
Compar ison of Sampling Sizes for the
Co-Evolution of Cooperative Agents

Gary B. Parker and H. Joseph Blumenthal

Computer Science
Connecticut College

New London, CT 06320
parker@conncoll.edu and hjblu@conncoll.edu

Abstract -- The evolution of a heterogeneous team be-
havior can be a very demanding task. In order to pro-
mote the greatest level of specialization team members
should be evolved in separate populations. The greatest
complication in the evolution of separate populations is
finding suitable par tners for evaluation at tr ial time. I f
too few combinations are tested, the Genetic Algor ithm
loses its ability to recognize possible solutions and if too
many combinations are tested the algor ithm becomes
too computationally expensive. In previous work a
method of punctuated anytime learning was employed
to test all combinations of possible par tners at per iodic
generations to reduce the number of evaluations. In
fur ther work, it was found that by varying the number
of combinations tested, the sample size, the GA could
produce an accurate and even less computationally
expensive solution. In this paper , we compare different
sampling sizes to determine the most effective ap-
proach to finding the solution. We use a box pushing
task to compare these different sampling sizes.

1 Introduction

The objective of our work is to find a method of producing
cooperative agents using co-evolution that maximizes ac-
curacy while minimizing computational cost. Robots that
cooperate can often achieve much more than the sum of
what they could do individually. Learning cooperative
behavior for robots has been approached in several ways.

Luke and Spector developed a method for evolving a
team of agents that display heterogeneous behavior
[luke96]. The applied problem in their research was the
Predator-Prey scenario in which four artificially intelligent
agents representing “ lions” attempted to entrap the prey
represented as a “gazelle” . They used genetic program-
ming and considered each team of four “ lions” as one in-
dividual instead of evolving team members in separate
populations. Even though this method proved successful in
producing cooperative emergent behavior, evolution of
teams in a single population limits specialization. This
approach compromises the ability of the GA to recognize a
suitable team member because a partner’s score is overly
influenced by the performance of other members of the
team. Learning control of each member in a separate
population plays to the strength of a genetic algorithm.

The members of the population will tend toward a spe-
cialization and the evolutionary power of the GA would be
concentrated in producing the best and most specialized
individual possible.

Potter and De Jong capitalized on evolution of behavior
in separate populations by creating cooperative co-
evolutionary algorithms (CCAs) [pott94]. This method
evaluated an agent’s fitness by testing it with a single
member from the other population. This chosen member
from the opposing population is the best member from the
previous generation. Best is determined by the individual’s
fitness compared to others in its own population. Potter,
Meeden, and Shultz utilized this method to co-evolve arti-
ficially intelligent agents to heard sheep into a corral
[pott01]. The strength of the co-evolution was further
tested by introducing agents representing wolves, which
tried to attack the sheep. This method proved to be effec-
tive and the evolved agents successfully moved the sheep
into the corral while protecting them from the predators in
the simulation.

Although this method proved to be an excellent means
of producing heterogeneous behavior, the CCA method
still limits each individual’s fitness calculation to being
computed with only a single partner. Wiegand, Liles, and
De Jong discuss the pertinent issues to optimizing co-
evolution of teams [wieg01]. They examine in particular
the collaborator selection issues. Their conclusion was that
the most influential factor on the overall success of the co-
evolution is the collaboration pool size, or the number of
combinations tested at trial time. However, they note that
as the collaborator pool size increases, so does the compu-
tational cost of a generation of training. By this rational,
the most accurate method would be to tests all individuals
with every possible partner. A task requiring N partners
with I individuals in each population, any given generation
of training would require IN evaluations; not an acceptable
solution.

Parker developed Punctuated Anytime Learning (PAL),
a method to allow for the learning system to be periodi-
cally updated throughout simulated evolution [park02].
The computer's model in simulation is updated or the GA
fitness evaluation altered by measuring the robot's actual
performance at certain consistently spaced number of gen-
erations called punctuated generations and entering those
values into the GA.

