
1

SAMPLING THE NATURE OF A POPULATION:
PUNCTUATED ANYTIME LEARNING FOR CO-EVOLVING A TEAM

GARY B. PARKER
Connecticut College
New London, CT 06320

H. JOSEPH BLUMENTHAL
Connecticut College
New London, CT 06320

ABSTRACT
Evolving agents to function as cooperative members of a team is a difficult
problem. In order for individuals in a team to best display heterogeneous
behavior, their evolution must take place in separate populations to promote
specialization. To allow the genetic algorithm to find a robust solution, the
fitness evaluations must ensure that each individual is paired with team
members that best represent the nature of their partners’ populations. In
previous work, we employed a method of punctuated anytime learning to
ensure the integrity of the fitness evaluation. This was very successful, but was
still considered to be too computationally expensive. In this work, we use a
sampling method to maintain the quality of the solutions while significantly
decreasing the time for computation. We chose a box pushing task to show the
success of our method.

INTRODUCTION
The objective of our work is to develop a robust and computationally

inexpensive method of co-evolving two separate populations to produce
cooperative behavior in two specialized members of a team. Robots that
cooperate can often achieve much more than the sum of what they could do
individually. Learning cooperative behavior for robots has been approached in
several ways. Luke and Spector (1996) researched methods of increasing
specialization and cooperation in teams. They considered the whole team as a
single genetic programming individual, instead of evolving the agents in
separate populations.

Potter and De Jong (1994) focused on methods to optimize co-evolution in
their paper that was a theoretical discussion of ways to break down a
cooperative task into parts and evolve a population for each sub-task. The
method described in their work called cooperative co-evolutionary algorithms
(CCAs), allows heterogeneous control systems to evolve by defining an efficient
means of computing an individual’s fitness. The individuals of each population
are each tested while teamed with the best fit individuals from the generation of
the other populations. This method of selecting one individual from each
population with which to evaluate each member of a population allowed each
population to develop specialized individuals of the teams. In addition, this
method insured that an individual is not discounted by getting teamed with a
poorly evolved partner. Although successful in completing the task and an
excellent method for evolving cooperative teams, the CCA method still limits
each individual’s fitness calculation to being computed with a partner that was
selected by comparison with only one individual from the opposing populations.

2

Wiegand, Liles, and De Jong (2001) took a more in depth look at the factors
that effect the co-evolution of a team. In their work they examine collaborator
selection issues. Their conclusion was that the most influential factor on the
success of the co-evolution is the collaboration pool size. They also noted that
as the collaborator pool size increases, so does the computational cost of the
evaluations. Taking this to the extreme, the most successful co-evolution would
be to test each individual against every other possible partner. A task requiring
N partners, with I individuals in each population of the genetic algorithm, would
require N × I N comparisons at any given set of fitness evaluations; not an
acceptable solution.

In previous work in Evolutionary Robotics, we developed Punctuated
Anytime Learning (PAL), a method to allow for the learning system to be
periodically updated throughout simulated evolution (Parker and Larochelle,
2000). The computer’s model in simulation is updated or the GA fitness
evaluation altered by measuring the robot’s actual performance at certain
consistently spaced number of generations called punctuated generations and
entering those values into the GA. This same concept of PAL was adapted to be
applicable to evolving cooperative teams (Parker and Blumenthal, 2002). This
method used the periodic nature of PAL to minimize the number of fitness
evaluations required to evolve team members in separate populations. As
already discussed, the most accurate method of fitness evaluation would be to
get an individual’s fitness by pairing it with all possible partners at trial time. In
order to reduce the number of fitness evaluations, at certain punctuated
generations our method selected a single individual from each population as the
best representative of the nature of their population. This selected individual,
refered to as an alpha individual, was used as a partner at trial times for
evaluating the fitness of any individual in the opposing population. Employing
our method of PAL, with N generations between each round of alpha selection,
the number of fitness evaluations are reduced by a factor of approximately N.
Our results showed that this method was very successful at co-evolving separate
partners. However, it was still considered to be too computationally intense for
teams of more than two members.

In this paper we suggest a computationally cheaper method of periodically
finding a single individual to represent the nature of a population. Instead of
using the whole population as in previous work, this new method uses a
sampling of individuals to find the new alphas. This proved to be a successful
method to decrease computation time and maintain accuracy in the solution.

PROBLEM DESCRIPTION
The task is to have two hexapod robots starting from one corner of an

enclosed square area walk to and push a box that is in the middle of the area to
the opposite corner. The scenario from which the task has been abstracted is a
colony space in the Connecticut College Robotics Lab. The colony space is
approximately an 8x8 ft area. In this area, the two ServoBot robots and a square
cardboard box can be placed. The problem is for the pair to act cooperatively to
force the box into the opposing corner from which the robots started. The tests,
done in simulation, use agents that model actual robots.

