
Co-Evolving Team Capture Strategies for Dissimilar Robots

H. Joseph Blumenthal and Gary B. Parker

Computer Science
Connecticut College

New London, Ct 06320 USA
hjblu@conncoll.edu and parker@conncoll.edu

Abstract

Evolving team members to act cohesively is a complex and
challenging problem. To allow the greatest range of solutions
in team problem solving, heterogeneous agents are desirable.
To produce highly specialized agents, team members should
be evolved in separate populations. Co-evolution in separate
populations requires a system for selecting suitable partners
for evaluation at trial time. Selecting too many partners for
evaluation drives computation time to unreasonable levels,
while selecting too few partners blinds the GA from
recognizing highly fit individuals. In previous work, we
employed a method based on punctuated anytime learning
which periodically tests a number of partner combinations to
select a single individual from each population to be used at
trail time. We began testing our method in simulation using a
two-agent box pushing task. We then expanded our research
by simulating a predator-prey scenario in which all the agents
had the exact same capabilities. In this paper, we report the
expansion of our work by applying this method of team
learning to five dissimilar robots.

Introduction
The objective of our work is to show that our system of co-
evolution can learn effective capture strategies that
capitalize on the strengths of robots with different
capabilities. To test the success of our method we choose
the predator-prey scenario (Benda, Jagannathan, and
Dodhiawalla 1985) because it can represent a simplified
version of real world problems to be solved using teams of
agents. Such applications include search and rescue
missions, scientific data collection, and toxic waste
cleanup. Cooperative behavior is an important area of
research because robots that cooperate can often achieve
much more than the sum of what they could individually.
Learning cooperative behavior for robots has been
approached in several ways.

Luke and Spector focused their research on testing
different implementations of systems for evolving
members of a team (Luke and Spector 1996). Specifically,
they tested several methods of communication between
agents and breeding among members of a single
population. As in our current research, Luke and Spector
used the predator-prey scenario as the test-bed to compare
their various implementations. They used a continuous
simulated environment in which four artificially intelligent

agents representing “lions” attempt to capture a prey
representing a “gazelle”. Their method of evolution uses
genetic programming and considers each team a single GP
individual. Using this method of representation all of the
team learning can take place within a single population.
This system of learning was found to be highly successful
in producing heterogeneous members of a team.
Additionally, their implementation is computationally
inexpensive due to the evolution within a single
population. However, if the controller being evolved for
each individual is sufficiently large, the overall size of the
chromosome may preclude convergence. In addition,
evolving team members in a single population has the
potential to limit the level of specialization amongst team
members. Evolving the agents in a single chromosome
could compromise the GAs ability to recognize suitable
team members because a partner’s score is overly
influenced by the performance of other members of the
team to which it is bound within the chromosome.
Evolving team members in separate populations is
advantageous because the evolutionary power of the GA
can focus on producing the most specialized individuals
possible.

Potter and De Jong created a system for evolving team
members in separate populations. This method called
cooperative coevolutionary algorithms (CCAs) tests an
individual’s fitness by pairing it with a single individual
from the other populations (Potter and De Jong 1994). This
selected individual used for evaluation is randomly
selected for the first generation of training and in
subsequent generations the selected individual is the fittest
offspring from the previous generation of training
compared to others within its own population. Potter,
Meeden, and Schultz used this method to co-evolve agents
herding sheep into a corral (Potter, Meeden, and Schultz
2001). The herding task was then made more challenging
by introducing agents representing wolves that attempted
to attack the sheep. Even with this added complexity the
method proved a highly successful means of evolving a
team.

Wiegand, Liles, and De Jong took an in depth look at
the pertinent issues of co-evolution (Wiegand, Liles, and
De Jong 2001). They concluded that the most influential
factor in co-evolution is the collaborator pool size, the
number of combinations of partners tested at trial time.
They also note that as the collaborator pool size increases
so does the computation required to find a solution to any

given problem. Taking this observation to the extreme, the
most accurate method of co-evolution would be to test
every possible combination of partners every generation.
For a task requiring N partners with I individuals in each
population, any round of training would require IN

evaluations; a method too computationally expensive for
practical use.