Parker and Blumenthal adapted the concept of PAL to
be applicable to evolving cooperative teams [park02]. This
method used the periodic nature of PAL to minimize the
number of fitness evaluations required to evolve team
members in separate populations. The most accurate
method of fitness evaluation would be to get an individ-
ual’s fitness by pairing it with all possible partners at trial
time. In order to reduce the number of fitness evaluations,
at certain punctuated generations this method selected a
single individual from each population as the best repre-
sentative of the nature of their population. This selected
individual, referred to as an alpha individual, was used as
a partner at trial times for evaluating the fitness of any
individual in the opposing population. Employing this
method of PAL, with N generations between each round
of alpha selection, the number of fitness evaluations is
reduced by a factor of approximately N. Although these
results showed that this method produces a highly accurate
solution, it is still too computationally intensive to ac-
commodate more than two populations.

Additional research showed that it is possible to further
reduce computations during alpha selection by testing each
individual’s fitness with less than the entirety of the
opposing population [park02]. The chosen group used for
alpha selection is referred to as the sample and the number
of individuals in that sample is called the sampling size.
This adjustment significantly reduced the number of
evaluations required to find an accurate solution. In this
paper, we compare different sampling sizes, while ensur-
ing equal fitness evaluations by varying the number of
generations between alpha selections, in order to deter-
mine which sampling size offers the most accurate solu-
tion for the chosen box pushing task.

2 Problem Descr iption

The task is to have two hexapod robots starting from one
corner of an enclosed square area to push a box that is
situated in the middle of the area to the opposing corner.
The scenario from which the task has been abstracted is a
colony space in the Connecticut College Robotics Lab
measuring approximately 8x8 ft. In this area, the two Ser-
voBot robots and a square cardboard box can be placed.
The problem is for the pair to act cooperatively to force
the box into the opposing corner from which the robots
started. The tests, done in simulation, use agents that
model actual robots.

2.1 Simulation of Robot Per formance

The robots simulated are modeled after ServoBots, which
are inexpensive hexapod robots made of pressed wood
with twelve hobby servos (Figure 1). The movements of
the servos are coordinated by a central controller. This
controller is a BASIC Stamp II capable of individually
addressing each of the twelve servo actuators (two on each

leg) to produce and sustain forward motion. The BASIC
Stamp II is capable of storing a sequence of timed activa-
tions to be repeated. These timed activations if sequenced
correctly produce a gait cycle defined as the timed and
coordinated motion of the legs of a robot, such that the
legs return to the positions from which they began the mo-
tion. Each single activation represents the simultaneous
movement of the twelve servos. The list of controls for the
twelve servos is represented in the controller as a twelve-
bit number. Each bit represents a single servo with a 0 or a
1. For the horizontal servos a 0 indicates full back and a 1
indicates full forward. Likewise, for the vertical servos a 0
corresponds to full down and a 1 corresponds to full lift.
Therefore, each pair of bits can represent the motion of
one leg, each bit controlling one servo, corresponding to
one of the two degrees of freedom. The pairs of bits are
ordered to their represented leg as 0 to 5 with legs 0,2,4
being on the right from front to back and 1,3,5 being on
the left from front to back (Figure 2). Figure 2 also shows
the corresponding twelve-bit activation. By this example,
the number 001000000000 would lift the front left leg up,
and 000001000000 would pull the second right leg back-
ward.

Figure 1: The ServoBot

Each activation is held by the controller for one pulse

(approximately 25 msec). With this method of representa-
tion, a cyclic genetic algorithm (discussed in a later sec-
tion) can be used to evolve an optimal gait cycle for a spe-
cific ServoBot [park01]. The gait cycle used in our simula-
tion was a tripod gait, in which three legs provide thrust
while three legs are repositioning to provide thrust on the
next set of activations. The CGA for our specific Servo-
Bot, learned a near optimal gait cycle, which requires a
sequence of 29 pulses to move a servo from full back to
full front.

01
23
45

Activation: 100101101001

 10 01 01 10 10 01

Different degrees of turns were then generated for our

ServoBot by decreasing the total number of pulses sent to
one side of the robot. If legs 1,3,5 were given all 29 pulses
but legs 0,2,4 were only given 15 pulses the result would
be a right turn due to the drag created by the left legs
(0,2,4) throughout the duration of the gait cycle [park01].
The effects of each of the 15 left and right turns, plus no
turn, were measured as they were performed by the Ser-
voBot being tested. These turns are unique to the particu-
lar ServoBot, for example the recorded “no turn” actually
veered left due to minor differences in the physical con-
struction. These 31 performance values (measured in cen-
timeters moved and degrees turned) were recorded and
stored in a table.

