction takes place in a computer
simulated gravitational environment. The evolution
targets the morphology; each chromosome carr ies
structural descr iption of the entity. Fitness functions
evaluate the structural integr ity and “ goodness” of
each individual based on indicators such as joint ten-
sion, center of gravity, position in space, height, etc.
Twelve evolution-tests were per formed and all success-
fully reached tower solutions.

1 Introduction

Extensive research in artificial intelligence in the field of
robotics has been conducted on the development of more
efficient ways to evolve the cognitive processes of robots
with predefined morphologies. The theoretical rationale
behind these approaches is that by evolving the mind of a
robot to perform a certain task, human programming is
reduced, while a near optimal result is achieved by using
some form of evolutionary computation. However, con-
fining the mind to a predetermined body creates unin-
tended constraints for the efficiency of a robot. Recently,
attempts to simultaneously co-evolve the mind and the
body have been conducted.

O’Reilly made significant advances in incorporating
evolutionary-strategy modules in CAD systems. The Gen-
erative Genetic Explorer targets partial transformations of
pre-designed frames to facilitate architectural aesthetics.
This is achieved without an embedded fitness function but
relying on the feedback of the architect [orei98]. The
Emergent Design Group has created The Rule Genetic
Programmer (RGP) that comes with solutions for high-
density structures to be placed within an existing urban
area [orei00].

Research led by Jordan Pollack at Brandeis University
has shown that evolving static structures is possible using
basic laws of physics and no human influence regarding
physical characteristics of the created objects [fune98,
fune99, poll98]. A group of researchers led by Henrik
Lund used pre-designed modules to develop a system that
creates dynamic LEGO MINDSTORMS robots [lund97].
The system is initially equipped with structures that com-
bine wheels, axles, and motors. The evolution of different
structures uses these modules later to develop the best
design for a given task.

Our research follows the logic of these approaches, but
is to evolve locomotion without the limitations of prede-
termined modules and uses a general chromosome struc-
ture that allows for the use of multiple types of joints cru-
cial for evolving complex structures. This also gives the
system freedom to perform various crossover and mutation
operations. In addition, our work utilizes an uninhibited
evolution, free from predetermined modules. Karl Sims
created a virtual environment to simultaneously evolve the
morphology and controllers of creatures [sims94]. He
achieved significant virtual results, whose real construc-
tion would be difficult. We use LEGO Mindstorms set to
construct real structures because of their simplicity, avail-
ability, and affordability. At this phase of our research we
use only the basic bricks. However, the various other
pieces included in the set such as motors, wheels, axles,
cogwheels and connectors provide ground for future ad-
vance in the research of evolvable morphologies. The
properties of the RCX enable downloading controls on the
robot itself, which creates an autonomous entity. We
believe that even though pre-constructed modules speed
up evolution, they inhibit optimal results. Thus, we under-
take an atomic approach where the smallest particles are
pieces whose function is not clearly defined until they are
placed in the context of the entire unit. A list of frames
that describe all available pieces (piece pool) allows easy
construction of the output.

Our research has been separated into three stages: evo-
lution of the morphology, evolution of the controller, and
the combination of the two. The morphological evolution
is separated into two phases: creation of stable structures
and the evolution of movable robots. The goal of the first
phase is development of a program that generates cohesive
and stable structures according to a given set of objectives
in terms of height, length, size or weight. This paper re-
ports on the first phase of morphological evolution to
obtain stable structures. In the second phase, which is still
in progress, robots with locomotion will be developed to
perform a specific task.

The system has to use pieces with different dimen-
sions, shapes, functions and connections in order to have
high degrees of freedom in the creation of robots capable
of performing various tasks. Constraints are placed on how
the bricks connect as well as on the number of parts the
system uses to reflect a real world situation. These factors
presented many challenges in terms of building the struc-
tures and implementing their crossover in a virtual envi-
ronment governed by the laws of physics.

2 Environment Simulation

The need for generating numerous generations, each con-
taining a population of 70 individuals or more, made the
possibility of manually building each product and using
the resultant fitness as feedback to the system too time
consuming to be feasible. Therefore, a simulation envi-
ronment was created that reflects the constraints that grav-
ity has on the objects in our environment.

The program is composed of five modules (Figure 1):
Builder Module, Physics Module, Stability Module, Fit-
ness Evaluation, and Reproduction.