Parker developed Punctuated Anytime Learning (PAL)
to allow for an offline learning system to be periodically
improved throughout a simulated evolution (Parker 2002).
The computer’s internal model is updated or the GA’s
fitness evaluation is adjusted by measuring the robot’s
actual performance at certain consistently spaced numbers
of generations called punctuated generations. These values
are used to co-evolve the model parameters of the
simulation being used by the GA or they are used to bias
all of the fitnesses of the individuals of the GA population.

Parker and Blumenthal adapted the concept of PAL to
be applicable to evolving teams (Parker and Blumenthal
2002a). This method employed the periodic nature of PAL
to reduce the number of fitness evaluations required to
evolve team members in separate populations. Taking into
account the observations made by Wiegand, Liles, and De
Jong, the method periodically tests every possible partner
combination to select a single individual from each
population as the best representative of the overall nature
of their own population. This selected individual was used
as a partner for evaluating the fitness of any individual in
the opposing population. Using this method of PAL, the
number of fitness evaluations is greatly reduced. This
method produces a highly accurate solution, but it is still
too computationally intensive to accommodate problems
requiring multiple members in a team.

Striving to minimize computation time, additional
research showed that it was feasible to select an
appropriate representative through a random sampling of
the opposing population (Parker and Blumenthal 2002b).
In our previous research we tested every possible partner
combination, but using the random sampling method we
were able to test only a portion of the total number of
collaborators to allow for further computational reduction.

While the original PAL co-evolution method was tested
using a team of two robots to push a box to a target corner
of a simulated area, the implementation of the random
sampling method the flexibility to accommodate a greater
number of populations. The PAL sampling method was
tested using a predator-prey scenario in which four agents
attempt to capture a fifth, where all five agents were
modeled after the same robot (Blumenthal and Parker
2004). The success of the predators showed that the
learning system could accommodate a problem requiring
four separate populations.

In this paper, we expand our work by applying this
method to dissimilar robots. The actual performance
values from five distinct robots were measured and used as
agents in the predator-prey scenario. The goal of this
research is to show that our system of co-evolution can
produce highly specialized behavior by capitalizing on the

unique strengths of each team member. Additionally, the
problem is more challenging since the robot from which
the prey is modeled is more agile and capable than any of
the four predators.

PAL With Sampling Populations
Parker developed punctuated anytime learning (PAL) to
strengthen offline genetic algorithms. It is a modification
of Greffenstette and Ramsey’s dynamic anytime learning
approach (Greffenstette and Ramsey 1992). Although PAL
does not allow the learning system to be updated
continuously, it updates every G generations, resulting in a
period of accelerated fitness growth. The generations in
which the learning system is updated are referred to as
“punctuated” generations. When PAL is applied to a single
GA, it updates the learning system every G generations by
running tests on the actual robot, measures its performance,
and uses these results for fitness biasing in the GA or in
the co-evolution of model parameters (Parker 2002).

Punctuated anytime learning is a fairly different
concept when applied to co-evolving separate populations
to form a heterogeneous team. The updated information
that the learning system receives in punctuated generations
is a more accurate representative of the overall nature of
each of the populations. For ease of explanation, assume
that the experiment has two populations, population A and
population B. In this case, every G generations, all of the
individuals in population A are tested against all
individuals in population B. The purpose of this process is
to find the fittest individual from each population to evolve
with the other population in future generations. The chosen
representative individual from each population will be
referred to as the “alpha individual”. The generations in
which the computer finds new alphas are called
“punctuated” generations. In non-punctuated generations,
the alpha individuals selected from the last punctuated
generation are paired with perspective team members in
the other population for fitness evaluation. This method not
only ensures consistency within a generation of training, it
also decreases the total number of evaluations required to
find an accurate solution.

Although this method was effective, it remains too
computationally expensive. In order to further reduce
computation time, we tested the possibility of selecting
alphas using less than the entire population. Assuming that
the experiment has two populations, population A and
population B, every G generations, some chosen number of
individuals in population A are randomly selected and
tested against all individuals in population B. The selected
individuals from population A are referred to as the
sample, and the number of chosen individuals is called the
sampling size. Our tests (Parker and Blumenthal 2002b)
involved using a sample size of 8, which was thought to be
a good starting point as it is the square root of our original
sample size of 64. We found the sample size of 8 to be
both accurate and swift in alpha selection.

