
986 Chapter 25. Robotics

Methods that make robots collect their own training data (with labels!) are called self-
supervised. In this instance, the robot uses machine learning to leverage a short-range sensorSELF-SUPERVISED

LEARNING

that works well for terrain classification into a sensor that can see much farther. That allows
the robot to drive faster, slowing down only when the sensor model says there is a change in
the terrain that needs to be examined more carefully by the short-range sensors.

25.4 PLANNING TO MOVE

All of a robot’s deliberations ultimately come down to deciding how to move effectors. The
point-to-point motion problem is to deliver the robot or its end effector to a designated targetPOINT-TO-POINT

MOTION

location. A greater challenge is the compliant motion problem, in which a robot movesCOMPLIANT MOTION

while being in physical contact with an obstacle. An example of compliant motion is a robot
manipulator that screws in a light bulb, or a robot that pushes a box across a table top.

We begin by finding a suitable representation in which motion-planning problems can
be described and solved. It turns out that the configuration space—the space of robot states
defined by location, orientation, and joint angles—is a better place to work than the original
3D space. The path planning problem is to find a path from one configuration to another inPATH PLANNING

configuration space. We have already encountered various versions of the path-planning prob-
lem throughout this book; the complication added by robotics is that path planning involves
continuous spaces. There are two main approaches: cell decomposition and skeletonization.
Each reduces the continuous path-planning problem to a discrete graph-search problem. In
this section, we assume that motion is deterministic and that localization of the robot is exact.
Subsequent sections will relax these assumptions.

25.4.1 Configuration space

We will start with a simple representation for a simple robot motion problem. Consider the
robot arm shown in Figure 25.14(a). It has two joints that move independently. Moving
the joints alters the (x, y) coordinates of the elbow and the gripper. (The arm cannot move
in the z direction.) This suggests that the robot’s configuration can be described by a four-
dimensional coordinate: (xe, ye) for the location of the elbow relative to the environment and
(xg, yg) for the location of the gripper. Clearly, these four coordinates characterize the full
state of the robot. They constitute what is known as workspace representation, since theWORKSPACE

REPRESENTATION

coordinates of the robot are specified in the same coordinate system as the objects it seeks to
manipulate (or to avoid). Workspace representations are well-suited for collision checking,
especially if the robot and all objects are represented by simple polygonal models.

The problem with the workspace representation is that not all workspace coordinates
are actually attainable, even in the absence of obstacles. This is because of the linkage con-
straints on the space of attainable workspace coordinates. For example, the elbow positionLINKAGE

CONSTRAINTS

(xe, ye) and the gripper position (xg, yg) are always a fixed distance apart, because they are
joined by a rigid forearm. A robot motion planner defined over workspace coordinates faces
the challenge of generating paths that adhere to these constraints. This is particularly tricky



Section 25.4. Planning to Move 987

shou

elb

s

e

e
table

table

left wall

vertical
obstacle

s

e

s

(a) (b)

Figure 25.14 (a) Workspace representation of a robot arm with 2 DOFs. The workspace
is a box with a flat obstacle hanging from the ceiling. (b) Configuration space of the same
robot. Only white regions in the space are configurations that are free of collisions. The dot
in this diagram corresponds to the configuration of the robot shown on the left.

because the state space is continuous and the constraints are nonlinear. It turns out to be eas-
ier to plan with a configuration space representation. Instead of representing the state of theCONFIGURATION

SPACE

robot by the Cartesian coordinates of its elements, we represent the state by a configuration
of the robot’s joints. Our example robot possesses two joints. Hence, we can represent its
state with the two angles ϕs and ϕe for the shoulder joint and elbow joint, respectively. In
the absence of any obstacles, a robot could freely take on any value in configuration space. In
particular, when planning a path one could simply connect the present configuration and the
target configuration by a straight line. In following this path, the robot would then move its
joints at a constant velocity, until a target location is reached.

Unfortunately, configuration spaces have their own problems. The task of a robot is usu-
ally expressed in workspace coordinates, not in configuration space coordinates. This raises
the question of how to map between workspace coordinates and configuration space. Trans-
forming configuration space coordinates into workspace coordinates is simple: it involves
a series of straightforward coordinate transformations. These transformations are linear for
prismatic joints and trigonometric for revolute joints. This chain of coordinate transformation
is known as kinematics.KINEMATICS

The inverse problem of calculating the configuration of a robot whose effector location
is specified in workspace coordinates is known as inverse kinematics. Calculating the inverseINVERSE

KINEMATICS

kinematics is hard, especially for robots with many DOFs. In particular, the solution is seldom
unique. Figure 25.14(a) shows one of two possible configurations that put the gripper in the
same location. (The other configuration would has the elbow below the shoulder.)



