

Matt Parker
Computer Science
Indiana University

Bloomington, IN, USA
matparker@cs.indiana.edu

Gary B. Parker
Computer Science

Connecticut College
New London, CT 06320

parker@conncoll.edu

Abstract – The Core is a unique learning environment

where agents compete to evolve controllers without the need of
a fitness function. In this paper we use it with a cyclic genetic
algorithm to evolve agents in the network game Xpilot, where
the agents are engaged in space combat. The agents interact
locally through tournament selection, crossover, and mutation
to produce offspring in the evolution of controllers. The system
is highly parallel, can be easily distributed among a network of
computers, and has an element of simple co-evolution as the
environment (population of agents) evolves to continually
challenge individual agents evolving in the environment.

I. INTRODUCTION
OMPUTER games can be used for experimentation
with learning in autonomous agents since they provide

an environment that is complex and challenging, often
modeling relevant characteristics of the physical world.
The computer game Xpilot offers several levels of
complexity while requiring minimal in-game graphics.
Xpilot is a well-established 2D internet game that was very
popular with Unix users before the current age of 3D
internet games came into existence. It is still in wide use
today with several hosts sponsoring ongoing games. The
user, with internet access and an installed free client
program, can join a selection of arenas set with a variety of
objectives and environmental conditions. The user controls
a spaceship (represented as a triangle) that can engage in
combat (through shooting bullets) with other ships. At this
point in our research our area of concentration is close
combat. Learning the correct behaviors to successfully beat
an opponent in this space simulation is very challenging.
Human controllers come in a variety of skill levels and
experience. Our eventual goal is to have our autonomous
agents learn to compete with humans in the online world of
Xpilot.

Several researchers have used evolutionary computation
for learning in games. Most of this work has been done on
board games [1,2,3] and thought games, such as the
prisoner’s dilemma problem [4]. Research has also been
done on learning controllers for interactive computer games
such as Counter-Strike [5], a first person shooter game, Pac-
Man [6], and Tron [7]. Parker et al [8] introduced the use of
Xpilot for the learning of complex control behaviors for
autonomous agents. Modifications were made that allowed
researchers to write programs that get information about the
environment and reply with control responses generated by
an artificially intelligent agent. The system was tested by
using a standard genetic algorithm (GA) to learn a simple

neural network controller [8] and a rule-based controller [9]
and by using a cyclic genetic algorithm (CGA) [10,11] to
evolve a multi-loop control program [12]. These systems
worked well for learning autonomous control, but required
programmer involvement in the form of the creation of
combat opponents and appropriate fitness functions.

The Core, a highly parallel learning system where agents
co-evolve within a common environment without need of a
fitness function was introduced and used with a modified
CGA to evolve agent controllers [13]. Although successful,
the controller was overly complicated due to the
modifications made to the CGA and the learning system
required altering the game play to reduce wall collisions.
In this paper, we discuss the Core further, add a new
parameter called the “age of adolescence” to avoid altering
game play, and show that successful controllers can be
evolved without the added modifications to the CGA.

II. CYCLIC GENETIC ALGORITHM
The original CGA [10] was developed to learn a single

loop control program for locomotion in hexapod robots. It
is a modification of the standard GA in that the genes
(logical groupings of bits) represent tasks to be completed
in a set amount of time as opposed to traits of the solution.
Using a CGA, single-loop control programs with variable
lengths could be evolved. In further research [11], the CGA
was expanded to be capable of evolving multiple loop
programs (allowing conditionals) and was employed to
learn the control program for a robot with light and touch
sensors. Controllers for agents in the Core need to be
reactive in that control will change when events warrant
(bullet approaching) yet have sufficient structure to allow
more than one move in response to a stimuli (such as
develop a circling pattern with an approaching enemy ship).
CGAs can provide this level of control since they can be
used to learn multi-loop programs. In this light we
determined to use CGAs and developed one that was, in
effect, a finite state machine (each conditional had a
specific loop associated with it) with multiple instructions at
each node. Although successful, we felt that this type of
controller was too restrictive and did not utilize the full
capabilities of the CGA.