Tests were done on the sample sizes of 1, 2, 4, 8, 16,
32, and 64 to determine their relative strength (Parker and
Blumenthal 2003). In order to ensure proper testing of the
characteristics of the different sample sizes, we staggered
the punctuated generations such that the sample 1
performed alpha selection every generation, sample 2
selected new alphas every other generation, up to the
sample 64 which selects the new alphas every 64th

generation. This staggering was essential to provide each
sample size with equal numbers of alpha evaluations. We
tested our sample sizes using a box-pushing problem in
which two robots are charged with the task of moving a
box from the center of a square space to a target corner.
The maximum fitness of these trials was 15,625. The
performance of the fittest combination of partners for each
of the seven different sampling rates were recorded
through 10240 alpha evaluations. Fitnessses were recorded
at 0, 64, 128, 256, 512, 1024, 2048, 5120, and 10240 alpha
evaluations. The tests showed that all seven sample sizes
reached reasonably accurate solutions and the sample 64
ultimately reached the highest average fitness of any
sample size by the 10240th alpha evaluation. The lower
sample sizes showed relatively superior performance in the
earlier generations of training, but inferior performance in
later generations. The opposite was true for the higher
sampling sizes where they were inferior to lower sizes in
the earlier generations, but better in the later generations of
training.

Although the lower sample sizes did not produce the
best end result, they were better in the initial stages of
learning. This is rather intuitive because by the sixty-fourth
generation, the sample one has evolved with sixty-four
different set of alpha individuals while the sample sixty-
four has evolved with only one set of alphas. Samples 4
and 8 had accelerated growth past the sample sizes of 1
and 2, because these sample sizes lack the ability to
represent the true nature of a population with so few
comparisons for alpha selection. Therefore, we select a
sample 8 as a good candidate for consistent growth
throughout the entire period of training.

To express mathematically the computational reduction
achieved by this union of methods, we let G represent the
number of generations between alpha selections, I
represent the number of individuals in a single population,
and N represent the number of populations. The method in
which we compared all individuals in a population against
all others in the opposing population required IN

evaluations each generation. When the alpha selection is
done only at punctuated generations the number of
evaluations is reduced by that factor of G . Further
reductions are necessary to accommodate the co-evolution
of more than two populations. In order to further reduce
computations, sampling is used. Using the previous
parameters and adding the term S representing the
sampling size, any given evolution requires an average of
only N * (I * SN-1)/G evaluations per generation.

Simulation of Robot Performance
There are two different kinds of robots modeled in the
simulation, the ServoBot and the Hex II (produced by
Lynxmotion, Inc.) All five agents were modeled after
existing hexapod robots in the lab, each with distinct
capabilities. The four predators were abstracted from the
ServoBots while the prey was abstracted from the Hex II
robot. The ServoBot is an inexpensive hexapod robot made
of masonite, a hard pressed wood. The Hex II is a hexapod
robot which has a body constructed of yellow plastic.
Although the Hex II is lacking in some durability, a
characteristic that makes us prefer our own robots, the Hex
II is the fastest and most capable of any of the five robots
modeled. All five robots modeled were hexapod robots
each with twelve hobby servos to provide locomotion.
Figure 1 shows a picture of a ServoBot and a Hex II robot.

Figure 1: The robot shown on left is the ServoBot and the robot
shown on the right is the Hex II robot.

The movements of the servos are coordinated by a
central controller, a BASIC Stamp II capable of
individually addressing each of the twelve servo actuators
(two on each leg) in parallel to produce and sustain
forward motion. The BASIC Stamp II is capable of storing
a sequence of activations (pulses) to be sent to the servo
every 25 msec. These activations, if sequenced and
repeated correctly, produce a gait cycle, which is defined
as the timed and coordinated motion of the legs of a robot
such that the legs return to the positions from which they
began the motion. Each activation represents the
simultaneous movement of the twelve servos. The
sequence which controls the movement of the twelve
servos is represented in the controller as a twelve-bit
number. Each bit represents a single servo with a 0 or a 1.
For the horizontal servos, a 1 indicates full back and a 0
indicates full forward. Similarly, for servos oriented in a
vertical capacity, a 1 corresponds to full lift and a 0
corresponds to full down. Therefore, each pair of bits can
represent the motion of one leg, each bit controlling one
servo, corresponding to one of the two degrees of freedom.
The pairs of bits are ordered to their represented leg as 0 to
5 with legs 0,2,4 being on the right from front to back and
1,3,5 being on the left from front to back. Figure 2 shows a
twelve-bit activation and the corresponding movement of
the six legs.