988 Chapter 25. Robotics

conf-3

conf-1
conf-2

conf-3

conf-2

conf-1

e

ss

e

(a) (b)

Figure 25.15 Three robot configurations, shown in workspace and configuration space.

In general, this two-link robot arm has between zero and two inverse kinematic solu-
tions for any set of workspace coordinates. Most industrial robots have sufficient degrees
of freedom to find infinitely many solutions to motion problems. To see how this is possi-
ble, simply imagine that we added a third revolute joint to our example robot, one whose
rotational axis is parallel to the ones of the existing joints. In such a case, we can keep the
location (but not the orientation!) of the gripper fixed and still freely rotate its internal joints,
for most configurations of the robot. With a few more joints (how many?) we can achieve the
same effect while keeping the orientation of the gripper constant as well. We have already
seen an example of this in the “experiment” of placing your hand on the desk and moving
your elbow. The kinematic constraint of your hand position is insufficient to determine the
configuration of your elbow. In other words, the inverse kinematics of your shoulder–arm
assembly possesses an infinite number of solutions.

The second problem with configuration space representations arises from the obsta-
cles that may exist in the robot’s workspace. Our example in Figure 25.14(a) shows several
such obstacles, including a free-hanging obstacle that protrudes into the center of the robot’s
workspace. In workspace, such obstacles take on simple geometric forms—especially in
most robotics textbooks, which tend to focus on polygonal obstacles. But how do they look
in configuration space?

Figure 25.14(b) shows the configuration space for our example robot, under the specific
obstacle configuration shown in Figure 25.14(a). The configuration space can be decomposed
into two subspaces: the space of all configurations that a robot may attain, commonly called
free space, and the space of unattainable configurations, called occupied space. The whiteFREE SPACE

OCCUPIED SPACE area in Figure 25.14(b) corresponds to the free space. All other regions correspond to occu-



Section 25.4. Planning to Move 989

pied space. The different shadings of the occupied space corresponds to the different objects
in the robot’s workspace; the black region surrounding the entire free space corresponds to
configurations in which the robot collides with itself. It is easy to see that extreme values of
the shoulder or elbow angles cause such a violation. The two oval-shaped regions on both
sides of the robot correspond to the table on which the robot is mounted. The third oval region
corresponds to the left wall. Finally, the most interesting object in configuration space is the
vertical obstacle that hangs from the ceiling and impedes the robot’s motions. This object has
a funny shape in configuration space: it is highly nonlinear and at places even concave. With
a little bit of imagination the reader will recognize the shape of the gripper at the upper left
end. We encourage the reader to pause for a moment and study this diagram. The shape of
this obstacle is not at all obvious! The dot inside Figure 25.14(b) marks the configuration of
the robot, as shown in Figure 25.14(a). Figure 25.15 depicts three additional configurations,
both in workspace and in configuration space. In configuration conf-1, the gripper encloses
the vertical obstacle.

Even if the robot’s workspace is represented by flat polygons, the shape of the free space
can be very complicated. In practice, therefore, one usually probes a configuration space
instead of constructing it explicitly. A planner may generate a configuration and then test to
see if it is in free space by applying the robot kinematics and then checking for collisions in
workspace coordinates.

25.4.2 Cell decomposition methods

The first approach to path planning uses cell decomposition—that is, it decomposes theCELL
DECOMPOSITION

free space into a finite number of contiguous regions, called cells. These regions have the
important property that the path-planning problem within a single region can be solved by
simple means (e.g., moving along a straight line). The path-planning problem then becomes
a discrete graph-search problem, very much like the search problems introduced in Chapter 3.