2.2 Simulation Environment

The simulated environment used for evolving the agents
was an abstraction of the colony space in the lab. The
simulated area measured 250x250 units. The environment
is peculiar in that the coordinate position of (0,0) is located
in the upper left corner of the plane. Both robots were rep-

resented as circles but the robots were treated as single
points for rules of contact with the box, which was repre-
sented as a square. In each trial, both the robots and the
box were placed in consistent starting positions. The first
robot started on the point (10,5) and faced parallel to the
x-axis, while the second robot started in the mirrored posi-
tion (5,10) but faced parallel to the y-axis. The box started
in the middle of the environment at the point (125,125).
See Figure 3 for a snapshot of the simulation with every-
thing in its starting positions.

Each robot's ability to push the box on its own (without
aid from its partner) was affected by an endurance factor.
The endurance factor starts at zero and increases with each
consecutive non-aided push. With F representing the
would be full force of the robot push acting singly, and E
representing the endurance factor, the force the robot may
apply to the box is given by the quotient F/2E. This cuts
their pushing power in half after each gait cycle. As soon
as both robots push the box simultaneously, both of their
endurance factors are reset to zero. In the simulation, both
robots move simultaneously, and a trial ends when either
each robot has taken 200 steps or one of the three (the two
robots or the box) moves out of the simulated area.

3 Method

The behavior of both agents was evolved incrementally in
two stages. The first stage defined their actions before they
first touched the box, and the second defined their actions
afterward. The first stage required no cooperation while
the second part did. The second stage was evolved using
punctuated anytime learning, which allows for the updat-
ing of the computer's models during evolutionary compu-
tation.

3.1 Evolutionary Methods

 A variation on the standard GA called a cyclic genetic
algorithm [park01] was used to develop our two heteroge-
neous cooperative agents. A CGA is much like a regular
GA, but in the CGA the genes of the chromosome can
represent tasks to be completed. The tasks can be anything
from a single action to a sub-cycle of actions. Using this
method of representation, it is possible to break up a
chromosome into multiple genes with each gene acting as
a cycle. Each gene or sub-cycle contains two parts, one
part representing an action or set of actions, and the sec-
ond part representing the number of times that action is to
be executed. The genes can be arranged into repeated se-
quences and a chromosome can be arranged with single or
multiple cycles or even the entire chromosome can be-
come a cycle. In the case of multiple cycles, it is possible
to switch from one to the other at any point.

Individuals were selected stochastically for breeding
based on their fitness score and standard operators were
used for the CGAs. Incremental learning was employed
because the problem can be easily broken down into two

Figure 3: Simulation of the colony area.

Figure 2: Diagram numbering the legs of the ServoBot and a
sample twelve-bit activation.

smaller tasks allowing for greater specialization in etc
cooperation. The first increment required no cooperative
behavior. For the first increment, two completely separate
populations were evolved; one for each robot. They were
evolved using an identical method except for the robot’s
starting positions. For population A, the starting point was
(10,5) facing down the x-axis, the fitness of an individual
was either the value of the box’s y coordinate after the trial
finished or zero if the individual failed to move the box
positively in the y direction. For population B starting at
(5,10) facing down the y-axis, the individual's score was
computed the same as for an individual in population A,
except the robot was charged with moving the box posi-
tively in the x direction to receive a non-zero score. The
second increment of the learning process, which will be
discussed later in section 3.1 was more complex and in-
volved the use of punctuated anytime learning in addition
to the CGA.

The fitness score of a team is the product of the posi-
tive distances the box is moved in the x and y directions.
Where X final and Y final represent the box’s final coordinates
and Xstart and Ystart represent its starting position, the fit-
ness of any given evaluation would be ((X final- Xstart) *
((Y final – Ystart)). The team is awarded a score of zero if the
product of the coordinates is negative because they failed
to advance the box towards target corner of the area in the
x or y direction. Since Xstart= 125, Ystart=125 and the larg-
est that X final and Y final can be is 250, the maximum attain-
able fitness is 1252 or 15625.