With this method of representation, a cyclic genetic
algorithm (CGA), which is discussed in a later section, can
be used to evolve an optimal gait cycle for a specific
ServoBot. The gait cycle used in our simulation was a

tripod gait, in which three legs provide thrust while three
legs are repositioning to provide thrust on the next set of
activations.

01
23
45

Activation: 100101101001

 10 01 01 10 10 01

By varying the number of pulses to each side of the
robot, we were able to generate degrees of turns varying
from sweeping to sharp. These were generated for our
robots by decreasing the total number of pulses sent to the
thrust producing legs of one side of the robot. If legs 1,3,5
were given 30 pulses during thrust, but legs 0,2,4 were
only given 10 pulses during thrust, the result would be a
right turn due to the reduced thrust generated by the left
legs (0,2,4) throughout the duration of the gait cycle. The
effects of each of 15 left and right turns, plus no turn, were
measured as they were performed by the ServoBot being
tested. These turns are unique to the particular robot. For
example, the recorded “no turn” drifted to one side on one
robot and to the other side on another robot. These
variances are due to minor differences in the physical
construction of each robot. The 31 performance values
(measured in centimeters moved and degrees turned) were
recorded and stored in a table for each robot.

Cyclic Genetic Algorithms
A type of evolutionary algorithm called a cyclic genetic
algorithm was used to evolve all four predators
coordination strategy (Parker and Rawlins 1996). A CGA
is similar to a regular GA, but it differs in that the CGA
chromosome can represent a cycle of tasks. These tasks
can be anything from a single action to a sub-cycle of
tasks. Using this method of representation, it is possible to
break up a chromosome into multiple genes with each gene
acting as a cycle. Each gene or sub-cycle contains two
parts, one part representing an action or set of actions, and
the second part representing the number of times that
action is to be repeated. The genes can be arranged into a
repeated sequence and a chromosome can be arranged with
single or multiple cycles. In the case of multiple cycles, it
is possible to switch from one to the other at any point.

Individuals were selected stochastically for breeding
based on their fitness score and standard operators were
used for the CGAs. The CGA was perfectly fit for evolving
our agents because it is designed for learning cyclic
behavior such as encircling the prey to keep it from
escaping the area. Our CGA chromosome has two parts,
the first is their motion before they first see the prey
(stalking or searching behavior) and the second defines

their motions after they first see the prey, which
coordinates the pursuit and capture with the other agents.

The CGA chromosome had two cycles containing nine
genes each. Every gene contained two 5-bit numbers, one
representing a gait cycle with 31 possible turns or a 0,
which indicated that it was to stand still, and the other
representing the repetitions of that gait cycle. The scheme
representation of the chromosome is shown in Figure 3.

(((T1 R1) (T2 R2) … (T9 R9)) ((T1 R1) (T2 R2) … (T9 R9)))

Figure 3: Scheme representation of the CGA chromosome where
T is a specific turn and R is the number of repetitions of that turn.
The genes which appear in bold represent the second cycle.

The Predator-Prey Scenario
The chosen task to prove the effectiveness of our method is
to have five hexapod robots participate in the pursuit
domain of the predator-prey scenario. Four of the robots in
the simulation are the predators and the fifth is the prey.
The predators’ goal, starting from randomly assigned
positions, is to chase and capture the prey, which starts in
the center of the colony space (simulated area measuring
500x500 units). The predators must capture the prey before
it escapes by reaching the edge of the colony space or all
the prey has taken 150 steps.

The prey attempts to evade the predators using the
nearest predator first algorithm (NPF), which simply
moves the prey in the opposite direction of the nearest
predator. If the prey does not see any predators, three out
of four times a random number from 0 to 31 is generated to
determine its next gait cycle and the other one fourth of the
time the prey remains stationary to simulate a feeding
behavior. This means that the prey never follows the same
path twice because of the random gait generation. To have
a successful capture, a predator must move within 12 units
of the prey, a distance equivalent to approximately twice
the size of the agents themselves.