The Physics Module evaluates if the structures created
in the Builder will break due to gravity. If that is the case
the structure is returned to the Builder with the point of
fracture. The Builder deletes the fractured part and sends
the chromosome for reevaluation to the Physics Module.
The process is reiterated until a rigid structure is obtained.
The Stability Module determines whether a structure can
stay on its base. Negative results lead to termination of the
individual. Otherwise, its fitness is determined and the
structure is included in the pool for reproduction.

Figure 1: A diagram of the System’s Modules and how they
interact.

2.1 Br ick Representation

The LEGO MindStorms set used contains 139 different
parts. Each structurally different piece has a frame that
acts as a physical representation of the brick. It specifies
spatial dimensions, weight, and joint types and their posi-
tions on the piece. Each frame plays the role of abstract
knowledge; once used in a structure, it is altered to repre-
sent reality (only free joints are left and their positions are
updated according to the coordinates of the piece in the
builder). The system, however, can always reference the
frame to retrieve the original properties of the brick.

2.2 Builder Module

The Builder Module is responsible for creating individuals
by connecting pieces from the piece pool in the virtual

building space. The building space is a three-dimensional
pixel matrix, providing for computationally efficient bond-
ing and intersection detection. Each pixel is labeled ac-
cording to its current state: free, solid, (joint-type piece-
reference) or (point-of-connection piece-reference1 piece-
reference2). As a piece is added the relevant pixels are
checked and if a solid or (point-of-connection piece-
reference1 piece-reference2) result is obtained the place-
ment is rejected. In the case of a free joint the new piece is
checked for availability of a complementary joint at this
coordinate and if the piece is placed, all connections are
reflected in the builder and also in the chromosome of the
unit. The builder is restricted to a finite piece-pool (for
instance a single LEGO set) that determines the types and
number of pieces available, consequently limiting the
yielded structures to be comprised solely of pieces avail-
able to the user. The products of the Builder Module are
structures of interconnected pieces.

Figure 2: A diagram of a structure and the table produced to
hold the support links.

2.3 Physics Module

The Physics Module tests the overall integrity of the cre-
ated structure. It distributes torques that pieces in a struc-
ture exert on one another and evaluates the cohesion of the
structure. Pollack used a greedy generalized network flow
algorithm [dega95] to evaluate the stability of a structure.
Our system uses an algorithm to traverse the structure and
marks every piece either as support or as supported in a
specific connection.

Determining which brick supports which can be
straightforward only in the case when there are no loops
formed by the pieces. Figure 2 gives an example of how
the algorithm determines which brick is a support in a loop
situation. The algorithm starts at brick 3A because it is the
only connection to the ground and traverses either through
brick 4A or 1A. Assume it starts with 4A. It looks at 3A
and 4A and determines 3A as the support because it is on

Support Supported

3A 4A
4A 2A
2A 1A
3A 1A
1A 2A
2A 4A

Builder
Module

Physics

Stability
Module

 Reproduction

Fitness Termination

the ground. Then it observes 4A and 2A and flags 4A as
support of 2A. At the next step it marks 2A as support of
1A. The algorithm stops at the comparison between 1A
and 3A because it knows that this is a point of loop. Then
it goes back to the last unexplored link and looks at 3A
and 1A noting that 3A is the support. The process is con-
tinued until no unexplored links are left and we obtain the
results in Figure 2.

This reflects the fact that 4A simultaneously supports
2A and is supported by it. However, 3A is not supported
by any of the bricks because it is the place where the loop
started and is on the ground. The algorithm works with
more complex situations that may occur and outputs a
table of the support-supported relation used to determine
the force distribution.

The force that a single piece exerts is spread according
to its supports, and is dispersed all the way to the ground.
The force may be decreasing the strength of the joint or
increasing it when it balances another one. The possibility
of fracture exists when the sum of forces applied by the
weights of supported pieces prevails over the sum of the
binding capacities of the knobs on the pieces that supports
it. The initial capacities of the knobs and the weights of
all pieces were derived experimentally. The final capaci-
ties of all joints are calculated for each individual by fol-
lowing a network of support links that ends with the
ground. Fractures do not exist in the structure if the ca-
pacities of all joints are larger than zero after the torques
throughout the system have been applied to all pieces. In a
case of a structural fissure, the broken part is removed and
the remaining structure is reevaluated.