The CGA was perfectly fit for our evolution because it
is designed for learning cyclic behavior and it allowed for
our incremental learning approach. The set of actions to
get each agent to the box was one cycle and each agent’s
behavior after touching the box was defined in the second
cycle of their CGA chromosome. During a trial, when the
robot touches the box, after the completion of the current
gait cycle the controller would switch from the first to the
second cycle. The two cycles of the CGA chromosome
had nine genes each. Every gene contained two 5-bit num-
bers, one representing a gait cycle with 31 possible turns
or a 0 which indicated that it was to stand still and the
other representing the repetitions of that gait cycle. The
scheme representation of the chromosome is shown in
Figure 4.

(((T1 R1) (T2 R2) … (T8 R8)) ((T1 R1) (T2 R2) … (T8 R8)))

Only the first cycle of the CGA chromosome was
evolved during the first increment of learning. A popula-
tion of these chromosomes learned for each team member
during this first increment was used to evolve each team in
the second increment. The first cycles remained un-

changed while the second cycles for each chromosome
were randomly generated to create start populations for the
second increment of learning.

3.2 PAL For Evolving Team Coordination

Punctuated anytime learning (PAL) was developed to
strengthen offline genetic algorithms by capitalizing on
Greffenstette and Ramsey’s dynamic anytime learning
approach [gref92] . Although PAL cannot allow for con-
tinuous updates of the computer’s models, it updates its
model every G generations, resulting in a period of accel-
erated learning. The generations in which the model is
updated are referred to as “punctuated” generations. When
applied to a single GA, PAL updates the computer’s
model every G generations by running tests on the actual
robot and uses these results for fitness biasing in the GA
[park02] or in the co-evolution of model parameters
[park99].

Punctuated anytime learning is a fairly different con-
cept when applied to co-evolving separate populations to
form members of a team. The updated information that
each population in the learning receives is a more accurate
representation of the overall nature of the other population.
For ease of explanation, assume that the experiment has
two populations, population A and population B. In this
case, every G generations, selected individuals in popula-
tion A are tested against all individuals in population B.
The purpose of this process is to find the most fit individ-
ual from each population to evolve with the other popula-
tion. The chosen most fit individual from each population
will be referred to as the “alpha individual” . The genera-
tions in which the computer finds new alphas are called
“punctuated” generations. In non-punctuated generations,
the alpha individuals selected from the last punctuated
generations are paired with perspective team members in
the other population for fitness evaluation. This method
not only ensures consistency within a generation of train-
ing, it also decreases the total number of evaluations re-
quired to find an accurate solution.

3.3 Sampling Populations

The original adaptation of PAL was to perform alpha
selection at punctuated generations by testing all members
of a population A against all members of a population B.
This method proved to be a powerful system for evolving
teams. Although it was effective, this method remains too
computationally expensive. In order to further reduce
computation time, we tested the possibility of selecting
alphas using less than the entire population. Assuming that
the experiment has two populations, population A and
population B, every G generations, some chosen number
of individuals in population A are randomly selected and
tested against all individuals in population B. The selected
individuals from population A are referred to as the sam-
ple, and the number of chosen individuals is called the
sampling size. Our tests [park02] involved using a sample
size of 8, which was thought to be a good starting point as

Figure 4: Scheme representation of the CGA chromosome where
T is a specific turn and R is the number of repetitions of that turn.
The genes, which appear in bold, represent the second cycle.

it is the square root of our original sample size of 64. We
found the sample size of 8 to be both accurate and swift in
alpha selection.

For the research reported in this paper, we tested a va-

riety of sampling sizes to investigate their merits. We
realized the strength of combining the periodic nature of
PAL with a smaller sampling size to reduce the intensive
computation time in evolving team behavior.

�

�������

� �����

�������

�������

� �������

� �	�����

�
� �����

� �������

� ������� � ����� ������� ������� � �������
�����������������������������

!" #
$%
&&

')(+*-,/. 021
')(+*-,/. 0/3
')(+*-,/. 054
')(+*-,/. 076
')(+*-,/. 02158
')(+*-,/. 0/9
3
')(+*-,/. 078+4

Figure 5: Results of the box pushing, shown through 10,240 alpha evaluations for sampling sizes 1, 2, 4, 8, 16, 32, and 64. Each curve
is an average of five separate runs of the GA. Sample 8 is shown in hold and all higher sampling sizes are shown as a dashed line.