The fitness score of a team of predators that fail to
capture the prey is the number of steps taken in the round.
Because it is possible for the prey to escape the
environment, the predators are rewarded for keeping the
prey within the simulation for as long as possible. In the
event of a capture, the fitness of a team is the number of
steps in the round plus a bonus for the capture, which is
derived from the distance of the capturing predator to the
prey. Equation 1 shows how the score is calculated for a
successful capture. With an equal number of rows and
columns in the simulation space this number is represented
by NUM-COL-ROW, the maximum distance that can be
between a predator and a prey for it to be considered a
capture is MAX-CAPT-DIST, and the distance of the
capturing predator to the prey is capt-dist. If a member of
the team of predators captures the prey at the maximum
allowable capture distance, the team is given a score of
NUM-COL-ROW because the denominator turns to 1.
However, if the distance of the capture is less than the

Figure 2: Legs 1,2,5 are moving back while staying down and
legs 0,3,4 are moving forward while they lift.

maximum, the fraction (capt-dist / MAX-CAPT-DIST)
becomes increasingly smaller forcing the score to elevate
drastically. Equation 1 shows the fitness function as
implemented in the program. We decided to focus our
fitness function on the distance of the capture because in
order to achieve a consistently small capture distance a
team is forced to immobilize the prey.

DISTCAPTMAX

distcapt

ROWCOLNUM

--

-

--
 (1)

At the beginning of any GA run, the prey is placed in the
center of the simulated area at the point (250,250) with a
random heading from 0 to 360 degrees. The four predators
are assigned random starting headings and coordinates
except that no predator can start within sight of the prey.
These assigned random starting positions are held
throughout every generation of training. The simulation is
a non-bounded-box environment, meaning that any of the
predators or the prey can step out of the simulation at
anytime. In the event that a predator steps out of bounds, it
is automatically removed from the round. The simulation
ends if the prey moves out of bounds, is captured, or the
prey has taken 150 steps.

All of the tests done in simulation use agents with
different capabilities that model existing robots in the lab.
All five agents in the simulation were represented as
circles and could see for 125 units in any direction. Both
the predators and prey move simultaneously. In previous
work, the predators and the prey had the same capabilities.
In this scenario, the prey is far more capable than any of
the four predators. Where the prey can move a possible
forward distance of 16.5 cm the fastest predator can move
only 13.3 cm. The prey can also out maneuver the
predators. The prey has the advantage of being able to turn
more sharply than the predators. The most capable of the
predators is predator A. This predator can move forward
13.3 cm. While predator A can move forward the greatest
distance in a single gait cycle, predator B is more
maneuverable. Predator B can move almost 27 degrees
with a full left turn and 24 degrees with a full right turn.
Predator B can turn approximately 2 degrees more in either
direction than any other agent. The predator C, is the least
capable of any agent in the simulation. It can move .1 cm
further straight than predator B, but can turn left 3 degrees
less than any other. Predator D has fairly average
capabilities all around, it can move forward 12 cm, turn left
20 degrees, and right 17 degrees.

Results
To test our method we ran 10 different tests for 20480
generations each. These scores were calculated by
averaging 100 evaluations of the team of alpha individuals.
We chose to record average scores for each team of alphas

because the prey’s motion in any given evaluation is
random. These fitnesses were averaged and recorded after
0, 64, 128, 256, 512, 1024, 2048, 5120, 10240, and 20480
generation of training. We chose to use a sample 8 with
punctuated generations every 64th generation. The sample
8 provides a candidate for consistent growth throughout the
entire evolution. A graph of the fitnesses of each of the 10
runs is shown in Figure 4. In all ten test runs, the four
predators were able to cooperate to surround the prey. The
lowest fitness achieved by any team of alphas by
generation 20480 was 150. This means that on average the
team of predators was able to successfully stop the prey
from escaping the area. It is easy to see that the fitness of
one test far outperforms all the other runs of the GA. The
best run of the GA achieved a fitness score of almost 800.
This corresponds to capturing the prey 70% of rounds
tested. We attribute this to the fact that the random placing
generated for the predators started them in a highly
advantageous formation.

