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Abstract - Evolutionary Robotics with the use of
genetic algorithms to evolve control systems for real
robots is a powerful tool, since it allows an
automatic evolution of control systems. Yet,
Evolutionary Robotics meets serious limitations
because of the time consumption. It is very time
consuming to evolve whole populations of real
robots for many generations. A simulated/physical
approach where main parts of the evolution takes
place in a simulator reduces the time consumption
dramatically. We describe how the Khepera
miniature mobile robot can be used to build its own
simulator with a semi-autonomous process, how to
evolve neural network control systems for the
Khepera robot in the robot's own simulator, and how
to transfer the neural network control systems from
the simulated to the real environment. By using this
kind of simulator an expected gap in performance
when transferring a robot control system from the
simulator to the real environment is avoided.

The autonomous robots approach is an
interdisciplinary field that includes knowledge from
engineering, computer science, psychology, and
biology. Autonomous robots applications can be
found in at least three areas: industrial prototypes,
ethological and biological models, and educational
programs. Industrial prototypes that can explore
dangerous or varying environments are constructed
and used for minefield exploration, lawn moving,
cleaning machines, etc. Ethologists, biologists and
psychologists build autonomous robots to replicate in
more controllable settings (environments) behaviors
observed in natural organisms (e.g., Deneubourg et
al., 1992). Finally, teachers and educational
psychologists use autonomous robots to facilitate the
learning process about concepts regarding natural
systems (e.g., Miglino and Lund, 1995; Pagliarini et
al., 1995). What connects all these different
applications is the work to construct a standard
methodology to build control systems for real,
autonomous robots. There has been various
proposals on how to obtain this unifying goal of a
standard methodology. The different proposals have
been tested using mainly the Khepera miniature
mobile robot (Mondada et al., 1994), or different
constructions of LEGO robots. Our research work
has included both tests on Khepera and LEGO
robots, but here we will limit ourselves to describe
some of the experiments with the Khepera robot
only.

Introduction.

In recent years much robotics research has focused
on autonomous robots, and especially autonomous
vehicles. Like natural organisms, autonomous robots
collect informations from the external environment
and produce motor actions that allow the robots to
change their relations with the environment. The
autonomy consists in having the robot itself to
decide its actions based on the sensory input by
providing the robot with its own onboard computer
(microchip) and batteries. The use of Evolutionary
Computation techniques to evolve control systems
gives another dimension to the autonomy of the
robots: it is not the researcher who implicitly design
all possible behaviors of the robot. The behaviors of
the autonomous robots emerge.

The Khepera miniature mobile robot (Fig. 1) has a
circular shape (55 mm. of diameter, 30 mm. of
height and 70 g. of weight). It is supported by two
wheels and two small teflon balls. The wheels are
controlled by two DC motors with an incremental
encoder (10 pulses per mm. of advancement of the
robot), and can move in both directions. The robot is



provided with eight infra-red proximity sensors. Six
sensors are positioned on the front of the robot, the
remaining two on the back. A Motorola 68331
controller with 256 Kbytes RAM and 512 Kbytes
ROM manages all the input-output routines and can
communicate via a serial port with a host computer.
By attaching  Khepera to the host by means of a
lightweight aerial cable and specially designed
rotating contacts, one allows a full track and record
of all important variables by exploiting the storage
capabilities of the host computer; and at the same
time it provides electrical power without using time-
consuming homing algorithms or large heavy-duty
batteries.

As an efficient learning algorithm for training Neural
Networks used as control systems for autonomous
robots we use a Genetic Algorithm. Initially, the
Genetic Algorithm produces a population of Neural
Networks (100 in our experiment) with randomly
chosen connection weights. The Genetic Algorithm
then evaluates each member of the population
according to some fitness measure decided by the
user, depending on the task to be solved. A subset
(20) of the members that do best on the fitness
measure is selected to reproduce. Each selected
individual produces a number of offspring (5) by
copying the individual Neural Network and
introducing biological operators such as mutation
and crossover. The testing and selective reproduction
process is repeated until a satisfactory result is
obtained.
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Figure 2. Connections between robot and neural
network.

Figure 1. The Khepera miniature robot.

Working on populations of robots is a very time
expensive process, since it involves the evaluation of
each robot in the population over many generations
(like is known from the natural evolution process
that has been going on for millions of years).
Therefore, as suggested in (Miglino et al., 1995), an
appealing idea is to develop autonomous robots
control systems in simulators before transferring the
control systems to the real robots that act in the real
environments. This, however, leads to the problem
of being able to transfer control systems and
structures perfectly from simulation to reality.

Model.

