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Abstract – The Core is a unique learning environment 

where agents compete to evolve controllers without the need of 
a fitness function.  In this paper we use it with a cyclic genetic 
algorithm to evolve agents in the network game Xpilot, where 
the agents are engaged in space combat.  The agents interact 
locally through tournament selection, crossover, and mutation 
to produce offspring in the evolution of controllers. The system 
is highly parallel, can be easily distributed among a network of 
computers, and has an element of simple co-evolution as the 
environment (population of agents) evolves to continually 
challenge individual agents evolving in the environment.   

I. INTRODUCTION 
OMPUTER games can be used for experimentation 
with learning in autonomous agents since they provide 

an environment that is complex and challenging, often 
modeling relevant characteristics of the physical world.  
The computer game Xpilot offers several levels of 
complexity while requiring minimal in-game graphics.  
Xpilot is a well-established 2D internet game that was very 
popular with Unix users before the current age of 3D 
internet games came into existence.  It is still in wide use 
today with several hosts sponsoring ongoing games.  The 
user, with internet access and an installed free client 
program, can join a selection of arenas set with a variety of 
objectives and environmental conditions.  The user controls 
a spaceship (represented as a triangle) that can engage in 
combat (through shooting bullets) with other ships.  At this 
point in our research our area of concentration is close 
combat.  Learning the correct behaviors to successfully beat 
an opponent in this space simulation is very challenging.  
Human controllers come in a variety of skill levels and 
experience.  Our eventual goal is to have our autonomous 
agents learn to compete with humans in the online world of 
Xpilot. 

Several researchers have used evolutionary computation 
for learning in games.  Most of this work has been done on 
board games [1,2,3] and thought games, such as the 
prisoner’s dilemma problem [4].  Research has also been 
done on learning controllers for interactive computer games 
such as Counter-Strike [5], a first person shooter game, Pac-
Man [6], and Tron [7].  Parker et al [8] introduced the use of 
Xpilot for the learning of complex control behaviors for 
autonomous agents.  Modifications were made that allowed 
researchers to write programs that get information about the 
environment and reply with control responses generated by 
an artificially intelligent agent. The system was tested by 
using a standard genetic algorithm (GA) to learn a simple 

neural network controller [8] and a rule-based controller [9] 
and by using a cyclic genetic algorithm (CGA) [10,11] to 
evolve a multi-loop control program [12].  These systems 
worked well for learning autonomous control, but required 
programmer involvement in the form of the creation of 
combat opponents and appropriate fitness functions.   

The Core, a highly parallel learning system where agents 
co-evolve within a common environment without need of a 
fitness function was introduced and used with a modified 
CGA to evolve agent controllers [13].  Although successful, 
the controller was overly complicated due to the 
modifications made to the CGA and the learning system 
required altering the game play to reduce wall collisions.   
In this paper, we discuss the Core further, add a new 
parameter called the “age of adolescence” to avoid altering 
game play, and show that successful controllers can be 
evolved without the added modifications to the CGA.  

II. CYCLIC GENETIC ALGORITHM 
The original CGA [10] was developed to learn a single 

loop control program for locomotion in hexapod robots.  It 
is a modification of the standard GA in that the genes 
(logical groupings of bits) represent tasks to be completed 
in a set amount of time as opposed to traits of the solution.  
Using a CGA, single-loop control programs with variable 
lengths could be evolved.  In further research [11], the CGA 
was expanded to be capable of evolving multiple loop 
programs (allowing conditionals) and was employed to 
learn the control program for a robot with light and touch 
sensors.  Controllers for agents in the Core need to be 
reactive in that control will change when events warrant 
(bullet approaching) yet have sufficient structure to allow 
more than one move in response to a stimuli (such as 
develop a circling pattern with an approaching enemy ship).  
CGAs can provide this level of control since they can be 
used to learn multi-loop programs.  In this light we 
determined to use CGAs and developed one that was, in 
effect, a finite state machine (each conditional had a 
specific loop associated with it) with multiple instructions at 
each node.  Although successful, we felt that this type of 
controller was too restrictive and did not utilize the full 
capabilities of the CGA. 