One way to interpret the fitness values in this scenario
is to consider that a team with a score of 500, the
dimensions of the board or NUM-COL-ROW, is averaging
a capture of the prey at the maximum capture distance
every round. This goal is very difficult for the predators to
attain because the prey is much more capable than any of
the predators. Taking a look at Figure 5, it is easier to see
the fitness growth in the earlier generations of training. The
runs of the GA show a nice fitness curve with the
exception of tests 4 and 6. However, from looking at the
table, you can see that their fitness rebounds in the next
recorded generation. Although these tests have a temporary
lapse in fitness the average line is still a smooth increasing
curve. Table 1 shows the fitnesses of all ten runs of the
GA. As can be seen the average score of the four alphas at
generation 20480 is 342 which is a high level of
cooperation considering the disadvantages given to the
predators in the simulation.

Another important way to interpret the results is to look
at the capture strategies themselves. For our tests of the
punctuated anytime learning method to be considered a
success the learning system must capitalize on the
individual strengths of each of the four distinct predators.
Figure 6 shows a capture from one of the 10 test runs of
the GA. The four predators are marked A, B, C, and D. All
five agents starting positions are marked with a square
around them. When the predators are within their range of
sight of the prey, they appear with a white dot in the
middle. A black line is drawn where they first spot the
prey; the location where they switched from the first cycle
of the CGA to the second. The prey is originally colored
black, but when it is evading a predator it turns white.
There is one area where predator A seems to cut through
the prey, but this is the trail of where the prey started in the
first steps of the round.

All four predators in Figure 6 start by finding a position
to surround or immobilize the prey. Predator C holds the
most defensive position, probably due to its starting
position and the fact that it is the least capable of all four

0

100

200

300

400

500

600

700

800

0 5000 10000 15000 20000

Generations

F
it

n
e
ss

 Figure 4: Plotted above are the 10 independent runs of the GA, with the average shown in bold.

0

100

200

300

400

500

0 1000 2000 3000 4000 5000

Generations

F
it

n
e
ss

 Figure 5: This graph shows the first 5120 generations of the ten runs of the GA. The average is shown in bold.

Generations 0 64 128 256 512 1024 2048 5120 10240 20480
test1 68 235 210 244 300 258 250 293 220 355
test2 57 106 111 166 184 209 206 232 228 497
test3 76 105 122 109 124 120 134 208 260 256
test4 72 107 99 106 137 139 141 135 127 150
test5 57 106 111 166 184 202 196 185 190 192
test6 68 116 121 142 133 162 147 130 179 249
test7 57 71 97 159 177 225 196 213 186 233
test8 94 303 391 383 426 411 415 547 647 795
test9 122 50 161 186 261 255 308 318 344 321
test10 76 105 122 102 123 137 167 337 320 376
Average 75 130 155 176 205 212 216 260 270 342
Table 1: Shown are the 10 averaged and recorded fitness values that comprise the graphs Figure 4 and 5.

robots. Predator D evolved (0 9) as the first gene of the
second cycle, meaning that it pauses for nine steps when it
sees the prey. This behavior shows specialization because
it is working with Predator C to isolate the prey from the
entire right side of the screen. Not only is the prey in
position for predators A and B, but it eliminates the chance
that the prey can escape from the right side of the screen
avoiding the capture. Predator C evolved (24 29) as the
first gene in the second cycle. In effect, predators C and D
are achieving the same end, except that predator C holds
position with a tight turn.

All four predators in Figure 6 start by finding a position
to surround or immobilize the prey. Predator C holds the
most defensive position, probably due to its starting
position and the fact that it is the least capable of all four
robots. Predator D evolved (0 9) as the first gene of the
second cycle, meaning that it pauses for nine steps when it
sees the prey. This behavior shows specialization because
it is working with Predator C to isolate the prey from the
entire right side of the screen. Not only is the prey in
position for predators A and B, but it eliminates the chance
that the prey can escape from the right side of the screen
avoiding the capture. Predator C evolved (24 29) as the
first gene in the second cycle. In effect, predators C and D
are achieving the same end, except that predator C holds
position with a tight turn.