To express mathematically the computational reduction
achieved by this union of methods, we let G represent the
number of generations between alpha selections, I repre-
sent the number of individuals in a single population, and
N represent the number of populations. The most accurate
method of testing would be to compare all individuals in a
population against all others in the opposing population
for alpha selection every generation. A single generation
of training would therefore require IN evaluations. To re-
duce this level of computation, alphas are only selected at
punctuated generations. If alpha selections occur every G
generations, this reduces the evaluations by that factor of
G. This solution cuts computation time to IN/G, but further
reductions are necessary to accommodate the co-evolution
of more than two populations. In order to further reduce
computations, sampling is used. Using the previous pa-
rameters and adding the term S representing the sampling
size, any given alpha selection requires only 2 * (I * SN-1)
trials. If done every G generations then the number of tri-
als is (N * (I * SN-1))/G.

4 Results

In order to establish the relative strength of the sampling
rates, we staggered the punctuated generations such that
each sample rate performed the same number of fitness
evaluations at the generations when results were recorded.
This staggering also allows us to ensure an equivalent
number of alpha evaluations, those trials dedicated to al-
pha selection. The sampling sizes tested where one, two,
four, eight, sixteen, thirty-two, and sixty-four. The ar-
rangement of the sampling sizes was set such that the
sample one performed alpha selection every generation,
the sample two performed selection every other genera-
tion, sample four performed selection every fourth genera-
tion. This system of testing forces an equivalent number
of alpha evaluations and generations of growth. In addition
to these alpha evaluations, each generation also incurs 128
normal evaluations, one extra for each of the sixty-four
members of both populations. The performance of the
most fit combination of partners for each of the seven dif-

ferent sampling rates plotted on the graph (Figure 5) are
each the average of five separate test runs of the GA. The
x-axis represents the total number of alpha evaluations
during training and the y-axis represents the fitness

achieved from the combination of the best from each
population to form partners. Fitnesses were recorded at 0,
64, 128, 256, 512, 1024, 2048, 5120, and 10240.

Figure 6: Graphical simulation of a sample 64 trial that achieved maximum fitness.

Figure 5 shows that all seven of the sampling sizes

reach reasonably accurate solutions, though sample 64
reaches the highest average fitness of the best combination
of partners of any sampling size. You can see in Figure 5,
the curves representing the lower sampling sizes 1, 2, and
4, do not reach above the sample 8 after the 1024th alpha
evaluation. The lines representing the higher sampling
sizes 16-64 outperform the sample 8 at later generations,
with the exception of sample 16 at 5120 alpha evaluations.

We examined the graphical simulations of the tests that

were averaged together to create the data series in Figure
5. When observing the simulations of the higher sampling
sizes (8, 16, 32, & 64) we noticed that these sizes push the
box within three units of the corner area (250,250), yield-
ing a fitness score over 15,000. All five of the sample 64
tests moved the box within 1.5 units of the target corner.
This is consistent with our assumption that the sample 64
is the most accurate method. Refer to Figure 6 for a snap-
shot of a graphical simulation of a sample 64 trial at
maximum fitness.

:

;<:�:�:

= :�:�:

>�:�:�:

?�:�:�:

@ :�:�:�:

@ ;<:�:�:

@/= :�:�:

: ;�:�: = :�: >�:�: ?�:�: @ :�:�:
AB�CEDGFIH<JGF�B�KGF�LNMPORQGS

TU V
WX
YY

ZN[�\^]�_ `�a

ZN[�\^]�_ `�b

ZN[�\^]�_ `
c

ZN[�\^]�_ `<d

ZN[�\^]�_ `�a
e

ZN[�\^]�_ `�f�b

ZN[�\^]�_ `<e	c

Figure 7: Results of the box pushing for sampling sizes 1, 2, 4, 8, 16, 32, and 64. Each curve is an average of five separate runs of the
GA. The lower sample sizes are shown as dashed lines to demonstrate accelerated initial growth. Sample 8 is shown in bold.