The simplest cell decomposition consists of a regularly spaced grid. Figure 25.16(a)
shows a square grid decomposition of the space and a solution path that is optimal for this
grid size. Grayscale shading indicates the value of each free-space grid cell—i.e., the cost of
the shortest path from that cell to the goal. (These values can be computed by a deterministic
form of the VALUE-ITERATION algorithm given in Figure 17.4 on page 653.) Figure 25.16(b)
shows the corresponding workspace trajectory for the arm. Of course, we can also use the A∗

algorithm to find a shortest path.
Such a decomposition has the advantage that it is extremely simple to implement, but

it also suffers from three limitations. First, it is workable only for low-dimensional configu-
ration spaces, because the number of grid cells increases exponentially with d, the number of
dimensions. Sounds familiar? This is the curse!dimensionality@of dimensionality. Second,
there is the problem of what to do with cells that are “mixed”—that is, neither entirely within
free space nor entirely within occupied space. A solution path that includes such a cell may
not be a real solution, because there may be no way to cross the cell in the desired direction
in a straight line. This would make the path planner unsound. On the other hand, if we insist
that only completely free cells may be used, the planner will be incomplete, because it might



990 Chapter 25. Robotics

start
goal

start

goal

(a) (b)

Figure 25.16 (a) Value function and path found for a discrete grid cell approximation of
the configuration space. (b) The same path visualized in workspace coordinates. Notice how
the robot bends its elbow to avoid a collision with the vertical obstacle.

be the case that the only paths to the goal go through mixed cells—especially if the cell size
is comparable to that of the passageways and clearances in the space. And third, any path
through a discretized state space will not be smooth. It is generally difficult to guarantee that
a smooth solution exists near the discrete path. So a robot may not be able to execute the
solution found through this decomposition.

Cell decomposition methods can be improved in a number of ways, to alleviate some
of these problems. The first approach allows further subdivision of the mixed cells—perhaps
using cells of half the original size. This can be continued recursively until a path is found
that lies entirely within free cells. (Of course, the method only works if there is a way to
decide if a given cell is a mixed cell, which is easy only if the configuration space boundaries
have relatively simple mathematical descriptions.) This method is complete provided there is
a bound on the smallest passageway through which a solution must pass. Although it focuses
most of the computational effort on the tricky areas within the configuration space, it still
fails to scale well to high-dimensional problems because each recursive splitting of a cell
creates 2d smaller cells. A second way to obtain a complete algorithm is to insist on an exact
cell decomposition of the free space. This method must allow cells to be irregularly shapedEXACT CELL

DECOMPOSITION

where they meet the boundaries of free space, but the shapes must still be “simple” in the
sense that it should be easy to compute a traversal of any free cell. This technique requires
some quite advanced geometric ideas, so we shall not pursue it further here.

Examining the solution path shown in Figure 25.16(a), we can see an additional diffi-
culty that will have to be resolved. The path contains arbitrarily sharp corners; a robot moving
at any finite speed could not execute such a path. This problem is solved by storing certain
continuous values for each grid cell. Consider an algorithm which stores, for each grid cell,



Section 25.4. Planning to Move 991

the exact, continuous state that was attained with the cell was first expanded in the search.
Assume further, that when propagating information to nearby grid cells, we use this continu-
ous state as a basis, and apply the continuous robot motion model for jumping to nearby cells.
In doing so, we can now guarantee that the resulting trajectory is smooth and can indeed be
executed by the robot. One algorithm that implements this is hybrid A*.HYBRID A*

25.4.3 Modified cost functions

Notice that in Figure 25.16, the path goes very close to the obstacle. Anyone who has driven
a car knows that a parking space with one millimeter of clearance on either side is not really a
parking space at all; for the same reason, we would prefer solution paths that are robust with
respect to small motion errors.

This problem can be solved by introducing a potential field. A potential field is aPOTENTIAL FIELD

function defined over state space, whose value grows with the distance to the closest obstacle.
Figure 25.17(a) shows such a potential field—the darker a configuration state, the closer it is
to an obstacle.

The potential field can be used as an additional cost term in the shortest-path calculation.
This induces an interesting tradeoff. On the one hand, the robot seeks to minimize path length
to the goal. On the other hand, it tries to stay away from obstacles by virtue of minimizing the
potential function. With the appropriate weight balancing the two objectives, a resulting path
may look like the one shown in Figure 25.17(b). This figure also displays the value function
derived from the combined cost function, again calculated by value iteration. Clearly, the
resulting path is longer, but it is also safer.

There exist many other ways to modify the cost function. For example, it may be
desirable to smooth the control parameters over time. For example, when driving a car, a
smooth path is better than a jerky one. In general, such higher-order constraints are not easy
to accommodate in the planning process, unless we make the most recent steering command
a part of the state. However, it is often easy to smooth the resulting trajectory after planning,
using conjugate gradient methods. Such post-planning smoothing is essential in many real-
world applications.