For the work done in this paper, we use a multi-loop
CGA that has conditionals with learned jump locations.
The chromosome used (Fig. 1) is divided into 16 sections,
which represent loops; each loop has 8 genes, which

The Core: Evolving Autonomous Agent Control

C

represent the instructions; each instruction has 9 bits. Two
types of instructions are used. One type describes an action
to be taken by the Xpilot agent in the next frame and one
describes whether to jump to a new loop. An action
instruction determines how the agent should turn, whether
or not it should thrust, and whether or not it should shoot.
A single bit enabled for each indicates whether or not to
thrust or to shoot. For turning, three bits are devoted to the
quantity of turn and three to where to turn, such as to the
nearest ship, away from the nearest wall, towards the most
dangerous bullet, etc. A jump instruction consists of a four
bit number corresponding to a conditional, such as “if
enemy distance < 100” or “if self velocity > 20”, and a four
bit number representing to which of the sixteen loops the
program should jump if the conditional is true. If it is false
then the jump is ignored and the program goes on to the
next instruction. If the end of a loop is reached, then the
control loop goes back to the start of that loop. The program
will continue through conditionals (jump genes) until an
action gene is found and executed on that frame. On the
next frame, the program begins again where it left off.

One of two types of crossover is applied at each mating.
There is equal chance the crossover is either single point,
cutting the chromosome only between two genes, or it
uniform crossover across the entire chromosome. The
mutation is a 1/300 chance of flipping per bit.

Fig. 1. Chromosome for the CGA, consisting of 16 loops, 8
genes per loop. Each gene can be either an action gene (0),
which performs some combination of shoot, thrust, and turn,
or a jump gene, which jumps to “loop #” if “conditional” is
true.

Fig. 2. The Core (black/white inverted). This is a map layout; the white area is free space and the dark areas are obstacles.
Starting bases are scattered throughout each quadrant.

Fig. 3. Image (black/white inverted) of the combat view from an Xpilot game using the Core. It shows autonomous agent
Cyc16111 fighting Cyc27898. The group of strange characters at the top of image is an encoded chromosome that was sent to
Cyc16111 by its last killer, Cyc43074. In Xpilot, the empty space is black, the walls (blocks at bottom of screenshot) are blue,
and ships are white triangles.

III. THE CORE

The Core (Figures 2 and 3) was developed as a means of
learning in which reasonable agents would be provided as
opponents. They needed to be progressively more skillful
as our learning agents developed. Co-evolution between
two populations was an option, but would require additional
computation time to evolve the second population. The
Core addresses this issue with no additional computation
time by creating an environment where the other agents in
the learning population are opponents who are constantly
increasing in their capabilities. In this way, the
environment as a whole is co-evolving with the individual
agents who are learning in it. Another motivation was that
we wanted to avoid developing a fitness function to achieve
the desired behavior. The setup of the Core allows us to use
how well the agent does in the environment as the fitness
function. All of these factors combine to make a unique
learning environment that produces excellent results.
Another aspect of the Core is that it provides an
environment where the agents can be tested in parallel.

Xpilot sessions involve periods of combat that require time
enough for the opponents to interact in positioning, firing
bullets, and evading bullets. Although we determined a
way to speed up the simulation to seven times its normal
speed, any additional speedup could result in lost frames
and controllers not suited for actual play. Running several
combat episodes in parallel greatly speeds up the evolution.
In addition, distributing the clients among several
computers allows for additional speed increases in fitness
computation. To maintain the desired parallelism, we
wanted the evolution (selection, crossover, mutation) to be
decentralized. This allowed the system to be asynchronous,
which was important since some trials take ten times longer
than others.

A. Characteristics and Related Research
The Core is a parallel system, which allows for any

number of participating computers. The only limitation is
the number of clients connected to one server, which is
placed on the system by the hardware and operating system

on which the Xpilot server runs. However, as hardware
becomes faster, more clients will be able to connect
(currently we connect about 120). Xpilot servers are
designed to accommodate a wide variety of capabilities so
the client computers do not have to be equivalent in
capabilities. The computer capability does dictate the
number of clients that can be run concurrently on one
computer, but since each client is an autonomous entity in
itself, no coordination in the number of clients run on each
computer is required. It is plausible, with a fast connection,
that computers anywhere in the world could be contributing
clients to the Core. Its parallelism would most closely
identify it with a fine-grained parallel GA that is
asynchronous [14,15]. It has a spatially-distributed
population with parameters that can be adjusted to keep
newly produced offspring in the local area or disperse them
anywhere in the environment.