For the work done in this paper, we use a multi-loop 
CGA that has conditionals with learned jump locations.  
The chromosome used (Fig. 1) is divided into 16 sections, 
which represent loops; each loop has 8 genes, which 
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represent the instructions; each instruction has 9 bits.  Two 
types of instructions are used.  One type describes an action 
to be taken by the Xpilot agent in the next frame and one 
describes whether to jump to a new loop.  An action 
instruction determines how the agent should turn, whether 
or not it should thrust, and whether or not it should shoot.  
A single bit enabled for each indicates whether or not to 
thrust or to shoot.  For turning, three bits are devoted to the 
quantity of turn and three to where to turn, such as to the 
nearest ship, away from the nearest wall, towards the most 
dangerous bullet, etc.  A jump instruction consists of a four 
bit number corresponding to a conditional, such as “if 
enemy distance < 100” or “if self velocity > 20”, and a four 
bit number representing to which of the sixteen loops the 
program should jump if the conditional is true.  If it is false 
then the jump is ignored and the program goes on to the 
next instruction.  If the end of a loop is reached, then the 
control loop goes back to the start of that loop. The program 
will continue through conditionals (jump genes) until an 
action gene is found and executed on that frame. On the 
next frame, the program begins again where it left off. 

One of two types of crossover is applied at each mating.  
There is equal chance the crossover is either single point, 
cutting the chromosome only between two genes, or it 
uniform crossover across the entire chromosome.  The 
mutation is a 1/300 chance of flipping per bit. 

 

Fig. 1. Chromosome for the CGA, consisting of 16 loops, 8 
genes per loop.  Each gene can be either an action gene (0), 
which performs some combination of shoot, thrust, and turn, 
or a jump gene, which jumps to “loop #” if “conditional” is 
true. 

     
 

  

Fig. 2. The Core (black/white inverted).  This is a map layout; the white area is free space and the dark areas are obstacles.  
Starting bases are scattered throughout each quadrant.   

 



       

 
Fig. 3. Image (black/white inverted) of the combat view from an Xpilot game using the Core.  It shows autonomous agent  
Cyc16111 fighting Cyc27898.  The group of strange characters at the top of image is an encoded chromosome that was sent to 
Cyc16111 by its last killer, Cyc43074.  In Xpilot, the empty space is black, the walls (blocks at bottom of screenshot) are blue, 
and ships are white triangles. 

 
III. THE CORE 

The Core (Figures 2 and 3) was developed as a means of 
learning in which reasonable agents would be provided as 
opponents.  They needed to be progressively more skillful 
as our learning agents developed.  Co-evolution between 
two populations was an option, but would require additional 
computation time to evolve the second population.  The 
Core addresses this issue with no additional computation 
time by creating an environment where the other agents in 
the learning population are opponents who are constantly 
increasing in their capabilities.  In this way, the 
environment as a whole is co-evolving with the individual 
agents who are learning in it.  Another motivation was that 
we wanted to avoid developing a fitness function to achieve 
the desired behavior.  The setup of the Core allows us to use 
how well the agent does in the environment as the fitness 
function.  All of these factors combine to make a unique 
learning environment that produces excellent results. 
Another aspect of the Core is that it provides an 
environment where the agents can be tested in parallel.  

Xpilot sessions involve periods of combat that require time 
enough for the opponents to interact in positioning, firing 
bullets, and evading bullets.   Although we determined a 
way to speed up the simulation to seven times its normal 
speed, any additional speedup could result in lost frames 
and controllers not suited for actual play.  Running several 
combat episodes in parallel greatly speeds up the evolution.  
In addition, distributing the clients among several 
computers allows for additional speed increases in fitness 
computation. To maintain the desired parallelism, we 
wanted the evolution (selection, crossover, mutation) to be 
decentralized.  This allowed the system to be asynchronous, 
which was important since some trials take ten times longer 
than others.  

A.  Characteristics and Related Research 
The Core is a parallel system, which allows for any 

number of participating computers.  The only limitation is 
the number of clients connected to one server, which is 
placed on the system by the hardware and operating system 



       

on which the Xpilot server runs.  However, as hardware 
becomes faster, more clients will be able to connect 
(currently we connect about 120).  Xpilot servers are 
designed to accommodate a wide variety of capabilities so 
the client computers do not have to be equivalent in 
capabilities.  The computer capability does dictate the 
number of clients that can be run concurrently on one 
computer, but since each client is an autonomous entity in 
itself, no coordination in the number of clients run on each 
computer is required.  It is plausible, with a fast connection, 
that computers anywhere in the world could be contributing 
clients to the Core.  Its parallelism would most closely 
identify it with a fine-grained parallel GA that is 
asynchronous [14,15].  It has a spatially-distributed 
population with parameters that can be adjusted to keep 
newly produced offspring in the local area or disperse them 
anywhere in the environment.   