25.4.4 Skeletonization methods

The second major family of path-planning algorithms is based on the idea of skeletonization.SKELETONIZATION

These algorithms reduce the robot’s free space to a one-dimensional representation, for which
the planning problem is easier. This lower-dimensional representation is called a skeleton of
the configuration space.

Figure 25.18 shows an example skeletonization: it is a Voronoi graph of the freeVORONOI GRAPH

space—the set of all points that are equidistant to two or more obstacles. To do path plan-
ning with a Voronoi graph, the robot first changes its present configuration to a point on the
Voronoi graph. It is easy to show that this can always be achieved by a straight-line motion
in configuration space. Second, the robot follows the Voronoi graph until it reaches the point
nearest to the target configuration. Finally, the robot leaves the Voronoi graph and moves to
the target. Again, this final step involves straight-line motion in configuration space.



992 Chapter 25. Robotics

start goal

(a) (b)

Figure 25.17 (a) A repelling potential field pushes the robot away from obstacles. (b)
Path found by simultaneously minimizing path length and the potential.

(a) (b)

Figure 25.18 (a) The Voronoi graph is the set of points equidistant to two or more obsta-
cles in configuration space. (b) A probabilistic roadmap, composed of 400 randomly chosen
points in free space.

In this way, the original path-planning problem is reduced to finding a path on the
Voronoi graph, which is generally one-dimensional (except in certain nongeneric cases) and
has finitely many points where three or more one-dimensional curves intersect. Thus, finding



Section 25.5. Planning Uncertain Movements 993

the shortest path along the Voronoi graph is a discrete graph-search problem of the kind
discussed in Chapters 3 and 4. Following the Voronoi graph may not give us the shortest
path, but the resulting paths tend to maximize clearance. Disadvantages of Voronoi graph
techniques are that they are difficult to apply to higher-dimensional configuration spaces, and
that they tend to induce unnecessarily large detours when the configuration space is wide
open. Furthermore, computing the Voronoi graph can be difficult, especially in configuration
space, where the shapes of obstacles can be complex.

An alternative to the Voronoi graphs is the probabilistic roadmap, a skeletonizationPROBABILISTIC
ROADMAP

approach that offers more possible routes, and thus deals better with wide-open spaces. Fig-
ure 25.18(b) shows an example of a probabilistic roadmap. The graph is created by randomly
generating a large number of configurations, and discarding those that do not fall into free
space. Two nodes are joined by an arc if it is “easy” to reach one node from the other–for
example, by a straight line in free space. The result of all this is a randomized graph in the
robot’s free space. If we add the robot’s start and goal configurations to this graph, path
planning amounts to a discrete graph search. Theoretically, this approach is incomplete, be-
cause a bad choice of random points may leave us without any paths from start to goal. It
is possible to bound the probability of failure in terms of the number of points generated
and certain geometric properties of the configuration space. It is also possible to direct the
generation of sample points towards the areas where a partial search suggests that a good
path may be found, working bidirectionally from both the start and the goal positions. With
these improvements, probabilistic roadmap planning tends to scale better to high-dimensional
configuration spaces than most alternative path-planning techniques.

25.5 PLANNING UNCERTAIN MOVEMENTS

None of the robot motion-planning algorithms discussed thus far addresses a key characteris-
tic of robotics problems: uncertainty. In robotics, uncertainty arises from partial observability
of the environment and from the stochastic (or unmodeled) effects of the robot’s actions. Er-
rors can also arise from the use of approximation algorithms such as particle filtering, which
does not provide the robot with an exact belief state even if the stochastic nature of the envi-
ronment is modeled perfectly.

Most of today’s robots use deterministic algorithms for decision making, such as the
path-planning algorithms of the previous section. To do so, it is common practice to extract
the most likely state from the probability distribution produced by the state estimation al-MOST LIKELY STATE

gorithm. The advantage of this approach is purely computational. Planning paths through
configuration space is already a challenging problem; it would be worse if we had to work
with a full probability distribution over states. Ignoring uncertainty in this way works when
the uncertainty is small. In fact, when the environment model changes over time as the result
of incorporating sensor measurements, many robots plan paths online during plan execution.
This is the online replanning technique of Section 11.3.3.ONLINE REPLANNING