A closer look at the lower alpha evaluations portion of
the results (Figure 7) shows that the lower sample sizes 1,
2, and 4 are, in general, better in the initial stages of learn-
ing. This quality of the sample sizes shows their applica-
tion for optimizing the method. These sampling rates ex-
hibit their accelerated growth up to the 128th alpha evalua-
tion. This is rather intuitive because by the sixty-fourth
generation, the sample one has evolved with sixty-four
different pairs of alpha individuals while the sample sixty-
four has evolved with only one pair of alphas. The sample
4 test continues its accelerated growth past the sample
rates of 1 and 2. We believe that the sample 1 and sample
2 lack the ability to represent the true nature of a popula-
tion with so few comparisons for alpha selection. This is
further confirmed by noting their overall behavior in Fig-
ures 5 and 7. In both the lower and upper ranges of learn-
ing these two sampling sizes lack consistency.

For the box pushing task overall, the best sampling
sizes are those which allow for sufficient tests in the early
generations, yet enough of a sample to get the nature of
the population in later generations. Therefore the sampling
rates of 4, 8, or 16, represent strong candidates for consis-

tent and sustained growth. In both Figures 5 and 7 sample
8 is shown in bold because it is the median of the series.

5 Conclusions

The significance of the results can be seen as helping to
determine whether it is more important to have a more
accurately selected or a more current alpha individual for
training. While these results can be considered indicative
of the method it is important to note that the results are
specific to the box-pushing task.

Reducing the number of generations between alpha se-
lections is a key factor in early generations and having a
high sampling rate is needed in late generations. There-
fore, a possible approach to optimizing our GA would be
to utilize ascending sampling sizes based on the current
fitness levels of the evolution. This would play to the
strength of the nature of our sampling method as the lower
rates would promote initial acceleration in growth and the
higher rates would provide consistent growth, which en-
dures until an optimal solution can be reached.

References

[gref92] Grefenstette, J. J. and Ramsey, C. L. “An Ap-
roach to Anytime Learning.” Proceeding of the
Ninth International Conference on Machine
Learning, (1992), 189-195.

[luke96] Luke, S. and Spector, L. “Evolving Teamwork
and Coordination with Genetic Programming.”
Proceedings of First Genetic Programming Con-
ference. (1996), 150-156.

[park99] Parker, Gary B. “The Co-Evolution of Model
Parameters and Control Programs in Evolutionary
Robotics.” Proceeding of the 1999 IEEE Interna-
tional Symposium on Computational Intelligence
in Robotics and Automation. November 1999
(162-167).

[park01] Parker, Gary B. “Learning Control Cycles for
Area coverage with Cyclic Genetic Algorithms.”
Proceeding of the 2nd WSES International Con-
ference on Evolutionary Computation (EC ’01).
February 2001 (283-289).

[park02] Parker, Gary B. “Punctuated Anytime Learning
for Hexapod Gait Generation.” Proceedings of
the 2002 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2002). Oc-
tober 2002 (2664-2671).

[park02] Parker, Gary B. and Blumenthal, J., 2002, "Punc-
tuated Anytime Learning For Evolving A Team."
World Automation 2002 Congress Proceedings.

[park02] Parker, Gary B. and Blumenthal, J, 2002, “Sam-
pling the Nature of A Population: Punctuated
Anytime Learning For Co-Evolving A Team.” In-
telligent Engineering Systems Through Artificial
Neural Networks (ANNIE2002, Volume 12)
(2002), 207-212.

[pott01] Potter, M. A., Meeden L. A., and Schultz A. C.
"Heterogeneity in the Coevolved Behaviors of
Mobile Robots: The Emergence of Specialists."
Proceedings of The Seventeenth International
Conference on Artificial Intelligence. (2001).

[pott94] Potter M. A. and De Jong K. A. "A Cooperative
Coevolutionary Approach to Function Optimiza-
tion." Proceedings of the Third Conference on
Parallel Problem Solving from Nature. (1994),
249-257.

[wieg01]Wiegand R. P., Liles W. C., and De Jong k. A.
"An Empirical Analysis of Collaboration Meth-
ods in Cooperative Coevolutionary Algorithms."
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO). (2001),
1235-1245.