The most interesting facet of the capture strategy is
how predators A and B coordinate their final attack on the
prey. As previously stated predator B is the most
maneuverable (sharpest turning radius) of the predators
and the predator A is fastest moving straight forward. In
the strategy you can tell that predator B is making a sharp
turn to get the prey is proper position while predator A
makes a more direct path ultimately capturing the prey.
This team of four predators was able to capture the prey
approximately 68% percent of all rounds tested. The
punctuated anytime learning method was able to
successfully use the unique strengths of the predators to
form a cohesive capture strategy.

Conclusions
The intent of our research was to show that the punctuated
anytime learning method can evolve solutions for robots
with different capabilities. Additionally, we wanted to
show that the predators can still be successful if given a
relative disadvantage in respect to the prey. The sampling
method was able to achieve this end while reducing the
computation time required by a factor of 128 compared to
our original method. Our system of punctuated anytime
learning with sampling of populations evolved accurate
and computationally inexpensive solutions to the given
predator-prey scenario. In the future we hope to expand
upon this idea of different capabilities by attaching
different sensors to each of the four robots in addition to
their pre-existing unique locomotion capabilities.

References
Benda, M., Jagannathan, V., and Dodhiawalla R. 1985: On
optimal cooperation of knowledge sources, Technical
Report BCS-G2010-28, Boeing AI Center, Boeing
Computer Services, Bellevue, WA.

Blumenthal, H. J. and Parker, G. B. 2004. Punctuated
Anytime Learning for Evolving Multi-Agent Capture
Strategies. In Proceedings of the Congress on Evolutionary
Computation, 1820-1827. (CEC 2004)

Grefenstette, J. J. and Ramsey, C. L. 1992. An Approach to
Anytime Learning. In. Proceeding of the Ninth
International Conference on Machine Learning, 189-195.

Luke, S. and Spector, L. 1996. Evolving Teamwork and
Coordination with Genetic Programming. In Proceedings
of First Genetic Programming Conference, 150-156.

Parker, G. B. 2002. Punctuated Anytime Learning for
Hexapod Gait Generation. In Proceedings of the 2002
IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2664-2671. (IROS 2002).

Figure 6: A snapshot of a simulation of the predator-prey scenario from the 20480th generation. The agents start positions are marked with a
square and a line is drawn through the predators when they first see the prey. The prey turns from black to white when it is being chased
and is marked with a black line the first time it spots a predator.

Parker, G. B. and Blumenthal H. J. 2003. Comparison of
Sampling Sizes for the Co-Evolution of Cooperative
Agents. In Proceedings of the 2003 Congress on
Evolutionary Computation, 536-543. (CEC 2003).

Parker, G. B. and Blumenthal, H. J. 2002. Sampling the
Nature of A Population: Punctuated Anytime Learning For
Co-Evolving A Team. In Intelligent Engineering Systems
Through Artificial Neural Networks, Vol. 12 207-212.
(ANNIE 2002).

Parker, G. B. and Blumenthal, H. J. 2002. Punctuated
Anytime Learning for Evolving a Team. In Proceedings of
the World Automation Congress, Vol. 14, Robotics,
Manufacturing, Automation and Control, 559-566.
(WAC2002).

Parker, G. B. and Rawlins, G. J.E., 1996. Cyclic Genetic
Algorithms for the Locomotion of Hexapod Robots. In

Proceedings of the World Automation Congress Volume 3,
Robotic and Manufacturing Systems, 617-622. (WAC ’96).

Potter M. A. and De Jong K. A. 1994. A Cooperative
Coevolutionary Approach to Function Optimization. In
Proceedings of the Third Conference on Parallel Problem
Solving from Nature, 249-257.

Potter, M. A., Meeden L. A., and Schultz A. C. 2001.
Heterogeneity in the Coevolved Behaviors of Mobile
Robots: The Emergence of Specialists. In Proceedings of
the Seventeenth International Conference on Artificial
Intelligence. (2001).
Wiegand R. P., Liles W. C., and De Jong K. A. 2001. An
Empirical Analysis of Collaboration Methods in
Cooperative Coevolutionary Algorithms. In Proceedings of
the Genetic and Evolutionary Computation Conference,
1235-1245. (GECCO 2001).