2.4 Stability Module

The system evaluates the stability as defined by the ground
supports of a structure using the Stability Function. In
contrast with the Physics Module, which assesses the
overall integrity of the structure, the Stability Module is
concerned only with the issue of balance. An algorithm
finds the outer edges of the supports on the ground. The
distance between a projection of the structure’s center of
gravity (COG) and the peripheral lines formed by the
edges of pieces located on the ground level is used to
determine the degree of stability of a given individual. The
further the COG is from the support edges (toward the
center), the more stable the structure, and hence the better
the fitness score. If the COG falls out of the boundary of
the ground supports, the structure is determined to be
unstable. The centralization of the COG is inversely ad-
justed for the height; higher structures call for better
ground stability. This is done to support future research
when we have moveable objects. This will cover situa-
tions where the robot is on a slope, reducing the possibility
that the projection of the COG will fall out of the support
figure.

3 Learning

To find an optimal solution for a structure in a given envi-
ronment evolutionary computation (a genetic algorithm
[holl75]) was used. It would preserve and promote benefi-
cial traits in the individuals and guarantee that the system
be capable of overcoming local peaks in its search for
solutions.

On this level of our research we target the accomplish-
ment of a single task – to create a tower-like structure. A
population of 70 individuals was used. Preliminary tests
using a larger population size did not yield better results
and increased the computational time.

3.1 Chromosome Structure

The essence of our research is to create a system capable
of generating task specific entities from a pool of various
pieces. The genetic module of the system had to be general
to cope with various tasks and provide a good interface for
future implementations.

Similar to the approaches described by de Garis, I. Ka-
jitani, T. Hoshino, M. Iwata, and T. Higuchi the system
has a variable chromosome length, which does not con-
strain the actual size of the final product [orei00, fune99].
A vector that represents the chromosome contains all the
pieces that comprise a structure. The genotype of each
entity clearly describes the phenotype by providing the
comprising pieces: showing their type, positioning in
space, and physical properties and displaying the intercon-
nectivity of the pieces. The form is shown in Figure 3. An
alternative approach would have included only the type
and positioning in space, leading to higher computational
demand and thus making the system less efficient.

(pi ece- name (space- coor di nat es pi ece- or i ent at i on)

 (f r ee- j oi nt s

 (j oi nt - t ype (coor di nat es) (coor di nat es) …)

 (j oi nt - t ype (coor di nat es) …))

 …

)

 (i ndex- of - pi ece- connect ed- t o

 (j oi nt - coor di nat es) (j oi nt - coor di nat es) …)

 (i ndex- of - pi ece- connect ed- t o

 (j oi nt - coor di nat es) (j oi nt - coor di nat es) …)

 …

)

Figure 3: The chromosome is made up of a list of pieces in the
structure. This is an example chromosome in Scheme represen-
tation.

An initial population is randomly created. An initial
piece is placed at the center of the building space. Random
pieces are picked from the piece pool and an arbitrary
orientation and connection are chosen. If the binding is
unsuccessful the piece is returned to the piece pool and the
process is repeated once again. Initially all individuals
have the same genetic size. During a mating process the
size can vary yielding smaller and bigger structures.

3.2 Fitness Evaluation

In the first phase of the research, the tasks of the morpho-
logical evolution require solid structures, such as towers,
tables, bridges and arches. Thus, in this stage of research
the fitness evaluation is designed to utilize stability as the
most important characteristic of an individual. However,
besides stability, the fitness function also uses tension
optimality, height and weight.

The stability fitness determinant uses equation 1 after
communicating with the Stability Module, obtaining the
center of gravity (COG) and the stability factor. The first
part of this equation is assigning higher stability fitness to
structures with wide bases that centrally support the center
of gravity (a is a constant used to bias this part’s impor-
tance). The variablex is the smallest distance from the
ground projection of the center of gravity to a support
side; x is the mean of all distances of COG to the support
sides. The second part of the equation is reducing the
stability fitness depending on how high the center of grav-
ity is (b is a constant used to bias this part’s importance).
The variable cogheight is the height of the center of grav-
ity from the ground.

cogheightbx
x

x
a ×−

 (1)

The formula used accounts for proportional symmetry

(Figure 4); bricks with identical form but different dimen-
sions will get the same score (x / x). However, in real-
ity the larger support (support 1) will prove to be more
stable than the second one. Therefore, we multiply by
thex distance and get a higher value. The first part of the
function tends to place the COG in the center of the sup-
port. The height of the COG is subtracted to account for
the fact that tall or top-heavy structures are less stable.