The Core is a co-evolving system, although there are not 
two distinct populations. Instead it has an environment that 
is constantly evolving to be more hostile to the individual 
agents within it.  This is not competitive co-evolution in the 
classic sense.  Significant work has been done in this field 
by several researchers [16,17,18,19,20].  One of the issues 
often discussed is the problem of having one population 
dominate the other [16,20].  This is not an issue with the 
Core since the body of agents is the co-evolving training 
environment for the individual agents and it cannot evolve 
to be constantly superior to the individual agents within it.  
In addition, no individual agent can dominate because if it 
evolves to be superior, its genes will eventually be spread 
throughout the population.  

The Core has similarities with works in Alife where 
fitness is not predefined, but a property of the simulation 
[21,22,23].  It also has similarities to embodied evolution 
[24] used in evolutionary robotics.  In this system, robots 
attain a virtual energy level that corresponds to their 
performance in completing the assigned task.  They transmit 
their chromosomes with a rate proportional to their energy 
level and receiving robots accept it at a rate inversely 
proportional to their energy level.  Upon acceptance, the 
receiving robot crosses it with its own chromosome 
producing a new controller, which overwrites its current 
controller.  In the Core, when an agent kills another agent, 
its chromosome is passed to that agent’s client.  The client 
crosses the victor’s chromosome with that of the defeated 
agent’s chromosome, producing a new chromosome for the 
agent, which is sent back into the Core for testing.  
Tournament selection using only two opponents with the 
least fit being replaced by the recombination of the two was 
found to be a successful strategy (microbial method) by 
Harvey [25]. 

B. Description 
The Core is a large virtual arena in which a massive 

population of agents can live, fight, die, and reproduce.  A 
reasonably fast computer, with a reliable operating system, 
running a dedicated Xpilot server, is able to reliably host a 
very large number of Xpilot clients.  For our dedicated 
Xpilot server, we modified the normal Xpilot-NG server, 

which accepts a maximum of 32 clients, to accept a 
virtually limitless number of clients. We also reduced to a 
minimum the number of informative messages that the 
server sends to its clients, such as those about who killed 
who, or about who switched teams, etc. because they are not 
important for the agents in the Core, and they use extra 
network bandwidth. 

The environment in which the agents compete is a large 
256x256 tiled map (Fig. 2).  Tiles are about 3 times the area 
of a ship.  Each of the four quadrants of the map has a 
unique terrain in order to represent multiple combat 
environments.  The first quadrant (upper left) has fingers of 
walls with an open space in the center, the second (upper 
right) has fingers with no large space, the third (lower right) 
is cluttered with small asteroid-like chunks of walls, and the 
fourth (lower left) has just a few dots of walls, and mostly 
open space.  The four quadrants collect towards the center 
where there is a large circle of empty space.  Bases, where a 
player or agent may appear at a new life, are scattered in the 
center of each quadrant. 

A closer view of an Xpilot session is shown in Fig. 3.  
The agent's ship is the triangle at the bottom of the screen 
with the label “Cyc16111”.  The ship above is another agent 
and they are engaged in combat with one another (the black 
dot below Cyc16111 is a bullet fired from Cyc27898).  The 
boxes to the south and east are walls, and the short 
horizontal lines with numbers are possible starting bases. 

The setup of the events of the Core is as follows.  When a 
client first joins the Core, the client generates a random 
chromosome to control the agent.  When the Core is first 
loaded, therefore, the entire population is made of agents 
with random chromosomes.  Whenever an agent dies, its 
ship disappears from the map for about 32 frames, then it 
reappears in a random starting location, and the agent lives 
again.  An agent may die four ways: collision with a wall at 
a high speed, collision with another agent, killed by its own 
shot, or shot by another agent.  Of these four deaths, the 
first three simply result in the agent’s death and 
reappearance in another location; its chromosome is 
unchanged.  However, when it is shot by another agent, the 
dead agent sends a request to the killer agent, the killer 
sends its chromosome to the dead agent, and the dead agent 
performs crossover and mutation between its own 
chromosome and the chromosome of its killer. The 
messages requesting the chromosome and the chromosome 
itself are coded into ASCII and sent directly between the 
agents using the player-to-player text messaging system 
native to Xpilot (Fig. 3). 