The Core is a co-evolving system, although there are not
two distinct populations. Instead it has an environment that
is constantly evolving to be more hostile to the individual
agents within it. This is not competitive co-evolution in the
classic sense. Significant work has been done in this field
by several researchers [16,17,18,19,20]. One of the issues
often discussed is the problem of having one population
dominate the other [16,20]. This is not an issue with the
Core since the body of agents is the co-evolving training
environment for the individual agents and it cannot evolve
to be constantly superior to the individual agents within it.
In addition, no individual agent can dominate because if it
evolves to be superior, its genes will eventually be spread
throughout the population.

The Core has similarities with works in Alife where
fitness is not predefined, but a property of the simulation
[21,22,23]. It also has similarities to embodied evolution
[24] used in evolutionary robotics. In this system, robots
attain a virtual energy level that corresponds to their
performance in completing the assigned task. They transmit
their chromosomes with a rate proportional to their energy
level and receiving robots accept it at a rate inversely
proportional to their energy level. Upon acceptance, the
receiving robot crosses it with its own chromosome
producing a new controller, which overwrites its current
controller. In the Core, when an agent kills another agent,
its chromosome is passed to that agent’s client. The client
crosses the victor’s chromosome with that of the defeated
agent’s chromosome, producing a new chromosome for the
agent, which is sent back into the Core for testing.
Tournament selection using only two opponents with the
least fit being replaced by the recombination of the two was
found to be a successful strategy (microbial method) by
Harvey [25].

B. Description
The Core is a large virtual arena in which a massive

population of agents can live, fight, die, and reproduce. A
reasonably fast computer, with a reliable operating system,
running a dedicated Xpilot server, is able to reliably host a
very large number of Xpilot clients. For our dedicated
Xpilot server, we modified the normal Xpilot-NG server,

which accepts a maximum of 32 clients, to accept a
virtually limitless number of clients. We also reduced to a
minimum the number of informative messages that the
server sends to its clients, such as those about who killed
who, or about who switched teams, etc. because they are not
important for the agents in the Core, and they use extra
network bandwidth.

The environment in which the agents compete is a large
256x256 tiled map (Fig. 2). Tiles are about 3 times the area
of a ship. Each of the four quadrants of the map has a
unique terrain in order to represent multiple combat
environments. The first quadrant (upper left) has fingers of
walls with an open space in the center, the second (upper
right) has fingers with no large space, the third (lower right)
is cluttered with small asteroid-like chunks of walls, and the
fourth (lower left) has just a few dots of walls, and mostly
open space. The four quadrants collect towards the center
where there is a large circle of empty space. Bases, where a
player or agent may appear at a new life, are scattered in the
center of each quadrant.

A closer view of an Xpilot session is shown in Fig. 3.
The agent's ship is the triangle at the bottom of the screen
with the label “Cyc16111”. The ship above is another agent
and they are engaged in combat with one another (the black
dot below Cyc16111 is a bullet fired from Cyc27898). The
boxes to the south and east are walls, and the short
horizontal lines with numbers are possible starting bases.

The setup of the events of the Core is as follows. When a
client first joins the Core, the client generates a random
chromosome to control the agent. When the Core is first
loaded, therefore, the entire population is made of agents
with random chromosomes. Whenever an agent dies, its
ship disappears from the map for about 32 frames, then it
reappears in a random starting location, and the agent lives
again. An agent may die four ways: collision with a wall at
a high speed, collision with another agent, killed by its own
shot, or shot by another agent. Of these four deaths, the
first three simply result in the agent’s death and
reappearance in another location; its chromosome is
unchanged. However, when it is shot by another agent, the
dead agent sends a request to the killer agent, the killer
sends its chromosome to the dead agent, and the dead agent
performs crossover and mutation between its own
chromosome and the chromosome of its killer. The
messages requesting the chromosome and the chromosome
itself are coded into ASCII and sent directly between the
agents using the player-to-player text messaging system
native to Xpilot (Fig. 3).

By this system, the agents who are more capable of
killing other agents spread their genes to a larger number of
agents than do those agents who are less capable of killing.
In turn, the weaker agents who are killed slowly evolve to
become as strong as their killers, increasing the abilities of
the entire population. By mutation and crossover, new traits
are formed in agents, and the traits that make the agent
stronger are slowly spread across the entire population. In
this way, the agents continually increase their abilities and
sharpen one another.