The control systems of autonomous robots can be
chosen to be Neural Networks. Neural Networks are
appropriate because of their adaptiveness, which is
an important issue for autonomous robots. The
adaptiveness allows the robots to work under
different conditions in different environments.
Another important character of Neural Networks is
that learning algorithms do not require that the user
manipulates the internal structure. This can be done
completely by the learning algorithm. The user has
just to present examples to the Neural Network, from
which it can be trained by trial-and-error. A Neural
Network control system for the Khepera robot can be
a simple 2-layer feed-forward network with 8 input
units that are connected to the 8 infra-red sensors, 2
bias units, and 2 output units that are connected to
the 2 motors (see Fig. 2).

Since it is very difficulty to capture the fuzzy
characteristics of the real world in a mathematical
model, we build a simulator by letting the physical
robot itself register its sensory activation in different
parts of the surrounding environment and register the
effect of different motor settings in the real
environment. To illustrate this, let us look at an
obstacle avoidance experiment for the Khepera



robot. The desired behavior of the Khepera robot is
based on the following abilities: (a) moving forward
as fast as possible, (b) moving in as straight a line as
possible, and (c) keeping as far away from objects as
possible. In order to evaluate individual fitness in the
Genetic Algorithm we used equation (1)

Results.

The time reduction is dramatically when using a
simulator before transferring the evolved control
systems to the real robot instead of making the
whole evolution directly on the real robot by
subsequently testing the different control systems on
the same robot. In fact, a 98 % reduction in time
consumption is obtained (It takes less than 1 minute
to evolve a generation in a simulator that runs on an
IBM RISC, while it takes at least 1 hour in the real
world).
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where Vi is the average rotation speed of the two
wheels,  DVi is the algebraic difference between
signed speed values of the wheels, and Ii is the
activation values of the proximity sensor with the
highest activity at time i. This value is summed over
number of steps of the robot, steps.

We construct the obstacle avoidance experiment in
such a way that 200 generations are evolved in the
simulated environment before the evolved Neural
Network control systems are transferred to the
Khepera robot. After this, the evolution continued
for 20 generations in the real physical robot and
environment.

We constructed the real, physical environment as a
60*35 cm rectangular arena surrounded by walls
with 3 round obstacles of 5.5 cm placed in the
center. Walls and obstacles were covered with white
paper. In order to construct a model of this
environment, Khepera empirically sampled the
different classes of objects in the environment (wall
and obstacles) through its own real sensors. It turned
360 degrees at different distances with respect to a
wall and to an obstacle, while, in the meantime,
recording the activation level of the sensors. The
resulting matrices were then used by the simulator to
set the activation levels of the simulated robot
depending on its current position in the simulated
environment. In the same way, to model the robot's
motors, the effect of the different motors settings in
the real world was sampled. How the robot moved
and turned was modeled for all possible states of the
motors. The obtained measures were used by the
simulator to set the activation level of the neural
network input units, and to compute the
displacement of the robot in the simulated
environment.
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Figure 3. Peak and average performances as an
average result of 5 experiments with noise. The first
200 generations are evolved in the simulated
environment, the last 20 generations in the real
environment.

Figure 3 shows the performance of the best
individual, and the mean performance of each
generation as an average of 5 experiments. The
fitness increases quickly to a high level and already
at generation 60 an optimal strategy seems to be
found, and from this point on only minor increases in
fitness will take place. Yet, the most remarkable
result is observed when we transfer the control
systems evolved in the simulator to the real Khepera
robot at generation 200. There will be no decrease in
fitness at all, and during the subsequent 20
generations we note an increase in fitness.

The procedure of letting the robot itself construct the
model to be used by the simulator has several
advantages: it is simple and it accounts for the
idiosyncrasies of each individual sensor. It allows
the building of a model of an individual robot taking
into account the specificities of that robot that makes
it different from other apparently identical robots. It
also accounts for the idiosyncrasies of the
environment by empirically modeling the
environment itself, instead of building a
mathematical model of it, as has been suggested by
other researchers (e.g., Jakobi et al., 1995).



environment with the technique described in this
paper.Also at the level of behavior, the evolved robots

perform equally in the simulated and the real
environment. If we take one of the individual of
generation 200 and look at its behavior in the
simulated and the real, physical environment, we
observe that the trajectories of the mobile robots
match almost perfectly, as shown in Fig. 4.
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The idea of Evolutionary Robotics that uses
Evolutionary Computation techniques to evolve
control systems for real robots is very appealing and
with the results presented here, it has been shown
how the main problem of time consumption can be
avoided. It demands to build a reliable simulator of
the robot and the robot's environment. This can be
done by letting the robot itself register the
characteristics of the environment and its own
physics. We have shown, that with the use of such a
simulator, we obtain a 98 % reduction in time
consumption, and that there is a perfect match
between the simulated and the real robots, both at
the level of fitness and at the level of behavior.
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The validity of using simulators opens new
perspectives for Evolutionary Robotics. In
simulators, it is possible to use fitness formulae, that
can not be used on real robots, like distance to a
given path, number of different cells passed, etc.
Future work in Evolutionary Robotics should
investigate how to evolve behaviors in simulators
that can not be constructed without a simulator, and
then transfer the behaviors to real robots in the real