3

The robots simulated in the experiment are ServoBots. These are
inexpensive hexapod robots with two servos per leg, one oriented in a vertical
capacity and the other oriented in a horizontal capacity, giving two degrees of
freedom per leg. The ServoBot is controlled by a BASIC Stamp II, which is
capable of individually addressing each of the twelve servo actuators (two on
each leg) to produce and sustain a gait cycle. A gait cycle is defined as the timed
and coordinated motion of the legs of a robot, such that the legs return to the
positions from which they began the motion. The BASIC Stamp is capable of
storing a sequence of timed activations to be repeated. A single activation
represents the simultaneous movement of the twelve servos. Different degrees
of turns can be generated by decreasing the number of activations producing
thrust sent to one side of the robot (Parker, 2001). The effect of these 15 left
turns, 15 right turns, and a straight applied to the robot were measured and
stored in a table.

The simulated environment used for evolving the agents was an abstraction
of the colony space in the lab. The simulated area measured 250x250 units. Both
robots were represented as circles with a diameter of 6 units but the robots were
treated as single points for rules of contact with the box. The box was
represented as a square measuring 18 x18 units. In each trial, both the robots
and the box were placed in consistent starting positions. The first robot started
on the point (10,5) and faced parallel to the x-axis, while the second robot
started in the mirrored position (5,10) but faced parallel to the y-axis. The box
started in the middle of the environment at the point (125,125).

Each robot’s ability to push the box on its own (without aid from its partner)
was affected by an endurance factor. The endurance factor starts at zero and
increases with each consecutive non-aided push. With F representing the would
be full force of the robot push acting singly, and E representing the endurance
factor, the force the robot may apply to the box is given by the quotient F/2E
(with E = 0 the force is F). This cuts their pushing power in half after each gait
cycle. Whenever as both robots push the box simultaneously, both of their
endurance factors are reset to zero. In the simulation, both robots move
simultaneously, and a trial ends when either each robot has taken 200 steps or
one of the three (the two robots or the box) moves out of the simulated area.

METHOD
A type of evolutionary computation called a cyclic genetic algorithm

(CGA) was used to develop our two heterogeneous cooperative agents (Parker,
2001). A CGA is similar to a regular GA, except that in the CGA the
chromosome can represent a cycle of tasks. These tasks can be anything from a
single action to a sub-cycle of tasks. Using this method of representation, it is
possible to break up a chromosome into multiple genes with each gene acting as
a cycle. Each gene or sub-cycle contains two parts, one part representing an
action or set of actions, and the second part representing the number of times
that action is to be repeated. The genes can be arranged into a repeated sequence
and a chromosome can be arranged with single or multiple cycles. In the case of
multiple cycles, it is possible to switch from one to the other at any point. The
CGA was used for evolving our agents because it is designed for learning cyclic
behavior and it allowed for our incremental learning approach. The set of

4

actions to get each agent to the box was one cycle and each agent’s behavior
after touching the box was defined in the second cycle of their CGA
chromosome. During a trial, as soon as a robot touches the box, the controller
would switch from the first to the second cycle, at the completion of the current
gait cycle. The CGA chromosome had two cycles containing nine genes each.
Every gene contained two 5-bit numbers, one representing a gait cycle with 31
possible turns or a 0 which indicated that it was to stand still and the other
representing the repetitions of that gait cycle.

Individuals were selected stochastically for breeding based on their fitness
score and standard operators were used for the CGAs. The evolution was done
in two different stages. The incremental learning approach was employed
because the problem can be easily broken down into two smaller tasks with the
first requiring no cooperative behavior. For the first increment, two completely
separate populations were evolved; one for each robot. They were evolved using
an identical method except for the robot’s starting positions. For population A,
the starting point was (10,5) facing down the x-axis, the fitness of an individual
was either the value of the box’s y coordinate after the trial finished or zero if the
individual failed to move the box positively in the y direction. For population B
starting at (5,10) facing down the y-axis, the individual’s score was computed
the same as for an individual in population A, except the robot was charged with
moving the box positively in the x-direction to receive a non-zero score. Only
the first cycle of the CGA chromosome was evolved during the first increment
of learning. A population of these chromosomes learned for each team member
during this first increment was used to evolve each team in the second
increment. The first cycles remained unchanged while the second cycles for
each chromosome were randomly generated to create start populations for the
second increment of learning. The second increment of the learning process was
more complex, involved team coordination, and required co-evolution using
PAL and a CGA. The fitness score of a team was decided by the product of the
box’s final (x,y) coordinate position, or zero if the team failed to move the box
toward the target corner of the area in the x or y position from the box’s starting
point (125,125).