By this system, the agents who are more capable of 
killing other agents spread their genes to a larger number of 
agents than do those agents who are less capable of killing.  
In turn, the weaker agents who are killed slowly evolve to 
become as strong as their killers, increasing the abilities of 
the entire population.  By mutation and crossover, new traits 
are formed in agents, and the traits that make the agent 
stronger are slowly spread across the entire population.  In 
this way, the agents continually increase their abilities and 
sharpen one another. 



       

C. Age of Adolescence 
One of the goals for the final evolved behavior in this test 

is that the agents should be good at general combat, both in 
the Core, and in other Xpilot environments.  A difficulty 
with regular genetic algorithms is that the evolved agent 
often finds ways to exploit the fitness function so that it 
receives a good fitness and yet does not do what was 
intended.  The Core does not have a “fitness function”, yet 
the setup of the map and rules of play have an enormous 
impact on the evolved behavior of the agents.  For example, 
our first tests of the Core gave the agents almost no reason 
to avoid crashing into the walls.  The agents developed the 
unintended strategy of thrusting straight ahead and shooting 
randomly.  Any agents who might have been actually 
aiming were unlikely to hit these fast agents who whizzed 
past them and they were eventually killed off by a random 
and stray shots.  The fast-flying agents always ended their 
lives crashing into the wall, but since there was no penalty, 
crashing into a wall merely transported them to a new 
location in the map, making it a good strategy.  The entire 
population soon became fast-flying wall-smashers.   

To fix this we tried mutating the chromosome of those 
who smashed into a wall, but the mutations were usually 
not beneficial and only increased the undesirable behavior.  
In another attempt [13], we penalized a wall-smasher upon 
rebirth, such that it was forced to wait 20 frames of game 
play as a vulnerable target, unable to move or control itself.  

This worked well, but with the negative aspect of changing 
the rules of the game play. 

For the test reported in this paper we handle the wall-
smashing by giving the agents an “age of adolescence” of 
40 frames; a minimum amount of time that an agent must 
live before it is able to send its chromosome to other ships.  
This helps to make the wall-smashers less potent, as most of 
their kills in their short lives occur within 40 frames.  
Further penalization of wall-smashing, while it may more 
quickly reduce the behavior, evolves overly-cautious bots 
who are unlikely to use their thrust for any purpose.    With 
this method, wall-smashing still occasionally flared up 
amongst the population, and was sometimes very 
prominent, but there evolved many ships who were able to 
both thrust and aim effectively, and these eventually 
dominated. 

IV. RESULTS 
Because there is no specific fitness function in the Core, 

it is difficult to measure the success of the evolution.  
Visually it is easy to see that the agents have from their 
ignorant beginnings drastically improved and developed 
simple and effective strategies.  However, their success 
cannot be measured by their time alive nor by their number 
of kills in the Core because as an individual agent evolves 
and increases its ability to kill, so do its competitors 
increase their ability to kill it and to avoid being killed.  
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Fig. 4.  Graph showing the fitness growth of 5 agents evolving for 24 hours in the Core with a least squares fitness line.   

 



       

The fitness of the agents from the Core must therefore be 
judged by their ability to fight some standard opponent, 
whose behavior remains constant over time.  However, care 
must be taken when placing an agent from the Core into 
some new type of environment.  In the Core the agents learn 
to fight against multiple opponents and around rough 
terrain.  Placing them into a simple square arena verses a 
specific bot does not adequately measure the increase in 
fitness over time, as behaviors that worked well in the Core 
may not work in that specific setting.   