C. Age of Adolescence
One of the goals for the final evolved behavior in this test

is that the agents should be good at general combat, both in
the Core, and in other Xpilot environments. A difficulty
with regular genetic algorithms is that the evolved agent
often finds ways to exploit the fitness function so that it
receives a good fitness and yet does not do what was
intended. The Core does not have a “fitness function”, yet
the setup of the map and rules of play have an enormous
impact on the evolved behavior of the agents. For example,
our first tests of the Core gave the agents almost no reason
to avoid crashing into the walls. The agents developed the
unintended strategy of thrusting straight ahead and shooting
randomly. Any agents who might have been actually
aiming were unlikely to hit these fast agents who whizzed
past them and they were eventually killed off by a random
and stray shots. The fast-flying agents always ended their
lives crashing into the wall, but since there was no penalty,
crashing into a wall merely transported them to a new
location in the map, making it a good strategy. The entire
population soon became fast-flying wall-smashers.

To fix this we tried mutating the chromosome of those
who smashed into a wall, but the mutations were usually
not beneficial and only increased the undesirable behavior.
In another attempt [13], we penalized a wall-smasher upon
rebirth, such that it was forced to wait 20 frames of game
play as a vulnerable target, unable to move or control itself.

This worked well, but with the negative aspect of changing
the rules of the game play.

For the test reported in this paper we handle the wall-
smashing by giving the agents an “age of adolescence” of
40 frames; a minimum amount of time that an agent must
live before it is able to send its chromosome to other ships.
This helps to make the wall-smashers less potent, as most of
their kills in their short lives occur within 40 frames.
Further penalization of wall-smashing, while it may more
quickly reduce the behavior, evolves overly-cautious bots
who are unlikely to use their thrust for any purpose. With
this method, wall-smashing still occasionally flared up
amongst the population, and was sometimes very
prominent, but there evolved many ships who were able to
both thrust and aim effectively, and these eventually
dominated.

IV. RESULTS
Because there is no specific fitness function in the Core,

it is difficult to measure the success of the evolution.
Visually it is easy to see that the agents have from their
ignorant beginnings drastically improved and developed
simple and effective strategies. However, their success
cannot be measured by their time alive nor by their number
of kills in the Core because as an individual agent evolves
and increases its ability to kill, so do its competitors
increase their ability to kill it and to avoid being killed.

0

5

10

15

20

25

30

0 6 12 18 24

Training Time

K
ill

s

Fig. 4. Graph showing the fitness growth of 5 agents evolving for 24 hours in the Core with a least squares fitness line.

The fitness of the agents from the Core must therefore be
judged by their ability to fight some standard opponent,
whose behavior remains constant over time. However, care
must be taken when placing an agent from the Core into
some new type of environment. In the Core the agents learn
to fight against multiple opponents and around rough
terrain. Placing them into a simple square arena verses a
specific bot does not adequately measure the increase in
fitness over time, as behaviors that worked well in the Core
may not work in that specific setting.

During the actual test of the Core, each agent saved its
chromosome to file every 30 minutes. The Core ran in a
stable condition for 24 hours, so each agent saved a history
containing 48 of its chromosomes over the span of the test.
A miniature map consisting of a portion of the upper left
quadrant of the original Core map was developed to
perform the test. It was populated with 10 enemies; each of
which was controlled by a chromosome selected from a
randomly chosen agent's chromosome history from the
Core. These 10 enemies were chosen from the chromosome
history in such a way that the full range of evolved
chromosomes was represented; representatives from the
first and least talented chromosome to the chromosome
saved at the 24th hour. Five agents from the Core were
randomly selected to test them in the miniature map. Each
agent progressed through the history of all 48 of its
chromosomes. Each chromosome controlled the agent's ship
until it had died ten times from enemy fire. Thus, the agents
could crash into a wall without it counting as a death. The
total number of kills that the agent achieved while being
controlled by a chromosome was recorded so that the
improvement in the ability to kill could be seen over the
span of the 48 saved chromosomes. To closely simulate the
conditions in the actual Core, the kills that were achieved
before the agent had reached the "age of adolescence" were
not counted.

Fig. 4 shows the plot points for the fitness of each of the
five agents tested, as well as a least squares trend line. The
average fitness shows an overall increasing trend, while
there are many dips in the individual fitnesses. An
explanation for this is that the agents saved their
chromosomes strictly every 30 minutes without regard to
the health of that particular chromosome. The saved
chromosome at that point was sometimes a poor one that
just happened to be in play at the time of the save.
However, since the good chromosomes were usually alive
longer, there was a greater chance they would be saved, and
therefore the trend of the five individuals tested is a definite
increase in health and skill.