The tension optimality function looks for structures
with less tension between the pieces in order to yield
stronger structures. It sums the potentials of additional
stress that the joints can hold, so that the structures with a
higher factor are assigned a better fitness.

The height fitness function promotes higher structures,
and as such it leads to construction of the tower-like struc-
tures. At this level the weight function is used to promote
economical creation of structures instead of exploration of
the entire piece pool.

Each individual’s fitness is determined and the elite
(best individuals) of the population are selected for repro-

duction. The percentage selected can vary; we tried 30%,
40%, and 50% (when the mutation and crossover levels
are high, the smaller elite groups yielded better results).
Individuals are randomly selected from the elite to mate.
Once the mating process is complete the two structures are
returned back to the elite population preserving the possi-
bility of being selected for mating once again. The off-
spring created offset the loss in the previous population to
bring it back to its original size.

Figure 4: Example of supports for two distinct structures. The
center of gravity of the structure is shown by a circle.

3.3 Crossover

The Crossover (Figure 5) is responsible for the reproduc-
tion of individuals. Each piece of an individual’s structure
is a gene of its chromosome. At the initialization phase the
size of the offspring chromosome is set, but during evolu-
tion the generic algorithm creates individuals in a variety
of sizes. The fitness of the two parents is obtained and the
size of the offspring is biased to be closer to the one with
the greater fitness. An element of randomness is intro-
duced that can yield structures with a larger or smaller
chromosome than either parent but not larger than their
combined chromosome length.

Two modes of the crossover process are involved in
the reproduction stage. The first one is the link follower
where one of the individuals provides the genetic material.
The first piece is always the one with index zero, and for
future research this piece will always be the RCX. A pa-
rameter determines the bias of the next piece selection.
This bias parameter varies from -1 to 1 where -1 mimics a
breath-first search, 0 complete randomness and 1 depth-
first search. A breath-first search yields stacked structures,
while depth-first produces elongated ones. At this level
the bias was set to zero and is left for future use when the
system will be determining the level on its own. The link
follower is interrupted at a random point (crossover point)
to which a randomly chosen piece from parent B (initial
piece) is attached. Next, the system tries to attach pieces
that had been linked to the initial piece (from B). If pieces
from parent A are in the way of the pieces to be attached
from parent B, mutation will be invoked and the piece may
change enough to fit. If mutation is unable to come up

Structure Support 1 Structure Support 2

with a solution, the system looks for free connection
points, links specified in the parent’s chromosome. If none
are left, forced crossover occurs and pieces from parent A
are used again. When forced crossover occurs the system
starts using genetic material from the other parent and

connects it to a point specified by the bias. If the bias is
equal to zero it will pick a random connection position.
The products of the Crossover are individuals that resem-
ble characteristics of both parents.

 Parent A Parent B

 Offspring

Figure 5: Example of crossover. The top two figures portray two individuals: A and B. In the initialization of the reproduction process
a size of five is chosen and a crossing point after the third element. A starts giving genetic material through the link follower: pieces
1A 3A and 4A. Crossover occurs and B gives piece 3B that takes the place of 2A. The link follower then provides 4B. The size of five
is reached and the reproduction finishes.

3.4 Mutation

Mutation can be invoked randomly or by force. It is ap-
plied by force when an attempt to place a piece was un-
successful and the system tries to overcome the problem
with a small change instead of resorting to forced cross-
over. Initially the system sets a proximity table that indi-
cates how close in structure different pieces are. This is
determined by the parameters of the piece: length, width,
height, and number of knobs. Even though selection of the
mutated piece is random, those that are closer in structure
to the original piece have higher probability of being cho-
sen. Three types of mutation can occur. Structural muta-
tion is invoked when the genetic operator is attempting to
place a piece that is not in the piece pool (all of those
pieces have been used). Mutation accesses its proximity
tables and based on similarity of the pieces and availability
in the piece pool returns a piece. The second type is lim-

ited positional and leads to small, random changes in a
single piece’s position and orientation. The general
positional mutation exerts a domino effect on all subse-
quent pieces by shifting them according to the shift in the
mutated piece, creating a global impact on the structure.