When PAL is applied to co-evolving two populations the updated
information that each population receives during the learning is a more accurate
representation of the overall nature of the opposing population. Assume that the
experiment has two populations, population A and population B. In this case,
every N generations, some chosen number of individuals in population A are
tested against all individuals in population B. The chosen individuals from
population A are refered to as the sample, and the number of chosen individuals
is called the sample size. The purpose of this process is to find the fittest
individuals from each population to evolve with the other population. The
chosen most fit individual from each population will be referred to as the alpha
individual. The best method of evolution would therefore be to select new alpha
individuals for each generation. However the process of selecting the two alphas
requires significant computation. Assuming there exists I individuals in each
population and the sample size is S, the computer must perform 2 × (I × S) trials
for each selection of the pair of alphas. In order to avoid that level of
computation, new alpha individuals are only selected at punctuated generations.

5

RESULTS
When first considered sampling sizes, it was thought that for populations of

64 individuals, a good sampling rate would be the square root of 64. The graph
Figure 1, shows a comparison of sampling rates of 64 and 8, with new alpha
selection every 100 generations. Each data series is the average of five separate
runs of each sampling size at selected generations. The dashed line represents
the sample 8 runs, and the solid line represents the sample 64 runs. The graph
shows that the sampling size of 64 is the most accurate method. Though the
sample 64 tests outperformed the sample 8 tests, the graph shows that the
sample 8 is capable of producing a viable solution. The experiments with the
sample 8 runs showed that it was an effective method to both develop emergent
behavior and reduce computation time,

Further tests were done to consider several sampling rates. The frequency
of the punctuated generations was increased to every 20. Figure 2 shows a
comparison between the sampling sizes of 2, 4, 8, 16, 32. Each data series
plotted is a specific sampling size’s performance averaged over five separate
tests. The best fitness at specific generations is shown for each sampling size.
The lines on the graph represent the sampling rates in ascending order starting
from bottom to top, with the flattest learning curve as the sample 2 and the
sharpest learning curve as the sample 32. The data series shown in bold is the
sample 8 test. As can be seen from the graph, there is a gap in performance
between the sampling rates of 2, 4, and 8. However, a difference between the
success of the sampling rates of 8, 16, and 32, is only present at the 300th
generation. Therefore, we believe that the sampling rate which best strikes the
balance between sampling size and computation time is 8.

CONCLUSIONS
The results from experiments involving PAL with population sampling and

CGAs are very encouraging. The original method of evolution with a sampling
size of 64 (the whole population) yielded a near optimal solution for the box
pushing task. The goal of minimizing computation time by reducing the sample
size used for alpha selection while maintaining the accuracy of the solution was
successful. Through experiments involving comparisons between different
sampling sizes, we conclude that the sample size of 8 is well suited for
efficiently producing a near optimal solution for this application.

REFERENCES
Luke, S. and Spector, L., 1996, "Evolving Teamwork and Coordination with Genetic Programming."

Proceedings of First Genetic Programming Conference, pp. 150-156.
Parker, Gary B. and Blumenthal, J., 2002, "Punctuated Anytime Learning For Evolving A Team."

World Automation 2002 Congress Proceedings.
Parker, Gary B., 2001, "Learning Control Cycles for Area coverage with Cyclic Genetic

Algorithms." Proceeding of the 2nd WSES International Conference on Evolutionary
Computation, pp. 283-289.

Parker, G. B. and Larochelle, K. J., 2000, "Punctuated Anytime Learning For Evolutionary
Robotics." Proceedings of the World Automation Congress (WAC2000), Volume 10, Robotic
and Manufacturing Systems, pp. 268-273.

6

Potter M. A. and De Jong K. A., 1994, "A Cooperative Coevolutionary Approach to Function
Optimization." Proceedings of the Third Conference on Parallel Problem Solving from
Nature, pp. 249-257.

Wiegand R. P., Liles W. C., and De Jong k. A., 2001, "An Empirical Analysis of Collaboration
Methods in Cooperative Coevolutionary Algorithms." Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 1235-1245.

Figure 1: Comparison between sampling rates of 64 (solid line) and 8 (dashed line) for the
box pushing task. The average fitness of the best team for each sampling rate is shown.
The best fitness from five runs for each sampling rate was recorded at generations 0, 100,
300, 500, 700, 1000, 1500, and 2000.

Figure 2: Comparison between sampling rates of 2, 4, 8, 16, 32, with alpha selection
every 20 generations. The sampling rate of 2 and 4 are dashed lines, 8 is shown in bold.

�

� � � �

� � � �

� � � �

� � � �

� � � � �

� � � � �

� � � � �

� � � � �

� �
� � � � 	
 � � � �

���
��
��

��
��
��
��

�

�

� � � �

� � � �

� � � �

 � � �

! � � � �

! � � � �

! � � � �

! � � � �

� � � � � � � � � � � � ! � � � ! � � � ! � � � ! � � � ! � � � � � �
" # $ # % & ' () $ *

+,-
./
00

12 /
0-3