A very enjoyable aspect of the Core is watching the
actual evolution of the agents as they play on screen. If a
new agent is connected to a mature Core server, its
evolution and behavioral assimilation into the population
can be viewed over a span of a few minutes. When the
agent first joins, its behavior is usually sporadic. It does not
aim at other bots, sometimes it does not shoot, and usually
it smashes into walls rather quickly after coming to life. It
flies around like this until some mature agent finally shoots

it. Then its behavior becomes some strange mix between
the two, sometimes seeming to aim, and other times flying
wildly. Each time the agent is killed, it becomes more and
more like everyone else in the Core, until finally it seems to
be fully assimilated.

Sometimes a new strategy is developed and it spreads
like a plague across the population. For this test, after a few
hours the Core was dominated by reckless wall-smashers.
On the radar, which is a small view of the map, all the little
dots representing the enemy ships could be seen rushing
madly into the walls. Then, from some fortunate mutation
or crossover, an agent learned to aim at the other ships and
to not thrust. The agent playing on screen was one of the
first to be turned into an aimer. It floated around, killing
many of the wall-smashers, and being killed by many, but
not receiving their chromosome because they had not yet
reached the “age of adolescence.” It could be seen on the
radar, fewer and fewer ships were thrusting madly across
the map, and in minutes the wall-smashers had become
endangered and aimers dominated the Core.

V. CONCLUSIONS
In the challenging game of Xpilot, it is very difficult to

successfully evolve a controller that will be fit in the wide
variety of combat environments available. A CGA can
evolve multi-loop control programs appropriate for this
level of control. However, one of the major problems with
its use is building a variable environment and populating it
with hand-coded opponents that reliably test the agent.
Creating a fitness function that adequately tests the large
number of tasks in general combat in Xpilot is also difficult.
Therefore, we use the Core, with its highly parallel setup,
simple single population co-evolution, and lack of a need
for a specific fitness function, it is ideal for evolving robust
combat agents in Xpilot.

This test shows just some of the capabilities of the Core.
By redesigning the rules of play, the map, and the clients,
there are many different possibilities for evolution. Some
plans for future work include: localized regeneration, where
areas of the Core develop specialized agents who can mix at
the borders of their area (this will allow differing combat
strategies to emerge within their own niche); team play,
where multiple species of agents combat against one
another in the Core, fighting to become the dominant
population; and goal oriented play, such as destroying an
enemy base.

The idea of the simple evolution and parallelism of the
Core is useful in applications where agents are competing to
perform a task. These applications include the evolution of
non-combat agents. An example might be in the
development of a race-car controller. In a population racing
cars, the dominant cars can send their chromosome to the
less successful cars that they pass. The Core has been
shown to be an interesting and reliable method for evolving
robust agents in Xpilot. Future work will determine its
general applicability and use in the study of autonomous
agent evolution.

REFERENCES
[1] Fogel, D. Blondie24: Playing at the Edge of AI, Morgan Kaufmann

Publishers, Inc., San Francisco, CA., 2002.
[2] Konidaris, G., Shell, D., and Oren, N. “Evolving Neural Networks

for the Capture Game,” Proceedings of the SAICSIT Postgraduate
Symposium, Port Elizabeth, South Africa, September 2002.

[3] Koza, J. Genetic Programming: On the Programming of Computers
by Means of Natural Selection, the MIT Press, Cambridge, MA,
1992.

[4] Hingston, P. and Kendall, G. “Learning versus Evolution in Iterated
Prisoner's Dilemma,” Proceedings of the International Congress on
Evolutionary Computation 2004 (CEC'04), Portland, Oregon, 20-23
June 2004, pp 364-372.

[5] Cole, N., Louis, S., and Miles, C. “Using a Genetic Algorithm to
Tune First-Person Shooter Bots,” Proceedings of the International
Congress on Evolutionary Computation 2004 (CEC’04), Portland,
Oregon, 2004, pp 139–145.

[6] Yannakakis, G. and Hallam, J. "Evolving Opponents for Interesting
Interactive Computer Games,'' Proceedings of the 8th International
Conference on the Simulation of Adaptive Behavior (SAB'04); From
Animals to Animats 8, 2004, pp 499-508.