During the actual test of the Core, each agent saved its 
chromosome to file every 30 minutes. The Core ran in a 
stable condition for 24 hours, so each agent saved a history 
containing 48 of its chromosomes over the span of the test. 
A miniature map consisting of a portion of the upper left 
quadrant of the original Core map was developed to 
perform the test.  It was populated with 10 enemies; each of 
which was controlled by a chromosome selected from a 
randomly chosen agent's chromosome history from the 
Core. These 10 enemies were chosen from the chromosome 
history in such a way that the full range of evolved 
chromosomes was represented; representatives from the 
first and least talented chromosome to the chromosome 
saved at the 24th hour. Five agents from the Core were 
randomly selected to test them in the miniature map. Each 
agent progressed through the history of all 48 of its 
chromosomes. Each chromosome controlled the agent's ship 
until it had died ten times from enemy fire. Thus, the agents 
could crash into a wall without it counting as a death. The 
total number of kills that the agent achieved while being 
controlled by a chromosome was recorded so that the 
improvement in the ability to kill could be seen over the 
span of the 48 saved chromosomes. To closely simulate the 
conditions in the actual Core, the kills that were achieved 
before the agent had reached the "age of adolescence" were 
not counted.  

Fig. 4 shows the plot points for the fitness of each of the 
five agents tested, as well as a least squares trend line.  The 
average fitness shows an overall increasing trend, while 
there are many dips in the individual fitnesses.  An 
explanation for this is that the agents saved their 
chromosomes strictly every 30 minutes without regard to 
the health of that particular chromosome.  The saved 
chromosome at that point was sometimes a poor one that 
just happened to be in play at the time of the save.  
However, since the good chromosomes were usually alive 
longer, there was a greater chance they would be saved, and 
therefore the trend of the five individuals tested is a definite 
increase in health and skill. 

A very enjoyable aspect of the Core is watching the 
actual evolution of the agents as they play on screen.  If a 
new agent is connected to a mature Core server, its 
evolution and behavioral assimilation into the population 
can be viewed over a span of a few minutes.  When the 
agent first joins, its behavior is usually sporadic.  It does not 
aim at other bots, sometimes it does not shoot, and usually 
it smashes into walls rather quickly after coming to life.  It 
flies around like this until some mature agent finally shoots 

it.  Then its behavior becomes some strange mix between 
the two, sometimes seeming to aim, and other times flying 
wildly.  Each time the agent is killed, it becomes more and 
more like everyone else in the Core, until finally it seems to 
be fully assimilated.  

Sometimes a new strategy is developed and it spreads 
like a plague across the population.  For this test, after a few 
hours the Core was dominated by reckless wall-smashers.  
On the radar, which is a small view of the map, all the little 
dots representing the enemy ships could be seen rushing 
madly into the walls.  Then, from some fortunate mutation 
or crossover, an agent learned to aim at the other ships and 
to not thrust.  The agent playing on screen was one of the 
first to be turned into an aimer.  It floated around, killing 
many of the wall-smashers, and being killed by many, but 
not receiving their chromosome because they had not yet 
reached the “age of adolescence.”  It could be seen on the 
radar, fewer and fewer ships were thrusting madly across 
the map, and in minutes the wall-smashers had become 
endangered and aimers dominated the Core. 

V. CONCLUSIONS 
In the challenging game of Xpilot, it is very difficult to 

successfully evolve a controller that will be fit in the wide 
variety of combat environments available.  A CGA can 
evolve multi-loop control programs appropriate for this 
level of control.  However, one of the major problems with 
its use is building a variable environment and populating it 
with hand-coded opponents that reliably test the agent.  
Creating a fitness function that adequately tests the large 
number of tasks in general combat in Xpilot is also difficult.  
Therefore, we use the Core, with its highly parallel setup, 
simple single population co-evolution, and lack of a need 
for a specific fitness function, it is ideal for evolving robust 
combat agents in Xpilot.   

This test shows just some of the capabilities of the Core.  
By redesigning the rules of play, the map, and the clients, 
there are many different possibilities for evolution.  Some 
plans for future work include: localized regeneration, where 
areas of the Core develop specialized agents who can mix at 
the borders of their area (this will allow differing combat 
strategies to emerge within their own niche); team play, 
where multiple species of agents combat against one 
another in the Core, fighting to become the dominant 
population; and goal oriented play, such as destroying an 
enemy base.   

The idea of the simple evolution and parallelism of the 
Core is useful in applications where agents are competing to 
perform a task.  These applications include the evolution of 
non-combat agents. An example might be in the 
development of a race-car controller.  In a population racing 
cars, the dominant cars can send their chromosome to the 
less successful cars that they pass. The Core has been 
shown to be an interesting and reliable method for evolving 
robust agents in Xpilot. Future work will determine its 
general applicability and use in the study of autonomous 
agent evolution. 
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