4 Results

We show the results of the 4 trials done with a population
of 70 individuals to demonstrate the progression of learn-
ing in Figure 6. The mutation level was set to 10% but in
fact it would vary due to forced-mutation. The bias in
selecting the next piece (determining if the system would
undertake a breath-first or depth-first approach) during
crossover was set to 0, which yields random choices. An
elite group of 30% of the population (21 individuals) was

chosen to reproduce and persist in the next generation.
Each line in Figure 6 shows the improvement of the top
fitness over a total of three hundred generations. In all

cases, there was fast initial improvement that decreased as
the learning got to the higher generations.

0

500

1000

1500

2000

2500

3000

3500

� ����� �����

Generations

F
it

n
es

s

Figure 6: Graph of the evolutionary process of four tests using population sizes of 70 individuals, mutation rate of 10%, and 30% elite
selection. They portray rapid initial increase in fitness that slows down as the generation count increases.

The goal of our tests was evolution of stable tower-like

structures. Because of the narrow definition of our objec-
tive, the fitness function was evaluated using only two
properties: the height of the structure and its stability level.
Better stability and greater height were, therefore, key
factors to raise the fitness of an individual. The limited
piece pool results in an inverse relation between the stabil-
ity and the height of evolved structures; to enhance stabil-
ity the system uses more pieces on the ground and the
lower levels, and less pieces are available to reach a
greater height. Similarly, utilizing more pieces towards
the height diminishes the stability of the individual. Our
evolution provided solutions by balancing both properties.

In the early stage of the evolution the system tends to
maximize the individual’s fitness by diminishing the ten-
sion between the parts through multiple connections and to

expand on the base (stability). Further in the evolution it
discovers that it can be more economical and at the same
time preserve small degree of tension by placing bricks
one on top of the other. In this way it creates stable and
high structures. This can be seen in Figure 7 where we
have a stack structure in an example of a typical 70th
generation that maximizes on solidity. As the number of
generations increases the systems discover that height
yields better fit. The example of a typical 300th generation
solution shows that the learning system preserved the
longest and widest piece from the piece pool on the
ground and has found better utility for the rest to contrib-
ute for the height of the structure. This can also been seen
by observing the footprint of two example structures in
Figure 8. Evolution utilized all pieces from the piece pool
in the construction of the tower-like structures.

0 100 200 300

 70 generations 150 generations

 200 generations 300 generations

Figure 7: A two dimensional representation of four structures produced at different numbers of generations. The ones with higher
generation level optimize height, in contrast with those on a small evolutionary step which gained better fitness among the other indi-
viduals at that generation by expanding stability.

 base at 70 generations base at 300 generations

Figure 8: This figure shows the footprint of the 70 and 300 generations structures from Figure 7.

5 Conclusions

Our system of evolving tower-like structures in a com-
puter simulated gravitational environment was a success.
The towers that we evolved show structural integrity and
stability. This work completes the first phase of stage one
of our co-evolving morphology/control research – the
creation of a stable structure. The next step of our re-
search involves the addition of pieces such as axles,
wheels, motors, etc., to enable the system to evolve mov-
able structures that will be capable of performing specified
tasks.

References

[dega95] de Garis, H. "Evolvable hardware: Genetic program-
ming of a Darwin machine." Proceedings of the In-
ternational Conference on Artificial Neural Nets and
Genetic Algorithms. (1995) 441-449.

[fune98] Funes, P. and Pollack, J. "Evolutionary Body Build-
ing: Adaptive physical designs for robots." Artificial
Life 4 (1998) 337-357.

[fune99] Funes, P. and Pollack, J. "Computer Evolution of
Buildable Objects." Evolutionary Design by Com-
puters. (1999) 387-403.

[holl75] Holland, J. H. Adaptation in Natural and Artificial
Systems. The University of Michigan Press, Ann Ar-
bor, MI (1975).

[lund97] Lund, H. H. et al. "Evolving Robot Morphology."
Proceedings of IEEE Fourth International Confer-
ence on Evolutionary Computation. (1997).

[orei98] O’Reilly U.M. and Ramachandran G. "A preliminary
investigation of evolution as a form design strategy."
Artificial Life IV: Proceedings of the Sixth Interna-
tional Conference on Artificial Life. (1998).

[orei00] O’Reilly U.M. and Testa P. "Representation in Archi-
tectural Design Tools". Proceedings of ACDM-2000.
(2000).

[poll98] Pollack, J. and Funes, P. "Evolutionary Body Build-
ing: Adaptive Physical Design for Robots." Artificial
Life (1998).

[sims94] Sims, K. "Evolving 3D Morphology and Behavior by
Competition." Artificial Life IV Proceedings. (1994)
28-39.