[7] Funes, P. and Pollack, J. “Measuring Progress in Coevolutionary
Competition,” From Animals to Animats 6: Proceedings of the Sixth
International Conference on Simulation of Adaptive Behavior. 2000,
pp 450-459.

[8] Parker, G., Parker, M., and Johnson, S. “Evolving Autonomous
Agent Control in the Xpilot Environment,” Proceedings of the 2005
IEEE Congress on Evolutionary Computation (CEC 2005),
Edinburgh, UK., September 2005.

[9] Parker, G., Doherty, T., and Parker, M. “Evolution and Prioritization
of Survival Strategies for a Simulated Robot in Xpilot,” Proceedings
of the 2005 IEEE Congress on Evolutionary Computation (CEC
2005), Edinburgh, UK., September 2005.

[10] Parker, G. and Rawlins, G. “Cyclic Genetic Algorithms for the
Locomotion of Hexapod Robots,” Proceedings of the World
Automation Congress (WAC '96), Volume 3, Robotic and
Manufacturing Systems. May 1996.

[11] Parker, G. and Georgescu, R. “Using Cyclic Genetic Algorithms to
Evolve Multi-Loop Control Programs,” The 2005 IEEE
International Conference on Mechatronics and Automation (ICMA
2005), Niagara Falls, Ontario, Canada, July 2005.

[12] Parker, G., Doherty, T., and M. Parker (2006). “Generation of
Unconstrained Looping Programs for Control of Xpilot Agents,”

Proceedings of the 2006 IEEE Congress on Evolutionary
Computation (CEC 2006), July 2006, Vancouver, BC, Canada.

[13] Parker, M. and G. Parker (2006). “Learning Control for Xpilot
Agents in the Core.” Proceedings of the 2006 IEEE Congress on
Evolutionary Computation (CEC 2006), Vancouver, BC, Canada.

[14] Cantu-Paz, E. “A Survey of Parallel Genetic Algorithms,” Technical
Report 97003, Illinois Genetic Algorithms Laboratory, Department of
General Engineering, University of Illinois, Urbana, Illinois, 1997.

[15] Tomassini, T. “Parallel and Distributed Evolutionary Algorithms: A
Review,” Evolutionary Algorithms in Engineering and Computer
Science, pages 113–133. J. Wiley and Sons, Chichester,1999.

[16] Bongard J. and Lipson, H. "Nonlinear System Identification using
Co-Evolution of Models and Tests," IEEE Transactions on
Evolutionary Computation, 2004.

[17] de Jong, E. “The Maxsolve Algorithm for Coevolution.”
Proceedings of the Genetic and Evolutionary Computation
Conference, 2005.

[18] Popovici, E. and De Jong, K. “Relationships between Internal and
External Metrics in Co-evolution,” Proceedings of the Congress on
Evolutionary Computation -- CEC-2005.

[19] Rosin, C. and Belew, R. "New Methods for Competitive
Coevolution." Evolutionary Computation, 1997, 5(1):1–29.

[20] Williams, N. and Mitchell, M. “Investigating the Success of Spatial
Coevolutionary Learning,” Proceedings of the 2005 Genetic and
Evolutionary Computation Conference, GECCO-2005 , New York:
ACM Press, 523-530, 2005.

[21] Ventrella, J. “Attractiveness vs Efficiency (How Mate Preference
Affects Locomotion in the Evolution of Artificial Swimming
Organisms),” Artificial Life VI, MIT Press. 178-186, 1998.

[22] Werner, G. and Dyer, M. “Evolution of communication in artificial
organisms.” Artificial Life II, Addison-Wesley. 659-687, 1991.

[23] Thearling, K. and Ray, T. “Evolving Parallel Computation.”
Complex Systems, Volume 10, Number 3, 1997.

[24] Watson R., Ficici S., and Pollack J., “Embodied Evolution:
Embodying an Evolutionary Algorithm in a Population of Robots”.
Proceedings of the IEEE Congress on Evolutionary Computation,
pp. 335-342, 1999.

[25] Harvey I. “Artificial Evolution: A Continuing SAGA,” In
Evolutionary Robotics: From Intelligent Robots to Artificial Life,
Takashi Gomi (ed.), Proceedings of the 8th International Symposium
on Evolutionary Robotics (ER2001). 2001.

